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ACTA ARITHMETICA
XIV (1968)

Diophantine inequalities with a non-integral exponent*
by
C. A. RvAvec (Ann Arbor, Mich.)

1. Introduction. Employing estimates due to Vinogradov, Davenport
and Roth [1] proved the following:

Let 1y, ..., 4, be non-zero real numbers not all of the same sign and
not all in rational ratios, and let f be any real number. Let m be an
integer such that m > 12. Then there is an absolute constant ¢ > 0 such
that if s > emlogm, the inequality
1) 2By A ARl < e
has infinitely many solutions in positive integers k;, where & > 0 is an
arbitrary real number.

In this paper we shall show that their methods can be adapted to
prove a similar result when the exponent m is not an integer. In this
case it no longer needs to be assumed that some ratio 1;/4; is irrational.
When m is an integer this assumption is necessary, since then the values
of L,k +...+ Ak ave discrete, and so (1) could not be solvable for all g
and all ¢ > 0. It is clearly necessary to assume that not all of the 1; have
the same sign in order to solve (1) for all real B. This condition is also
necessary when m is not an integer. Finally, it will be assumed that
m 2= 12 so that Vinogradov’s strong estimates for certain exponential
sums can be used.

We prove the following

TurorEM. Let Ay, ..., A be non-zero real numbers not oll of the same
sign, end let f be any real number. Let T > 12 and © not an integer. Then
there is an absolute constant ¢ > 0 such that if s > ctlogw, the inequality

(2) kit A+ Akl < &
has infindtely many solutions in positive integers k; for all ¢ > 0.

The proof of the above theorem follows that of Davenport and Roth,
and the main divergence from their proof is in Lemma 11. The proof

* This paper is part of a thesis submitted as partial fulfilment of the require-
ments for the degree of Doctor of Philosophy at the University of Michigan.
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of this lemma requires a more complicated analysis than the proof of
the corresponding lemma in the case where = is an integer.

Note that it suffices to prove (2) in the special case when ¢ =1,
as the proof of the general case follows by replacing 4,,..., A;, § with
Aley ..., Asle, Ble. Without loss of generality, it may be assumed that
A1y Ay >0 and A; < 0, since we have assumed that not all of the A; are
of the same sign. Finally, (2) will be proved for the case when g =0,
since the proof of the general case is, with minor changes, identical to
the proof of the case f =0 (see [1]).

For convenience it will be assumed that s is an odd integer, say
8§ = 2r4+1.

2. Notation and necessary lemmas. We use the following notation:

(3) 6 = || [4(2s+2o),
(4) 6 =1/,
(5) o) = (1—06)? 1<Ii<r—1.
We divide the s = 2r-+1 numbers 4, ..., 4, into three sets:
(6) Ay Aay Aa},
(7 {pry oy roa} = Ay ooy Argads
(8) iy ey e} = {Aegsy ooy A}

Let a be a real number which will later be treated as a variable of
integration, and let » be a large positive number. Then we define

(9) Sha)= Y e(ha), j=1,2,
) ar<kt<sax
(10) T(haa) = D e(lyak’),
zj2< kT
(11) (4 U(uo) = 2 e(uak’™), 1<i<r—1,
20(0) < k722 (1)
(12) U(na) = 2 e(nak’), 1<LIgr—1,
29D < ko 220(0)
(13) P(a) = 8(4,a)8(Aya) T'(A50),
(14) Q@ =[] Ulwaw,
Iglsr—1
(18) Ra)= [] Uma),
Il<r—1
(16) F(w, a) = F(a) = P(a)@(a)R(a).

(1) Strietly we should write Ui{p0), since the range of summation depends
on I, but no confusion will arise.
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LevyA 1. For any real number t, we have

e sin e |2 -, <1,
fe(ta>( Ta ) da:[ 0, It > 1.

-0

Proof. See [2], page 158,

sinwa\?
" by D(a). Then, by Lemma 1

Henceforth we shall denote (
and (16), we have
(17) 4@) = [ Fla)D(g)da = D (1—|K]),
where
(18) K = Ak+. .+ Al i+ At gr ik iR

and where the positive integers hy, hy, ha, g1, bz (1 <1< #—1) are summed
over

(19) am < hi, h; < Saz,
(20) )2 < hy < 202,
(21) 20 < g B < 2000,

The proof of the theorem depends on showing that 4(z) tends to
infinity as # fends to infinity; for if the sum in (17) tends to infinity,
then there must be infinitely many values of K with K| < 1.

In order to show this, the interval (—oo, co) is divided into three
disjoint sets Jy, J,, J3. It will be shown that the contribution to (17)
from those o in J, is > (%) @1+ 0—2(1—6)"), where we have put

(22) B(1+ §—2(1— 6)) & gHI-20-0",

(For the remainder of the paper the notation o¥ = x(y) will be used
exclugively for complicated powers of the variable w.) Also, it will be
shown that the contribution to (17) from all a in J, v J, is < aa(l—[— 6—
—2(1—0)'—4) for some small, but fixed, 6 > 0. This will show that
(17) tends to infinity.

() If g(x) > 0 for all #> 0, the notations f(x) = O(g(»)) and f(=) <g(af)
both mean that there is & positive constant ¢ such that [f(z)| < eg(x) for all suffi-
ciently large .
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We define
(23) Jy={a: ol <@(—-1+40—6%)},
(24) Iy = {a: a(—1+0—02) < |a <a},
(25) Jy = {a: [a| >},

8ax

(26) L(ka) =6 f e(a £) €708, j=1,2,
(1) (Aga) = 6 f ¢(aks £) 971 Ak,

LemmA 2. Let f(t) be a real-valued, differentiable function on the
interval (,,1t,) such that f'(t) is monotonic and |f'(1)| < d < 1. Then

&
D) elim) =f (f(t) +oq).
t1<n<l‘J ty

Proof. See [3], Section 8, Hilfssatz 2.

LemMA 3. For o in J,, we have

S(ha) = Do)+ 0(1), j=1,2; T(ia) = U(4a)+0(1),
for all sufficiently large x

Proof. The lemma will be proved for §(2,a). The proofs of the othe:
two cases are similar. From (9), we have

28) S a) = D e(hak).

(ax)P<k<(8ax)?

We now apply Lemma 2 to the right hand side of (28) with f(f) =A;af".
For aed;, a >0, we have

(29) ') = har(z—1)¢* >0,

(30) ‘%ul off)

< A we(—14 60— 0%)(8a0) | < w(—67),

d
since (a2)’ < t < (8aw)’. So, for all sufficiently large z, -—(Alat’) <%

The conditions of Lemma 2 are satisfied by (29) and (30), so we have
(ga)?

S0a) = fa e(Ayaf?)di+ O (1) = ef Apak) ETAE+0(1),

(az)

where we have made the change of variable £ = #*. This proves the result
for aeJ;, a>0. The proof for aedy, a< 0 is similar,
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LEMMA 4. For all o
L(ka) < min(a®,s"la)), j=1,2,
M(Aya) < min(z’, 2°~Y/[a]).
Proof. Clearly,

8ax

e < [ €705 <d.

By the Second Mean Value Theorem, there is a &, such that az < &
< 8az and

§1 sazx
L(ha) = (a)’" [ e(ady)dé+(8an)'~" [ e(al, £)aE < 2" [|al.
ax &

This proves the lemma for L(,«). The proofs for L(i,a) and M(A;a)
are similar.

LEMMA b.
[ F(a)D(a)da > o1+ 0—2(1—0)).

aeJy

Proof. The proof of Lemma 5 will proceed in steps. We will prove
the following three inequalities:

(81) fQ Y R(a) L(Ay 0) L(Aya) M (Ay0) D(a)das o(L+6—2(1— 6)),
(32) H,= fQ(a)R(a)L(lla)L(lga)M(lsa)D(a)da
agJy

< 81— 0—2(1—0)"+262),

(33) H,= [ Q(a)R(a)[P(a)— L(4a)L(4a) M (Ae)] D(a)da
aeJy

< w{1—2(1—10)).
This suffices for the proof of the lemma, since
[ F(a)D(a)da = Hy+H,— H,.
oet

In (31) interchange the order of integration and summation and
integrate with respect to «. By Lemma 1, we obtain

(34) H, = 2 f AdE,dE, Ak,
where
4 =A‘(g1’ cery Gro1j Biy ooy kr_y; &1, 52, &)
(1—|B|)(& &6 i Bl <1,
- 0 if |B|>1,

Acta Arithmetica XIV.4 ‘ 2
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and
B = ,ulgz—}—...+,ur_1g;_1+”17‘3;+---+7’r_175;_1‘|’}-1 14 b+ A &,

and where the summation in (34) is over positive integers g;, k; satisfying
(21) and (22), and the integration in (34) is over the ranges

(35) ap < &, &, < 8aw,
(36) z)2 < £ < 2.
For 3az < &, & < 6az, we have
(87)  3|Asl/4 = 3am (At Ag) < M &1+ A28, < Bam (A4 4p) = 3|45 2/2.
We also have
(38) IB— (A&t A st Aady)] < 270,

sinee g%, k7 < "™ for 1 <1 <r—1. Henece, for 3az < &, & < 6as and
for all sufficiently large %, we have

(B/4—n) Al < M — 2563 < (3/2-+ 1) [A|@
by (37) and (38), where 7 is & very small positive number. Since the range
of integration for &, is (2/2,2x], there is an interval of length 1/2, say
Q= Q(g1, -5 Gr15 K1y eory b1y &1, &) for &, lying completely within
(z/2, 2a], such that |M|<1/2 on this interval; and this holds for all

&, £, such that 3aw < &, &, < 6ax and all g, k; satisfying (21) and (22).
Hence, for &, &,, £ in the region

R = [3az, 6as] X [3az, 6as] XQ,

we have A>(£152§3)9"1/2, uniformly for all ¢, %; satisfying (21) and
(22). 8o for any choice of ¢, %7, 1 <1 <r—1, we have

(39) [ Adg ag,a,> o000 = g7,
b3

The number of terms in the sum in (34) is

>a(20 3 (1——-0)')=w(2(1—0)—2(1——0)"),

1<l<sr—1

by (21) and (22). Therefore
H, > o(—1+36+2(1—0)—2(1—0)) = o(1+ 0—2(1—6)),

which proves (31).
Turning to the proof of (32), we have the estimates

L(ka) <o*la] for j=1,2,
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and

M(ya) < 2’|
by Lemma 4. Therefore

(40) L(h @) L(hya) M (10) < 2O/ |gfs,

Now if Q(a)R(a) is multiplied out, the number of terms obtained is

< m[26 D - 0] = 22(1—6)—201— 0y,

I<I<r—1
and each term is <1 in absolute value. Therefore
@) R(a)| < #(2(1—8)—2(1— 6.

Since |D(a)| <1, we have by (40)

[Hy| < @(2(1—6)—2(1—6Y) [&=D)ja[*da,
where the integration is over those « not in Jy. Therefore

|Hy < @(2(1—6)—2(1—6)"+3(0—1)+2(1 46— 0))

=a(l—6—2(1—6)+267),

which proves (32).
To prove (33), we use Lemma 3 for « in Jy to obtain

8(ha) = L(ka)+0(1), j=1,2,
and

T(Ay0) = M(Ag0)+0(1).
So, by Lemma 4,

|P(a) —L(4y0) L2, 0) M (A50)| < min (2", o*"=|af?).
Estimating H; by the methods used in estimating H. 2, 'We have
Ho| < #(2(1—0)—2(1— 0)) (f #*"da+ [ @Yjaj2da),

where the first integral is over |o| < 1/@, and the second is over /e < |af
<@(—1-0—62). Thus

[Hy| < #(2(1—6)—2(1—6)"+20—1) = o(1—2(1—0)),
which proves (33) and hence the lemma.
LemmaA 6.

[ 18(210)@(a)2D(a)da < (1—(1— 0],

00

[ 1T (35 0) B(a)2D(a) da < z(1—(1— 6.

—c0
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Proof. The integral appearing in the first line of the lemma is the
number of solutions of the inequality

(41) [Ay (7 — m®y 4 g (g1 — D) oot g 2 (Gra—mp )] < 1
in integers &, m, gi, m; satistying

(42) ax < h', m" < 8aw,

(43) 20 < g7, mi <200, 1<I<r—1.

Now for a particular value of % satisfying (42), the inequality (41) deter-
mines m® with an error which is < #(r—1); and hence determines m”
to within a bounded number of possibilities, i.e., to within O (1). Similarly,
given particular values of &*, w", g} satisfying (42) and (43), m] is deter-
mined within O (1) possibilities, ete. Therefore, the number of solutions
of (41) in integers h, m, gi, my satisfying (42) and (43) is

<afo+o Y (1—0)) =al—@—0y),

1<i<r-1
which proves the lemma for the first integral. The second inequality is
proved similarly.
LevmA 7. Let

G(a) = Ze(af(wu oy mm)):

where the sum is over a finite set of integer values of @y, ..., @m and f s
real. Then for W >4, we have

16
IG(a)2D(a)de <= | |6(a)|2D(a)da.
loj>W w —i
Proof. See [2], page 82.

LeMMA 8.
fF(a)D(a)da < 2(60—(1—0)").

aedy
Proof. Since the number of terms in the sum defining T(1,a) is

< o’ and since each such term is < 1 in absolute value, we have |T(1;a)|
< o’ Applying this estimate and the Cauchy-Schwarz inequality to the
integral

[ 19(a) B(a) 8 (A @) T (%5 0)] D(a) da,

aeJy
we obtain
f F(a)D(a)da < &°F, Ty,

aedy

icm®
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where

yoN =( f [S(lla)Q(a)pD(a)da)l/z’

la|>x
Fo=( [ I (A @) R()|2 D (@) da)™.
le| >z
The result follows by Lemmas 6 and 7.

LEN{IV-IA 9 (Vinogradov). Let N and P be integers, P being large
wnd. j)os.ttwe. Let f(u) be a real-valued function on N <u << N+P, and
having in this interval o continuous (n-1)-st derivative satisfying

£ (w)

%< (n+1)! \%I’ where  n211 and P <z < P*",
Let
8= o e(f(%)).
Then we have e
S| < P,  where & =—~—~1-——.
3ntlog(125m)

Proof. See [4], Theorem 2a, page 109.

LeMMA 10 (van der Corput). Let f(u) be a real-valued function
defined on b+1<u<b+p. For n=2, suppose f™(u)=y >0 (or
F™w) <y < 0) for all w in [b+1,b+p]. Then

\ ! LI __ X 9N—
D o[f)] < pL D4 (™ oy,

/B8 BT/ )

where

I'=1p)[f" 2 0+p)— "2 0+1)1.

Proof. See [3], Section 8, Satz 3.
LeMMa 11. For a in J,, we have

8(ha) < #(6(1—2)),
where
@ = min((1— 0)/(211—2), 1/3¢*log (125¢)),
and
¢ =14[27].

Proof. It suffices to prove the lemma for aedy, a >0. So, for a >0,
ain J,, put a = x(0y). Hence

y = rlogaflogs;
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and since
o(—1+6—6%) < a< =,
we have
(44) 2(—1+0—-6)<y<T.

Now divide the positive values of a in J, into two disjoint sets J,,
and J,,, where
Jyy = {aedy: a >0; [v+y] > 10},
Jao = {aedyt a > 0}—Jy.
For a specific value of ain J,; apply Lemma 9 to S(4;a) with f(u) = A,au”
and # = 1-+[r-}+y]. For this value of #, letting B = |A;v(z—1)...
oo (t—m)/(n+1)!], we have for all « in (az)’ < w < (8az)’, the inequal-
ities
Eaﬂ(t—n+1) wﬂ(v-{-r—n—l) < |f(17.+1) (%) /(1Z+1) '! < E(Sa)ﬂ(r..n.).l) ma(u+1_n71).

If we putb

(45) 1/2 — Eaﬂ(r_n_.l)mow-pr_n—l), cl — 8()(1—7»—1)’
then we have

(46) 1z < |f" D () [(n+1)! < o[z

for all » in ar < w < 8aw. From (45), we have
e =g(0(n+1—y—1))/B’" V> p(0(n+1—y—1)) > a°,

sincent+1—y—z=[v+yl+2—(z+y) =>1. Also,2+2/n >2 = [v+y]+
+2—(z+7v). Since P is proportional to 2°, we obtain

(47) P> 2> P,

So by (46) and (47), and since » > 11, we see that the hypotheses of
Lemma 9 are satisfied. Therefore,
184 0)| € P% = a(0(1—2))
holds for aed, with n = [v+y]+1, where
, 1
~ 3nrlog(125m)

Note that as a varies over J,,, ¥ = vlogaflogs also changes. Conse-
quently, n = 1-4-[r+y] will also change. So in order to obtain a uniform
estimate for §(4;q) for all a in J,, we must choose the value of n which

is greatest, From (44), this is seen to be 14-[2z]. Therefore, for all
in JEL?

(48) 18(40)] < a(6(1—0"))
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where
. 1
3[2v+ 1T log(125[27+1])

For a in J,, we cannot apply the estimate of Lemma 9 to S(Aa),
since in this case n < 10. We can apply Lemma 10, however. To do this,
put « = @ (0y) as before. Since « is in Jas, We have [t+y]<9; ie.,
¥ <10—7. From (44) we also have 7(f—1— 62) < y. So

(49) l—7r—0<y<10—7,
gince fr = 1.

We apply Lemma 10 to §(4,a) with n = [v+y]1+2 and f(u) = 1,007,
and b = [(a0)’], p = [(8am)']— [(az)'].

Note that o’/p =< 1(%) for 2 > 1. Also, for all w in (az)’ < u < (8am)°,
we have

W) = 1 ar(v—1) ... (r—n+1)u™"
= Mor... (t—nt1)a g =y,
If we let I'= (1/p)[f" " (b+p)—f®V(b+1)], then we have
(51) Iy =1,
by an elementary calculation. Therefore
182 )] < pLlyIT*) 2 (yp") 7 - (yp 1y,
by Lemma 10 and (50) and (51). Consequently
18(2,0)] < 2’ [a{(1+ Oy — Bm) (2" — 2)) + 2 — (14 0y) j2") - ( — 62"
We have by (49)
182) 14+0y—0n =1—0([v+yl+2—y)<1—O(rt+y—1+2—y) = — 6,
(53) 146y > 6—6°.
So, by (52) and (53), we have
I8(4a)] < a’s(—(0—0%))(2"—2)).

As o varies over Jy,, [v+¥]+2 = n also varies; and in order to obtain
a uniform estimate for §(2,a) for all a in J,,, we have to find the largest
value of n used to estimate S(i,a) by Lemma 10. This value is easily
seen t0 be 7 == 11 by the definition of J,,. Therefore, for o in J,,, we
have ‘

(54) 18(3s0)] < @ (0{1—(1—0)/(212—2))).
Combining (48) and (54), we have Lemma 11.

(®) The notation f(f) X 1 means that there exist constants 0 < ¢’ << ¢” such
that ¢ < |f(8)] < ¢”.
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LeEMmA 12.

fF(a)D(a)da < a(l40—(1—0)—69),
aefy

where D is the value given in the statement of Lemma 11.
Proof. By (16),

[ F(e)D(a)da = [ P(0)Q(a) R(e) D{e)da

aely aely
<max|$(ia)] [ 17(50)8(100)Q(a) B(a)| D(q)da
aedy aedy
<w(0(1“®))11127
where
L={ [ 1Z(kaQ@ D(@id", I, ={ [ S(s0)R(«)*D(a)da)",
aedy aey

by Lemma 11 and the Cauchy-Schwarz inequality. But by Lemma 6
we have
12

I, I, < (s(1—(1—0)))
This proves the lemma.

3. Proof of the theorem. By comparing the results of Lemmas 5, 8,
12, we see that the inequality

[+ + 25 < 1
will have infinitely many solutions provided
14+6—-2(1—0) >6—(1—0),

and

I+6—2(1—0) >14+6—(1—6)— 60,
or, equivalently, provided
(55)
since 1 > (1—6)".

The problem now is to choose r as a positive integer so that r is as
small as possible, yet (55) holds. It is clear from the definition of @ that

80 > (1— 0,

@ >1[3(27+1)"log (125(27+ 1)) = 1/12+*log(2507) V',
V = (1+1/27)'log (125 (274 1)) /log (2507) > 1/1087*log(2507),
since ¥V < 9 for 7 >12. So if we choose 7 so that

(56) 69 > 6°/108log(2507) > (1— 0),

icm®
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then the theorem will hold for s = 2r+4 1. Taking the logarithm of both
sides of (56), we obtain
3log 6—1log(108)—loglog(250t) > rlog(1— 0),

and since log(l—6) < 0, we have

r >3[logOflog(1—0)]{14+0(1)) as 7 oo,
since
(log(108) +loglog (2507))/3log§ = 0(1) as 7 —» oco.
Now
3logO/log(1—6) = 3zlogr(14-0(1/7)) as v - oo.

So there is an absolute constant ¢ >0 such that for all non-integral
7 >12, and for s = 2r+41 >c¢vlogr, the inequality

Ik 2R < 1

hag infinitely many solutions in positive integers %;. This proves the
theorem.
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