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Similarly, by modifying his proof we can deal with the more general
proposition

D Hlg@) ~ (o) S5

e

In neither of these proofs do we therefore have to appeal to any results
from the theory of complex variables.
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§ 1. Introduction. In this paper we prove the main theorem relating
to the set (or a subset) of complex numbers at which a given set of
algebraically independent meromorphic functions assume values in a fixed
algebraic number field (we actually prove a more general result which
may be useful elsewhere). We state a few deductions in § 2 and it is in-
teresting to note that the Main Theorem gives significant results in the
case (overlooked by Gelfond) where the functions concerned do not satisfy
algebraic differential equations of the first order with algebraic number coeffi-
cienls. Since some of the deductions require lengthy preparations we post-
pone the proofs of these and other deductions to part II, which is a contin-
uation of this paper. We give a brief history of this theorem in this section.

In the year 1929, A. O. Gelfond made the important discovery that
a’ = ¢"'°* is transcendental for every imaginary quadratic irrationality b
and every algebraic a different from zero except for loga = 0 (}). Assuming
the result to be false Gelfond applied the interpolation formula

f(2) = ayFo(2)+ a, Fy(2) + ay Fo(2) +. ..

[T{z—=), a,_, = k;f(zk){lf’,',,(zk)}’l, and 2,2, ... i8 4

1=1
previously given sequence of complex numbers (for the conditions of
validity see Biegel’s monograph [6], §14, Chapter I) to the function
f(2) = ¢”'°*% and arrived at the contradiction that the above expangion -
for f(2) for a suitable sequence 2y, 2,, ... must terminate. It 4s important
to note that the only property of the exponential function required in the
proof is the addition theorem ¢ = ¢”¢”. Gelfond’s proof was carried over
to the case of a real quadratic irrationality b by R. O. Kusmin [2]in 1930.

where F,(z)

(1) As a consequence we have thé remarkable result that the decimal expan-
sion of ¢™ = i~? never terminates. Ref. A. O. Gelfond, Sur les nombres transcen-
dants, Comptes Rendus Acad. Sci. Paris, 189(1929), pp. 1224-1226.
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The general problem of the transcendency of o’ for arbitrary al-
gebraic irrational b was solved completely in the year 1934, independently
of each other by A. Q. Gelfond and Th. Schneider. Both the proofs used
the arithmetical lemmas in § 2 of Chapter II of [6]. Their proofs had two
important differences. Tirst, whereas Gelfond’s method wused essentially
the differential equation for ¢ in addition to the addition theorem, Schneider's
method wused only the addition theorem. Secondly Gelfond’s method did
not lead, at anv rate easily, to the determination of a transcendence
meagure for a’, i.e. an explicit lower bound for |P(a “| where P (i) is
a given polynomla,l with rational integral coefficients not all zero. Schnei-
der’s method was readily effective in obtaining a transcendence measure
for a’. However it should be mentioned that Gelfond’s proof was shorter
and the method was readily applicable to some problems dealing with
elliptic functions and related questions. Some applications of this kind
were made by Siegel and Schneider and all theorems obtainable by this
method are special cases of a general theorem of Sehneider (see {47, Satz 12,
page 49). Schneider’s general theorem gives an upper estimate for the
number of points in the complex plane at which the Taylor expansion
coefficients, of a given set of algebraically independent (we shall mean
always over the field of compler numbers) meromorphic functions, lie in
a fixed algebraic number field. Under some reasonable conditions (an
essential one is the existence of an algebraic differential equation of the first
order with algebraic number coefficients, for each of the functions) it follows
from this theorem that origin is the only possible point at which all the
functions take algebraic values. In particular this is true of the following
pairs: (2, ¢), (¢, £(2), (€, ), (&, P(2), (9:(2), 2(2)) where « iy an
algebralo number the fmvmmnts 02y g5 for the Weierstrass elliptic functions
involved are algebraic numbers (this convention will always be adopted
unless otherwise stated explicitly) and the functions concerned are algebrai-
cally independent. For the deduction of these resulis we have also to use
the addition theorem.

It is a pleasure to thank professor C. L. Siegel for going through
the manuseript in detail and suggesting this presentation, and to thank
professor K. G. Ramanathan for many helpful discussions in connection
with the preparation of the manuscript.

§2. Statement of some results. However, very little is known about
the number a® = ¢"'¢ (¢ and b arbitrary complex numbers, bloga = 0),
for instance =° Although there are further developments of Gelfond’s
method by lnmself Whlch show, for example, that one at least of the
four numbers o, a , a” (a algebraic, » rational and vloga # 0)
1sm13ranscendenta1 (see [17, pp. 131-133) there does not seem to be any
result about =°. By means of & new idea we prove a very general and
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important theorem stated in § 3, which we call the Main Theorem. The
new idea simplifies considerably the Schneider’s method of proof of the
transcendency of a® (referred to in the third paragraph in § 1), at the
cost of making the proof, probably, ineffective in questions of transcen-
dence measure. But our method has its advantages and enables us to
study the set S(f,g) (Schneider’s method as such requires one of the
funetions f, g to be 2) of all complex numbers at which two algebraically
independent meromorphic functions f(z) and g(z) take values which are
algebraic numbers. For instance if a is any transcendental number it
follows from our main theorem that any three numbers of the set S(¢°, e%)
have a non-trivial linear homogeneous relation with rational numbers as
coefficients; in other words we say that the set S(¢, ¢) has dimension
at most 2. Alternatively if «, B, y, 6 are algebraic numbers with the
property that log §/loga is irrational, and loge, logf, logy do not satisfy
any non-trivial linear homogeneous relation with rational coefficients,
log 610g[3’) and exp (log élogy)
loga loga
is transcendental (*). We ecan deduce from this a stronger reqult fchan
Gelfond’s, namely that one at least of the four numbers &, a ,as a’
(where a and b are arbitrary complex numbers with loga 7= 0 and b trans-
cendental) is transcendental. In particular, choosing a such that a® s
a given algebrmc number A, it follows that one at least one of the three
numbers A, A" 4% b tmnscendent&l, A algebraic with logd = 0) is
transcendental.

There is however, one result of Schneider ([5], II) on elliptic functions
which does not use essentially the differential equation but uses only the
addition theorem; but this result is superseded by the general theorem
of Schneider obtained along the lines of Gelfond’s method. It seems diffi-
cult to extend Schneider’s method (which deals with the set S(z, p(a2)),
where a is an arbitrary complex number, a = 0) to study the set (¢, go(az))
or the set S(@, (), £.(a2)) since the extension of the method would require
good lower bounds for linear forms with arbitrary complex coefficients
and there are other difficulties. However, the new idea adopted in this
paper is suitable for the discussion of these and other problems since we
avoid all such difficulties by using a result of Weyl and others (for re-
ferences see part II) on the uniform distribution of certain numbers
modulo 1. We have also to improve certain estimates of Schneider re-
garding the size (see § 3 for the definition) of certain algebraic numbers

then one at least of the two numbers exp (

(2) After writing this manuscript I came to know from professor C.L. Siegel
that this is a result first due to Schneider and Siegel. Their result is unpublished.
This result is also to be found in a recent paper by S. Lang, Algebraic values of mero-
morphic functions, Topology 5 (4), (1966), pp. 363-370. The results of this paper
have something in common with Lang’s results.
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which appear in connection with the Weierstrass elliptic function. These
preparations are rather lengthy and we carry out the details in part II
of this paper. It will suffice here to state one or two results. If o, (2) and
@.(az) are algebraically independent then the dimension of the set
S{g1(2), p2(az)) is at most 4. The dimension is at most 3 if ,(z) and
@2 (az) have a common period and there are other results applicable to
two or more functmns one of which may be ¢°. The analogue of the result
for 4% A", AP iy as follows: If b is any franscendental number then
one at least of the five numbers

P(wh), P52, P(w,b*), plod?), plob’)

is transcendental where o,, w, are the periods of @(z) = @ (=; wi, w,).
If further wyjm, is an imaginary quadratic number then one at least of
the three numbers

Plwd), pob?), plob’)

is transcendental. An alternative way of stating the same result is that
one at least of the three numbers {4(1,7)}7@%b), {4(1, v)} V%),
{A@, 7)Y 9% (b?) is transcendental, provided p(2) = p(2; 1, v), v imagi-
nary quadratic and in this alternative statement it is not necessary to
suppose that g,, ¢; are algebraic. (We have written 4(1,7) = g —2743
as usual). Combining this result with a result of Mahler [3] and Schnei-
der ([A], IT) we can deduce the following result. Let w,/w; be an imagi-
nary quadratic number, g,, g, rational and let H be the maximum of
the heights of ¢, and g, (height of an algebraic number a is as uvsual the
maximum of the absolute values of the coefficients of the irreducible
polynomial, with coprime rational integer coefficients, of which o is
a zero). Then if b be a complex number for which g(bw,) is a rational
number with height exceeding 480H°, one at least of the two numbers
@ (0 0%), @(0,b%) is transcendental. (It is possible to have both these
numbers real and in this case the number @(w,b +1/ 1w b i
definitely transcendental). We use the results of Mahler and Schnmder
to see that b is transcendental.

§ 3. Statement of the Main Theorem. For our later purposes as also
for stating our main theorem, it is covenient, from now on, to adopt
a fixed notation. It is convenient to begin with

DrpiNITiON. Let a be any algebraic number and d(«) the least
natural number such that ad(a) is an algebraic integer. Then denoting
by |e| as usual the maximun of the absolute values of the conjugates of o
we define the number d(a)+ | al| as the size of a and write size a for the size
of a. The relation of this notion to the familiar notion of height is not
difficult to obtain and details will be given in part IT of this paper.
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(1) Let Fy(2) = H;(2)[G1(2), ..., Fy(2) = Hy(2)/s(2) be s (> 1) alge-
Draically independent (we always mean algebraic independence over the
field of complex numbers) meromorphic functions which are quotients
of (coprime, i.e. without common zeros) entire functions H,(z), G1(2); .. .;
H,(2), Gs(2) all of order not exceeding o (finite). Let MU(R) (t =1, )
denote respectively the quantities

MO®) = (1+ max |H(@)]) (14 max i6(2))-

(2) Let {a,} (» =1, 2,3,...) be a given infinite sequence of distinet
complex numbers, arranged in such a way that certain natural numbers
n, associated with a, are non-decreasing. The integers n, need not be
necessarily distinet and are supposed to have the property that N (@),
the number of numbers a, with #, not exceeding @ is finite for each
Q=1,2,3,... We set D()=max|a,| and impose the condition

<

log N(Q)
i e D (@)

(8) Let {a,} (r=1,2,3,...) be an infinite subsequence of {a,}
and note that the number N,{@) of numbers a,, with n e not exceeding @
tends to infinity as @ tends to infinity. This subsequence may be the
whole of {a,}; but we suppose that whenever a polynomialin ¥, (2) , Fe(2)
(with complex coefficients) vanishes at all points a, with =, rnot emceed«
ing @, it also vanishes at all points a, with 7, not exceeding @.

(4) Suppose that the numbers Fy(a,) (t =1,...,8; 4 =1,2,3,...)
are all algebraic numbers (see the remark following the Main Theorem).
We denote by h(Q) the degree of the algebraic number field obtained
by adjoining the algebraic numbers Fy(a,) (t =1,...,8; n, <) to the
field of rationals and set

MD(Q) = 1+ max{size(Fy(a,))} (=1,...,9).

nﬂ{Q

Note that MP(Q) = 2 are non-decreasing functions of @.
(5) Finally we set

1
Mo - = ey 8
MNQ) = 14—1]: o |(Tt( " (t=1,...,%)

and note that M (Q) = 1 are non-decreasing functions of ¢.
MaINn TuEOREM. Let q be a sufficiently large natwral number, and
Fiy ...y Fg natural numbers related to q asymptotically by

vy e v~ B(g) (R(@) +1) Vo (g).
Suppose that the hypotheses (1)-(4) above are satisfied. Then there ewisis
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a natural mumber Q greater than q, such that for every positive guantily
R, there holds the inequality

s s

= ([T ([T o) ([ Joeemr) 2

)N(Q-r 1)
=1 =1 =1

Remark. The Main Theorem has been proved in a slightly more
general form than is required for our purposes since it is possible to do
so without complicating the notation or the details. We apply the Main
Theorem only in the case where h(Q) is bounded as @ tends to infinity, i.e.
when all the numbers Fy(a,) (t =1,...,8; p =1,2,3,...) lie in a fixed
algebraic number field. It might be mentioned here that if the set {a,}
has a limit point in a finite part of the plane (for instance when D(Q)
is bounded), the restriction that Hy(2), Gy(2) (t =1, ..., s) should De of
log N (@)

finite order as also the condition liminf > ¢ are quite unnec-

oo l0gD(Q)
essary; but these conditions are necessary in our applications.

§ 4. Approximation form and the proof of the Main Theorem. We
start by stating a most useful arithmetical lemma which is essentially
due to Siegel. Our lemma which is a generalization of Siegel’s lemma reduces
to Siegel’s lemma when b = 1.

Levwma. Suppose that the coefficients of the p linear forms yi = g ¥+
+ o gy (B =1,...,p; p < q) are integers in_an algebraic number
field K of degree h and let [_E;[ < A. Then there ewist rational iniegers
Byy ooy By N0t all zero satisfying yy = 0,...,4, =0 and such that

1) < 14 (2q, A)Ph(7l+l)/[2f11—ﬂh(h-l-!)]

provided 2q, exceeds ph(h-+1) and A > 1.

Proof. Similar to the proof of Siegel’'s Lemma 1 (see [6], p. 35).
We have to use a rough bound for the number of algebraic integers of
degree at most &, not necessarily lying in X but all of whose conjugates
do not exceed a given bound. We leave the proof to the reader.

Let g be a sufficiently large natural number and 7y, ..., r, natural
numbers whose product is asymptotic to h(g)(h{g)+1)N1(g). We set
p = N,(¢q) and ¢, =7;...7,. Our approximation form ig

Chep ity [P (2)) . (P (2))

0k <y~ 1., 0hgsirg—1

(h=1,2,...,p)

R(z) =
with suitable rational integers Cy . x not all zero. We consider the
p = N,(g) linear homogeneous equations

E(a,) =0 for all , with n, not exceeding ¢,
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in g, (asymptotic to h(q)(h(g)+1)p) unknowns Cy, . To make the
coefficients algebraic integers in any particular equation we have to
multiply the equation by a natural number not exceeding (M{(g))7 ...
. (M) = J1(g) say. The absolute values of the conjugates of the
algebraic integer coefficients so obtained, do not exceed (J,(¢))*. This
can be done for each equation. Applying the lemma above we get rational
integers Cp,,...r, Dot all zero with
Pl (g -+ 1)/[201 - PRy Ry +1)]
(where hy = h(g) for shortness) such that R(a,) = 0 for all a,, with 2,
not exceeding ¢. Since g, is asymptotic to %,(k,+1) the exponent on
the right side of the inequality can Dbe replaced by (1—e)™* for all
g = g (e) (we can fix ¢ =3). The sum on the right can be replaced by
2Y0-¢) times the second term. Using now the trivial inequality 47 ... %
< 2™ ... 2% < J,(qg) valid for all large ¢ since MP(g) =2fort =1,...,8,
we have
1Ok ey < (2@, ¢ = (o)
By the hypothesis (3) of the Main Theorem the stronger conclusion

R(a,) =0 for all a, with », not exceeding g,

is also valid. Now because of the algebraic independence of the functions
Fi(2),..., Fy(2) the approximation form R(z) is not identically zero and
8
[1{G:(2)®, the entire function R(z)G(z) is of order
i=1
not exceeding p. If R(z) vanishes on the entire sequence {a,} so does
. log ¥
R(2)G(2), and by the definition of D(Q) it would mean that liminf _ng__@_).
Q-0 logD(Q)
does not exceed p. But this contradicts the hypothesis (2) of the Main
Theorem. Hence there exist points a; in {a,} for which R(a,)is different
from zero. We choose one such point with least possible n;, say n; = @
(naturally @ > ¢). Thus y = R(a;) % 0 and R(a;) == 0 for all a; with n; < @.
By our hypothesis (4) it follows that for some natural number m
not exceeding J,(Q), my is an algebraic integer of degree at most 7 (Q)
and so0 :

moreover if G(z) =

N(p) = (J1@Q)™  where  hy = k().

Also

7] < (T @) TI94(Q) < (T (@O

Finally by integrating on the circle || = R with R > 2D(Q),

o [RE6E ['](~“f"“1)~—‘z—z--

Q(a;) 2ni g VT W z2—aj;

y =


Pem


72 K. Ramachandra
Here L : 5
——— < J,(Q) =[[(MP@)"
G <@ ﬂ( 9(@)
IR(2)G(2) por <71 .- 75 (T (@)1 (R) < (T(Q) =T 4 (R),
where s

ny<Q F—m R—D(Q) R
o2
e—a;l = R—D(Q)
and so ) ey
Il <Jz(Q)‘—2*1;'27\:1?(Jl(Q))""al(l")Js(R)._1%(_ - )
1-+3/(1—¢] 8D (Q)\Me-
< (L Q1T (Q)To(R) (.»—]T)

Combining all our estimates for y, we get
I 3 L3y 8D(@) |\
1< (7@t e, 07, 1) (P )
and since the exponent of J,(Q) on the right does not exceed hy[3+
+3/(1—£)] = 8h, = Bh(Q), for &= 2, this proves the validity of the
inequality of the Main Theovem for R > 2D (@) and the inequality is trivial
for R < 8D(Q). This completes the proof of the Main Theorem.
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§ 1. A special case of the Main Theorem. In this section we apply
a special case of the Main Theorem of the earlier paper I ([9], p. 69)
to deduce Theorem 1 below which will be the only theorem to which we
shall refer in the later sections of this paper. We begin with some defi-
nitions (incidentally we also recall the notation). From now on we deal
only with meromorphic functions which are quotients of entire functions
of finite order. Given s (> 2) algebraically independent meromorphic
functions F,(z), ..., Fs(2) we introduce with respect to these

DEFINITION 1. A weighted sequence 8 (often we write {a,} for 8)
is an infinite sequence {a,} (z = 1,2,...) of distinet complex numbeis
together with an infinite subsequence {a,} (r = 1,2, 3,...) (which may
be the same as {a,}) and an infinite sequence {n,} (. =1,2,3,...) of
natural numbers not necessarily distinet satistying the following conditions.

(i) The sequence {n,} is non-decreasing.

(if) For each @ ==1,2,3,... there are only finitely many {a,} for
which n, does not exceed . We denote this number by N (@). It follows
that there are only finitely many numbers a, for which n, does not
exceed @ and this number N,(Q) does not exceed N (Q).

(iii) The limits

AT T

§ = lim log A (Q—)» and 4, = lim 17(1g1\ 1(@2
ow  log@ Qoo logQ)
exist and are finite.

(iv) The upper limit

lim sup (—l— max| %i)
Q-—s00 n,<Q
is finite.
(v) Whenever a polynomial in F,(2), ..., F(2) with complex coeffi-
cients vanishes for all values z = a,, with n, <@, it also vanishes for
all values # = a, with n, <@.
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