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Therefore there exists 7' < exp(exp3X) such that
Loy

Hence
o (' —1y, T 1) < — ¢y (Indn e

for 1T > 14(e) and &> 0.

(26) is true, (25) follows by the same way, one has to use only the
corollary of this lemma.

Remark. If we estimate the degree of lincar independence move
exactly (Lemma 5) the term (Inln2)"~* in (25) and (26) can e replaced
b InlnA )M ‘ '

Y ('153%7 '
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Some notes on k-th power residues
by

P. D. T. A. Brurorr (Nottingham)

Let k be a positive integer and p a rational prime satisfying p
= 1 (mod k). We then define n;(p) to be the least positive integer which
is not & kth power (mod p). For the remaining primes we define it
to be zero.

It is a long standing conjecture that the estimate ng(p) = O(p°)
holds for any fixed value of ¢ > 0. In an average sense this result is known
to be true since there is a constant ¢, for which

D m(p) ~ aaloge,

nLz

as @ —oo. For a proof of this result we refer for example to Elliott [5].
If we assume an extended form of the Riemann hypothesis then the
method of N. O. Ankeny [1] shows that

n(p) = O((logp)?).

In the other direction, Chowla showed that there is a positive constant
¢ for which n,(p) > clogp holds infinitely often. It is our present purpose
to show that a similar result holds for certain other values of k.

TanoreM 1. If k 8 an odd prime there is a constant d > 0 for which

np(p) > dplogp
holds infinitely often.

For the duration of this theorem, we agsume that k is an odd prime.

We need two lemmas.

For an integer & let ¢ denote the cyclotomic field obtained by
adjoining the %th roots of unity to the field of rational numbers Q. Let
Qr denote the ring of algebraic integers in this field. For any element a
of @, we use [a] to denote the principal ideal generated in @y by a. Fur-
thermore we take ¢ = exp(2ri/k) and 2 = 1— ¢ which are both algebraic
integers of Q.
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LemMA 1. Let g1, ¢s, - ., Q- denote 7 rational primes, possibly including k.
Let p be a rational prime satisfying p = 1 (mod k) which does not divide
0195 .- §» or k. Then each g is & k-th power (mod p) for each value of i, if
and only if any prime ideal p dividing p in Q belongs to certain ideal classes
mod [A2¢y ... ¢p)-

Proof. Since p satisfies p = 1 (mod k), [p] splits into ¢(k) = k—1
conjugate prime ideals p. It was shown in [5] that if there are h, ideal
classes mod [A%q,...q,] then the above stated result holds if and only
if any p which divides p belongs to one of &™"h, of these ideal clagses.

LemmA 2. Let K be an algebraic number field and K its ving of inte-
gers. Let a be an ideal of K which has h(a) ideal classes. Then the number
of prime ideals p satisfying p = Np <o and belonging to o particular
ideal class (mod a), is at least

@/(Na)tlogs

provided only that ¢ > (Na)® > 1. Here both constants depend only upon K.

Proof. This result is proved by Fogels [6].

Proof of the theorem. We now take ¢y, ..., q, to be the first »
rational primes. We count the number of prime ideals p which are of the
tirst degree, do not divide kg, ... g, and belong to one of the appropriate
ideal classes mentioned in Lemma 1. Moreover p must divide a rational
prime p not exceeding 2.

By Lemma 2 the number of these is at least

K" |(N[A2gy ... ¢,])logn— Z’ 1,

Nyp=n<z

(1)

where the final summation is taken over those primes p dividing kq, ... gy
provided only that & exceeds (N.[A2q, ... g.])
Since the inequalities

N[2q ... ] < exp ( 032 Iogq,;) < ol BT
1=

follow from a well-known estimate, it is enough if we take # to De the

integer part of slogw/logloga for a small but fixed value of .
Clearly .

2’ l<r <loga

Np=n<a
80 that the expression (1) exceeds
exp (—¢srlogr)a(logw) ™" —loga.

This is then positive if ¢ is sufficiently small.

m@
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We thus obtain a prime ideal p, corresponding to which there is a
rational prime p for which

i (p) > ¢ > ¢,rlogr > g logn.

The desired result now clearly follows.

With the above restrictions on p, k we define 75(p) to be the least
positive prime p which is a kth power (mod p), and to be zero otherwise.
It is natural to conjecture that the asymptotic equality

D, 7u(p) ~ aia(loga)™, s

<

2 —> oo,

holds. We show that this is certainly true if % = 2.

THEOREM 2.
" alogzw))
=gq.IL _
pgx (r2(p))* = guLu(@)+ 0 (wexp( oza))

where g, ¢ are positive constants, ¢ being arbitrary but fived, and

Ju = 22‘7&?7
=1

the g; running through all the rational primes; provided o < 4.

Proof. Let S(%,x;q,) denote the number of primes p <  which
satisty 7x(p) = g,. The sum which we wish to estimate is clearly

D a8k, 35 ,).

B<®

The evaluation of 8(k,#;g¢,) for small values of g, is carried out
much as the similar calculation used to count the number of primes p << @
for which 7;(p) = ¢

We first show that if N is a large, temporarily fixed integer, then
uniformly for ¢,.< W,

&

@) 8k, 23 g) = —(1+0(1))

—, a8 &->o0,

N logx

where n, depends upon the degrees of certain algebraic number fields.
Let ¢7,...,q; be s primes, then (see [5], Lemma 5), the number

of primes p < 2, satisfying p =1 (mod k), for which ¢4 =1,...,s,

are kth powers (mod p) is

fL+o(L)w/logz as

m—>00’
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where
e it k is odd,
9™M%*  if 2|k and m, is the number of odd ¢
fo = dividing % and satisfying ¢; =1 (mod 4),
oy~ if 4|k (8|k) and m, is the number of

distinet odd ¢; which divide k.

Tet us pub f(g;) to denote the value of f; for a specific set of primes
(@15 +++5 gs) = s Then by the exclusion principle, the asymptotic density
‘amongst all primes of those primes for which r,(p) > ¢» 18

7.

oy §
(3) =1 D f(as),

=0 [

where the inner sum is over all possible g formed by the first » primes ¢,
and where f(q,) =1.

Suppose that ¢, exceeds the maximum prime divisor of k, and, for
example, that 2{k. Any selection g is formed by taking a subset of ¢
of the odd prime divisors of % which satisfy ¢; == 1 (mod 4) with 0<<t<s,
and §—1 further primes ¢ with 1 <<i< 7, ¢tk

Tiet us denote the number of distinct odd prime divisors of & which
are =1 (mod 4) by w. We then have typically

flas) = 2'%7°,

and letting q; Tun over all the selections of s primes in the inner sum of

(3) we obtain
3, )

8§—1

2 flgs)=k"*
a8

o-;t@ﬁ(a,w)
The R. H. 8. is the coefficient of £° in the binomial expansion of
(4) B (120" (140",
If g is a real number so that ke > 1, then thig iy

l " 8 oy
B [ eraseeear o,

1t1=e
g0 that the value of the sum in (3) iy

»

g

1 —~1 0 CRe T}
= fc (L+28°(1+0)

" ltl=e =0

(—ke)"de.

Now we can extend the sum over s to cover all integery s = 0, since the
Laurent expansion of (4) has no powers of { higher than ¢"*, and fur-

icm®
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thermore |k¢|™! = (kg)~' < 1, so that we obtain for our sum (3) the esti-
mate

1

RIS

f (L-H20)° (148" (L 4+ 1 /k)dL .

ltj=e

The integrand is regular in the whole finite plane save at the point
¢ = —1/k, where there is a simple pole with residue

(1—2/B) (1 —1 /)1,
Hence, we have for n; ' the value
(—=1[k) (L =2 /B {1 — (1—1/k)} = {(1—2/k)*(1—1 /) *~*}[k.

This is certainly non-zero unless k¥ = 2. In this case w = 0, and the
above method shows that we have n, = 2". If 4|k we replace w by the
total number of distinet odd prime divisors of %, provided ¢, still exceeds
every prime divisor of k. For smaller values of r we obtain an explicit
but a somewhat more complicated expression. It is in any case clear that
for all r =1,

(5) net < (—1/k)

We next recall that if & is an odd prime, then ¢y, ..., ¢, are non-kth
powers (mod p) for primes p, pt(kq;... ¢), p =1 (mod k), if and only
if any prime ideal divisor p of [p] in @ belong to k~"h(R,) ideal classes
{mod N,), where N, = [42¢, ... ¢,]. (Cf. Lemma 1, and also [5], Lemma 12
and following). We can then use a generalization of Selberg’s sieve method,
and show that for any constant D >0, we have

2 {ru())* = gr.w/logm+ ox(w/loge)+ O (4(N)a loga),
74(0)< dogm)?

where

Ghe = Zqﬁfn;l and  A(N) < exp(—c,V1ogh),
r=1
and where ¢y, ¢,, --., is the set of all positive rational primes. (See [4],
(15)-(19).) The second error term here is not necessarily uniform with
respect to all values of N.
Thus

limsup -
200

(re(P))* — i

logw“ 3 K epd(N),

2
&~ logo
#4(0) < (logz)”
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for all ¥ > 1, so that we obtain

(re(®))* ~ grm/log,
o) logey?

and in order to prove Theorem 2 with & in place of 2, we need only show

that there is a constant D >0 (possibly depending upon «), o that

(6) 2 (re(@))* = o(floge), as @ -—>oo.
< D

73(p)> loge)y

We shall do this for k¥ = 2. We need the following form of the large sieve
of Linnjk.

LevmA 3.IF0 < @y < ... < ag < N is a set of integers, and A (N, 1, q)
is the number of these a; which satisfy a; = 1 (mod gq), then

-1
Do ) (AN, 1,p)—p7 2 <TZN.
p<yN U=0

Proof. Thig result is contained in Theorem 1 of Bombieri [4]. We
shall not be concerned with the particular value 7 on the R. H. 8. of this
inequality.

Let ng(p) = ¢r, * > 1, then ¢y, ..., ¢,_; are all kth powers (mod p),
and so therefore are all the integers formed from these ¢;. We can then
construct a sequence A to which we can apply Lemma 3. However, if
71(p) = ¢, the information that gy, ..., ¢._, are not kth powers (mod p)
is not quite so eagily used, for clearly, some of the products of the g¢;
might well be kth powers (mod p).

More exactly, let &, G" denote the group of reduced residue classes
(mod p), and the group of kth powers of these classes, respectively. Let I
denote the quotient group G/G*. Then I} is isomorphic to the additive
group of residue classes (mod k). Let us denote the classes of I by i,
¢=1,..., % where for convenience we take v, = ¢ the identity of [%.

It vy, yoely, then what we have just said amounts to the fact that
Y1¥2 = € or a similar result might hold. If in particular k = 2, then clearly
7172 = ¢ 80 that the product of an odd number of the primes ¢; remaing
& quadratic non-residue (mod p). Let us first deal with this case, which
we need for our theorem.

Lennia 4. Let w(k, »,y) denote the number of integers not emceeding
which are made up of primes p <y < @, and whose lotal number of prime
divisors, counted with multiplicity, is a multiple of k. Then if h >1 and «
are positive constants,

ke, @, (logm)") > o(e)a~2,
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Proof. Define the integer ¢ by:

Yi<e <y, y = (loga),

so that if  is large enough ¢ is non-zero.
Let 7(y) denote the number of primes not exceeding y, then clearly
k¥t < loga/hlogloga < = (y).

Now the product of any k primes p <y will be of the type desived
in our lemma.

Hence we have the inegualities
a(y) =kt \* _(w(y) \M y "
(05 (1) 5 () S 20 (s
P B, ( kt) Tt 2k | 4ktlogy
> wexp (— ktlog (4ktlogy) —logy).
Sincé moreover

: logz
ktlog (4ktlogy)+logy < loi-y log(4logax)+logy < (% -+ s) logx,

we obtain the desired result.
‘We now form the set of integers a; < #* which are made up of the

primes ¢y, ..., ¢,_;, and which have an odd number of prime factors.
The number Z of these is clearly at least

v(2, 2, )
$0 that if (logz)” < g,._, < 2(logw)” we see that
Z > (2, }a*(logz)~2, (loga)®) > (D, ) a0~ ~%,

The integers a; all belong to 1+ 4(p—1) or fewer classes (mod p), so that:
it p<oand ry(p) > ¢,
P-1

P D (AW, 1,p)—p 2} > 0,27,
1=0

and therefore
1< 012“’2/'/’ < Glsmw—IHS-
P<a,ry(@)(logn)
Before we proceed we note that an alternative method of estimating
the set of m < @ for which the total number of divigors Q(m) is odd, and
which are made up of primes ¢< ¢ is a slight modification of that of

A. L Vinogradov [2]. We see that the number which we wish to investi-
gate is

1 Q2(m)
3 = (=1,

msc
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where m runs over an obvious set of integers. The method of Vinogradov
which we have just referved to gives a good estimate for the .n.umber of
our m not exceeding @, and depends upon studying the behaviour of the
generating funetion
)= [[a—p™",
DY

as a function of y, s. The terms (— 1)) ave clearly generated hy

1
[o= =

i 3 i1 v " Qm
and so with obvious modifications we can deal with the bummé'w(—].) ¢

and obtain a sharp estimate for the number of special integers m < .
It is here however not particularly advantageous. To complete the proof
of Theorem 2 we appeal to the following result of U. V. Linnik and A. L.
Vinogradov [3].

Lemma 5. For any =0,

75(p) < P

Proof of Theorem 2. We have already reduced our problem to
proving the asymptotic estimate (6). By Lemmas 4 and B, we see that
(ra(p))* < (erg* )" 1 et e

D rg(0)=ogn) P D ry(0)(logn)?

Here, if « is small and D is large, then the exponent of @ is
tate(a+3)+2/D < 1.

8o that (6) is proved, and insofar as we obtain an asymptotic esbi-
mate, so is Theorem 2. To obtain the stated result we ean use the law of
quadratic reciprocity together with the well-known result of Siegel-Walfisz
(Prachar [7], Satz 8.3, p. 144) concerning the distribution of rational
primes in arithmetic progressions. We do not give the details sinco they
ave straightforward.

It is natural to seek a similar treatment for general k with which to
prove (6). A few simple considerations show that the case = 2 is somewhat
special. In the general case we have the following problem: consider any
seb y1, vay ..., yr Of elements from I, possibly with repetitions. We wish
t0 know if there is a positive integer ¢ o that the product of any t elements
from this set is e.

Suppose that we have such an integer. Then

)ty = = (1),

m@
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80 that y; = y,, and indeed all of the y; must be the same. Thus we can
only find a suitable ¢ when y; = y; =
take t = k.

When k = 2, I, contains only 2 elements so that if 73(p) = ¢, r > 1,
then ¢, gz, ..., ¢»_, must all belong to y,  e.

In general, 74(p) = ¢, implies only that at least (r—1)/)(k—1) of
the primes ¢;, ¢ =1,...,7—1, belong to a particular class ¥5. In order
to construct a reasonable sequence A to which we can apply Lemma 3
we need a set of primes g, , ..., g;, taken from g;, i = 1,...,7, which all
belong to the same class y; for a large subset of thoge primes p < 2 for
which 7,(p) = ¢,.

If P, denotes the cardinality of a set of the former type and P, that

set of the latter type, simple combinatorial considerations show that we
can find a “P,set” so that

.+ = 7, and then clearly we can

(1) Qéﬂﬁﬂ>ﬂ‘

We can now apply Lemma 4 to estimate P, and so obtain that
-PZ < m2D“1+_s

provided that g, > ¢4(loga)®.
Much better than this we cannot expect by the above method, since

it can be very simply shown that even with no restriction on the number
of prime divisors of the integers counted,

v(k, z, (logm)") < gt~
for any & > 0.
Thus in order to obtain a useful estimate for P, we need that g,
> (log2)® should be satisfied for some congtant D > 1.
However, we shall then have that

r
([_"_‘_‘i]) = exp(e;;rlogr) > exp (o, (loga)?) > o°,
k—1

so that the estimate of P, derived from (7) using the above method is
no better than

P1<x35

which is not good enough for our pregent requirements,

Finally we see from the remarks following the inequality (5) that
We may use the method of proof in Theorem 1 to show that the following
result holds.

Acta Arithmetica XIV.2 n
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TuworeM 3. Let & be any positive integer. Then there ds a constunt

d > 0, so that for an infinite number of primes p the inequality
re(p) = dilogp,

is satisfied.
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Deux remarques concernant ’équirépartition des suites

par

M. Mznvis FRANCE (Paris)

“seeker of truth
Jollow no path
all paths lead where
truth is here”

e. e. cummings

1. Notations. Soit g un entier supériemr ou égal & 2. On sait que
tiout nombre entier non négatif » s’derit de fagon unique dans le systéme

a base ¢ sous la forme
o0
0= 267,(”)(/1)
P=0

(1)
ol les applications ¢, sont définies sur 'ensemble des entiers non négatifs
et prennent lewrs valeurs sur lensemble {0,1, ..., ¢—1}. La somme (1)
IR . logn
est finie: & partir durang p = p(n) = [Tg-—], tous les termes sont nuls.
0g g )
Soit ¢ = (¢,) une suite de nombres réels: ¢cRYN. On définit Pappli-

ation f,: N — R par
00
1 .
Z ep(n)e,.

D=0

fc('”') =
En particulier, si 0 est un nombre réel, on posera (0) = (1, 6, 6%,...) et

fom) = Yo (n)6".
D=0
Dans la suite de cet article, on choisira g = 2 (ep(n) e{0,1}), ceci
afin de simplifier Dderiture. Les résultats y'étendent sans difficulté en
base ¢.

2. Résultats obtenus. Nous voulons démontrer les deux résultats
suivants:

THEOREME A. Soit ¢ une fonction réelle définie sur N et tendant vers
Vinfini. Il emiste une swite @entiers A = (An) eN¥ telle que
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