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ACTA ARITHMETICA
XIV (1968)

Extensions of a theorem of Hardy
by
B. Berrowirz (Berkeley, Cal.)

The functional equation for the Riemann zeta function may be
written, sefting
f(8) = 2" ¥Ir(Es)(s), as

fs) =f(1—s).

Since the functions defining f(s) are real on the real axis, by the Schwartz
reflection principle, f(s) assumes complex conjugate values at complex
conjugate points; this together with the functional equation shows that
f(s) is real valued on the critical line ¢ = 4. Hardy has shown in [1] that
the real valued function f(}-it) vanishes infinitely often as t — oo, and
significant quantitative results have been obtained, first by Hardy-
Littlewood [2] and then by A. Selberg [4]. These zeros of f(34148) must
of course be zeros of Z(s).

The purpose of this paper is to show, by simple extensions of ideas
of Hardy and Ramanujan, that given any real 4, 0 <1 < 1, the real
and imaginary parts of f(1-14f) vanish infinitely often as t —oco. This
is very far from determining whether or not f(s) itself ever vanishes on
any ¢ =4, 1 # .

1. We begin by writing, for 0 < 1 < 1,
Ref(A+it) = F[f(A+it)+f(A—it)]

since f(s) assumes complex conjugate values at complex conjugate points.
It is clear from this relation that Ref(i--it) is an even function of %.
Using the functional equation, f(A—it) = f(1—2+4t), we obtain

Ref(A+ i) = F[f(A+at)+f(1—A+it)].
Congsider the function, for, say, positive real ,
W, (z) = f Ref(A+ it) cos wi dt.
0
Since cosxt is also an even function of f, we may write

V(@) = } [ Ref(a+it)cosatdt =} [ Ref(a+iny*a

—0o0
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where y = ¢°. Furthermore
12+ic

Yi(x) = Ref(A—%-+s)y'ds

2”/; 1/2—1o0
1/24+100
== [f(h— 4+ 8)+f(3—2-+s)]y ds.
47‘,1/@/

1/2—100

We split this integral into a sum of integrals and evaluate separately.
Let us set
1/2 4100

1

Q@) = —=
4‘”/?/ 1/22i00

FO—4+s)yds.

Then it is clear that
(1) V(@) = Q;(a) 4+ 2, _a(2).

Now
1/2-4Tco
Q)= [ (A 34 9) (A= 34 5)9°ds.
4y 12240

We wish to pass to the vertical line o = 2, and to do this, we must take
into account the pole of [(w) at @ =1, or in our case, s =1—21+1.
Take the integral over the usual rectangle (34471, 24T, 2 —it, $— 1),
and observe that the integral the horizontal lines approaches zero because
of Stirling’s formula for the gamma funetion in a fixed strip and standard
bounds for the other functions.

Thus, by Cauchy’s theorem,

240
£, () == ~3—;~ [ f DL A— 3 4-5)) L(A—+5) Y ds — 27:’&;1/"'“’*]
4'51/21

recalling that I'(}) = V= and Res,..f(w) = 1. Let ws congider the inte-
gral separately. By changing variables, 2v = A—34-+s, we geb

2—1c0

24i0
J w1 49)) c 0~ bt )y ds
2700
=2 f *T(7) O (27) gt = oyt f n"']”('r)é(".):z)(;/;) dr
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fad 2 . . . o .
where p(z) = Y ¢~"™, and this formula is an instance of Mellin inversion,

Ne=]
which is equation (2. 15. 6) on page 34 of [5].
So we get

1 ’1 ™ 1 ™
= | 4y (— — 2,@11~1+*]=_ (._ — T2,
4i1/y[ﬂj Pl = v\ 2Y

The integral for £, ,(x) is handled in the same way, and a pole is
encountered. It should be remarked at this point that a pole at 1 is encoun-
tered for both 2,(x) and £2,_,(x) only when 0 < 1 < 1, so that the proof
of the theorem is not valid for vertical lines not inside the critical strip.

Recalling (1), we obtain

(@) =

ko T 1 T .
@) Faln) = (TJFF)‘/’(E) —g(yl“‘vL %)

— n(e”“+e"(l'l)l)w(e_m)~—%(e(l_z)”—;- eu)

= (67 o0 (o) 4 ) —

_ _g_(e(l—l)z+e_(l—l)m+ 6 e—;.z)‘

Now both the left and right hand sides of (2), originally defined for # > 0,
are seen to be analytic functions in the half plane Ree ™ > 0 because
the integral defining ¥, (z) is absolutely convergent by Stirling’s formula
in a fixed strip, and the analyticity of the right hand side is well known.
Thus we may set 4 = —i{a, provided, say, 0 < a < =/4. Then (2) becomes

(3) j Ref(4+ it) cosh atdt
0

= w6 4 oD% (3 (2 - ) — g (2 €08 [(1— A)a]+ 2 cos Aa).

In the indicated range for g, sinee the integrand is absolutely con-
vergent, differentiation with respect to « under the integral sign is allowed,
and if we do this 2n times, we obtain from (3)

o0 2N
(4) f t""Ref (- it) cosh atdt = _;oﬁ_" {m (™ 60 () + 3) ) +
0
+(=1)""'x[(1—2)*"cos [(1— A)a]+ 22" cosid].

To finish the proof, two results are needed, and the proofs of both of these
may be found in [5].
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Lemma 1. The function 3-+y(@) and all ils derivatives tend to zero
as & — i along any roule in an angle |arg(x—1i)] < 3n.

LeMna 2 (Fejér). Let n be any positive 'Mzrteger: l‘he.ﬂ.v,w'nbm- of changes
in sign in the interval (0, @) of a continuous function f(x) is not less than
the number of changes in sign of the sequence

£, [fmat, ..., [Faea.

To prove that Ref(i-+it) has infinitely many zeros as ! — oo, we
choose T large and « cloge to =/4. Then from (4), and Lemma 1, we see
that the number of gign changes in the sequence

7
] Ref (A4 it)cosh at di,
[

T T R ]

[ #Ref(a+it)coshaldt, ..., [ " Ref(A+it)coshaidi

] )
is at least n. Now Lemma 2 shows that on the interval (0, 7') Re f(l~|.—it)
changes sign at least n times, because here coshat is of constlant sign.
This establishes the assertion, since we may take n arbitrarily large.

2. In order to treat the imaginary part, we write
tImf(A+it) = $[f(A+ i) —f(A—1t))

so that we see Imf(1--it) is an odd function of ¢. Now sinaf is also an
odd function of ¢, so that the product of these functions is even. There-
fore we may write
V(o) = [ iImf(2-+it) sinatdt
0

=14 [ iImf(i+ifsinatdt = 3 [ Imf(a-+inydt,
Whei‘e, as before, y = ¢". Proceeding as in the first part, we get
_ +1/24i00
=z [ -+ —fi—italras
4 ¥ +1/2—ic0
-or, in the notation of the firgt part,

P (@) = Q3(0)— 9y, (0).

m@
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Now these integrals have been evaluated, so we have

g T

11[// (al?) R ((,7 Lr_ o (1~ A).r),(/)((,»zr) . ((‘(] -7_)."_ F;_::)

>

b

— 71(6'7 Ar _e (1 .AZ).r) (w(eﬁﬁ.r) _JL. -1;) _ :;7 (éJ(lv;'"r—é‘w“ Z)"'*(‘Z"'—l—e"“"),

Ouce again we take # = — {a, and obtain

(5) 1f Imf(A-+4t)sinh at dt
[

= 7 (6" — o= Alay (w(e¥)+ 3)— ~7;—I 28in[ (1—2)a]— 2 4in Aa).

Let us suppose that 1 5 §, since we know already that Imf(4--it)
is identically zero. We divide both sides of (3) by 7 and differentiate 2n
times with respect to « to obtain

oo

(6) [ £"Tinf(A+4t)sinh ot dt

[
T 7 — 2 i
= 2 {7(6 e (62 - %}} -+
F(=1)"[(1—*sin [(1— 2) a]— 7"ginda].

If we suppose 0 <1—2<i<i<1andif we take « sufficiently
close to =/4, use Lemma 1, and recall that the sine is monotone increasing
on <0, w/2%, then we gee that the sign of the left hand side of (6) is that of
(—1)™". The proof that Imf(2+it) has infinitely many zeroes ag { — oo
is completed by using Lemma 2 in the same way it was used in the firgt
part.
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