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XIV (1968)

On lattice points with weight in
high-dimensional ellipsoids

by
B. Novix (Praha)

§ 1. Introduction. Let r be a natural number, r > 2 , and let

(1) Q) =Q(w) = Y ayuyy
1j=1
be a positive definite quadratic form, with the determinant D. Let further

M;, b; and o; be real numbers, M; >0 (j=1,2,...,r). For @ >0
let us consider the function

(2) Am)=De

where the summation runs over all systems % = (%, %y, ..., u,) of real
numbers, satisfying

. r
i .
2 fé'laiuj

U = b:f (mOd. .My)
(j=1,2,...,7) and

Qu) <=
If we put
2t 3 aby
'l e 171 .
M=——m— and V(@) =——a"
— I'(3r+1
VDjlYl Mj (2 )

(6 = 1if all numbers a,M,, a,M,, ..., .M, are integers, § = 0 otherwise)
there hold as known (e.g. [3], pp. 11-84) for the “lattice rest”

P(x) = A(z)—V (2)
the formulas
(3) Po) = 0(@ ™)
and (if 4 (z) is not identically zero)

r—1

(4) P(z) = Q(=*).
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The basic problem in the study of the function P(z) is 1fhe finding
of “exact” exponent in the O- and Q-estimations, i.e. the finding of such
a number f, that the formulas

P(w) = 0@™*), P(n)= (@)
hold for every s> 0. If we exclude from our considerations the case
where A(z) = 0 identically, it is clear that
Ig|P()]

5 = limgup ———-
(5) f aMmp ez
Landaw’s estimations (3) and (4) imply the generally valid inequality

r 1

7 r
——— < — — .
T T SIsg 701

The exact value of f has been found in some special cages. The first
definitive result follows from the work of Jarnik (in Landau [3], p. 162),
Landau ([3], p. 148) and Walfisz [6]. If » >4,

(6) M;=1, b=a=0, j=1,2,..,7

and if the form (1) has integer coefficients, then f = {r—1 and, more

precisely,
7

M Pl =06 ), Pl@=0@ ).

Jarnik obtained a number of definitive results for irrational diagonal
ellipsoids (assuming (6)). Let us present the most interesting of the men-
tioned results: In the paper [1] Jarnik investigates forms ¢ (u) of the
type ,
Q(uy) = a, (ui+ ui’l‘f ot uil) +a, (%2-1.;.1"{‘ ’“31-;-2“!‘- et 1031_,_,-2) ;
where 7, =>4, r,> 4 are infegers and r = r,+7,, a; >0, a5 >0.

Let us denote by ¢ = y(a,, a,) the supremum of all such numbers
# >0, that the inequality

ay B
— |
1!1 Gy, :pl\q

is valid for infinitely many pairs p = 9y, ¢ = ¢ (n =1, 2, ...) of natural
numbers, such that p, - +oo, ¢u = +oo (thus 1 <y < +o0). Then,
assuming (6), we have for the value (5)

1

(®) f=g 13

(for y = +o0 we put 1/y = 0).

icm®
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Let us now confine ourselves to the case where the coefficients of
the form (1) and the numbers b; are integers, M; natural numbers
(j=1,2,...,7), >4. The numbers 01y Ugy ..., & Can be arbitrary
real numbers. From Landauw’s and Walfisz’s papers ([3], p. 148 and [6])
it follows, that if the numbers a,, a,,..., o, are rational, then always

1

Pr) = O(mr )

and if at least one of the corresponding generalized Gauss sums is non-
vanishing, then also

Pl = 0@ )

(7], pp. 52-53). Thus, under these agsumptions
7
f = F —1.

As Walfisz shows ([7], p. 62, Theorem 3) making use of the theory of
modular forms, in the opposite case (i.e. if all corresponding Gauss sums
are zero) )
¥ 1
L ———.
T
On the base of a generalization of the first Petersson theorem I have
found in [5] some results for r > 4:

I. For arbitrary a,, as,..., a is
thus P(a) = 0(@ );
<
II. If at least one of the numbers a;, ay, ..., ¢ is irrational, then
7
=1
(9) P(z) = o(a" )
and this estimation cannot be generally improved, i.e. if p(x) is a positive

increasing function defined for @ >0, ¢(z) = o(a™ ), there exists
such a system a,, a,, ..., @, that (9) holds and

P(z) = Qp(w)).
Thus there exist “irrational” systems oy, a,,..., ¢, for which

Py
=——1.
f 2
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TIT. For almost all systems a;, a,, ..., o (in the sense of the Lebesgue
meagure in the r-dimensional Euclidean space ) is

P(a) = 0(a"1g"a),
consequently
»
< —
/ 4

The aim of this paper is to investigate the dependence of the value
(5) on the properties of the system a;, gy, ..., @ A simple inequality
of this type is announced in [4]. Besides of some results which have a more
general validity, it is possible to formulate the main theorem of this
paper as follows:

TEEOREM. Let r > B and let the coefficients of the form (1) be integers,
My, My, ..., M, natural numbers, @ = ay = ... =ty =0, by = by = ...
vee=0bp = 0. Let y = y(a) be the supremum of all numbers f >0, for
which the inequalities

lga—p| < g, ¢>0

take place for infinitely many pairs of integers p, q. Then for the value (5)

(£ -2z
R

4 2

folds, where we put (2y+1)[(y+1) =2 for y = 400 ().

One part of this Theorem (the O-estimation) is a consequence of
a general O-estimation from [5] (Theorem 2). For the Q-estimation of
the function P () there were used three methods. Landauw’s ([3], p. 71),
which leads to the result (4), Jarnik’s (applicable only for § = 1) which
in our case leads (for 8 = 1) again to P(x) = Q(«"*) and finally a meth-
od, basing on an asymptotic investigation of the functions

(10) f=

z

[1Pwray, D PP o 3 |A(n)—An—1)

0 1<n<e 1<NET
(Whalfisz uses the latter function to find Q-estimations for rational «,, a,,
ooy @), It is obvious, that an efficient application of these methods in
our cage is either impossible or unclear. Therefore, we shall use for Q-esti-
maftions in § 4 a different method, based on properties of the corresponding
theta-function in the neighbourhood of the imaginary axis.

§ 2. Notations and auxiliary assertions. Besides of the notations
which we introduced in § 1 we shall keep (eventual changes will always
be properly indicated) the following mnotations and agreements.

() Let us note, that it is interesting to compare (10) with Jarnik’s result (8),

icm®
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The letters n and % (supplied with indices or prime if convenient)
a,re.na.tural ?mmbers, J is a nonnegative integer,  and m (supplied with
indices or prime if convenient) are integers, w,, u,, ..., u, are real numbers.
If k and k are to appear simulfaneously, they are always relatively prime,
i.e. (h, k) = 1. For real ¢ let [t] be the integral part of ¢ and

<ty = min(t—[t], 1— 1+ [£])

(distance between ¢ and the seb of integers). The letter ¢ means (various)
positive constants, which depend only on @, My, byand o (j=1,2,...,7).
¢(o), ey, 1) e.tr(s. are positive constants (various) depending only on g, P
and ¢, respectively, ete. The symbols 0, 0 and 2 have their usnal meaning
and correspond to the limiting process # — +oco and the constants in-
volved are of the “type” ¢. 4 < Bmeans [4]<e¢B.If 4 <« Band B < A
we write 4 = B. Let the number z be sufficiently large, ie. # >e¢.
€ means the quadratic form conjugated with ¢. Let 0 < A <<ly<...
be the sequence of all values of the type Q(m;M;+b;) and

r
ami 3 ey
Ay = Ze =1
where the summation runs over all systems w,, %, ..., %, which satisty
the relations @(u;) = A,, u =0 (mod M) (j =1,2,...,7). Thus we
can write

A(n) = 2 Oy«

A<
For complex s, Res >0, let
(11) O(s) =
1 Mg,uey = — 00

exp { —oQ (m; M+ b)) +2mi 3 oy (my M+ )},
j=1

i.e.

00
B(s) = 2{1,,,6—;”"'3.
n=1
The series in (11) is, as is known, almost uniformly and absolutely con-
vergent in the half plane Res >0, O(s) is consequently a holomorphie
function in this domain.
Lemma 1. Let s be o comples number, Res > 0. Let the coefficients
of the form @ and the numbers by, by, ..., bpy My, My, ..., M, be integers,
M, >0, M,>0,..., M, >0. Then

(12)
~ [ m;
® ©Q (——i — 0770)
M M,
0(s) = ——————r E Sp e,y €XP —

NS
¥ (s - 27;“”) gy
e
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where
(13) Shl (m) — Sh,k'ml Mg yenes Mg
k r
omih 2ni My
- exp{~ 22 QUudty )+ 27 B2 <a,Mf+b>}

a1, 0,0l =1 =

and where 27 means (here and also further) the branch of 2™ in the half

plane Rez >0, which is positive for positive values of 2.

RETY
Proof. Let s = s+ W“. Then
o &
O(s) = 2 Z expl—sQ (Temy—+ a) M+ by) +
M1, Mgy M= — 00 @09, ,00slp==1

mz s (kg ) M+ b,)}
F=1

2ih
exp {~ 25 Qi b;)} x

ay,ag,...

=1

x 2 exp{—S’Q(k'rnfllfy-—(—aj]i[j+b

MMy M= — 00

D2 > (b + a,-)Jle—l—b,-)}.
=1

Using the well known transformation formula for theta-function
(e.g. [3], p. 239, Theorem 3, where we write s/n instead of s and put

1M+ b \
Vi = _a]__?.—‘____j, (5j = a,kM,, o = k"][[].]l[ajl) we get further
M,
& oncih
27
O(s) = exp{——k—Q(ay-M,.+ z,j)} X
1589500 05 8p=1
”
M = [ 27t m;

XW GXD{ Q(k]lif “I)"‘——'k _Zl_’[ (“/Z'[j—f-b)}

my My, M= 00 -

and consequently (12).
LeMMA 2. Under the assumption of Lemma 1 there is always

(14) S pomy < B
Further
(15) Wi ml® = & 3 exp {2rip(h, k, d, m;, f;)}

m@
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holds, where we put
r
d=I\k,2D [ 2}
(e,20 [] )
7 r
,
ol b, 4, my, ) = ~—Q(f,M>——2fmJ = Dy,
=1
and sum over all systems f1, fy, ..., fr of integers, 1 <fi<d(j=1,2,...,7)

satisfying the congruences
,

2 N ay M, f; = 0 (mod d)

demmad

j=1
I=1,2,...,7).
Proof. It is

k E

]Sh, 75,(1)1)[2 =
1,C9,...

exp{ .,r:z—Q(anlI + b;)—

Cp=1 @y,0p,.,.,8=1

Qi ”
—Q((a+ &) M+ 1) — HZ—% 2 ny 0;'}

¥ 7=t
h
= exp 27‘["070‘@(67‘ i)—— E nzjc,{—d“z—‘)Zal,chjbz X
€155 00sCp=1
Jd
X Scl,cg,.‘.,nrv
where
k 1 r
’ \ | .
Sﬂllﬂz:--ucr ) exp {27:@ ~k-2 E a; c,-MjalllIl}
a1,Qg,...\Op=1 Lj=1
r & T
L h a
= E exp 274 '7;2 E azjlli'z]l[ic,- .
I=1 g;=1 =1

The latter expression is non-zero (and then equal to k) it and only if

2 > ay My Mye; = 0 (mod k)
j=1

(I=1,2,...,7). This implies
”,
2D [ [ Mier = 0 (mod k)
J=1
(I=1,2,...,7), ie

k
=0 modﬁ—
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” _uwer of solutions of this system mod % is at

i< (zpfl ) <1
7=

Herefrom we obtain immediately (14). If we write ¢; = fz - (l-— 22y,

where 1 <fi<d .,7) we obtain the second assertion of the

Lemma.
We mention that analogous assertions has been proved in a similar

way (for some special cases e.g. in [3], p. 150).

Moreover, we present a simple

LewnmA 3. Lot w(uy, Uay - ..y W) = p(U5) be @ positive definite quadratic
form, Vay Vay eery Viy 21y @ay ooy & Peal numbers, Vo >0, V, >0, .0, Vi > 0.

For t >0 let
=1,

where the summation runs over all Systems iy, Uy, ...

1=1,2,..

, U SaLSfYiIng

Py, Ugy vony ) <, wp =2(mod V), J=1,2,...,7.

Then there exist such positive constants ¢, = ¢(y), €3 = ¢(y),
o =c(y,Vy,V G Vo=, Vi, Vo, ooy, Vo)yes =0y, V1, Vo, ..., V3)
(and thus mdependem 0N Byy Bgy ovey Rr) that

(a) ¢; max |us|? < (thy, Ugy ...y Up) < € MAX |uy]? for all real systems

f=13,...r f=1,2,01
ul} '1027 MR | /M’f’
(b) r(t) < 6y (t4+1)"* for all t>0;
(e) of lusl <e (j=1,2,...,7) then

u,—{—m,- Ui
— ==
w( ¥y ) w(Vj)/cs

for all integers My, My, ..., My which are not all simultaneously zero.
Proof. (a) Let ¢, ¢, be infimum, supremum regpectively, of the
funetion (%, %sy ..., %) on the set of all u,,u,,...,u, satisfying

max |u;] = 1. Obviously ¢, = ¢(y), ¢, = ¢(y) and it is sufficient to
F=1,2,,.,7

consider such 4, %y, ..., %, for which U = max |4;] > 0. In this case
for v, =u/U (j=1,2,...,7) I=12,...7
41 < "/’('Dly V2, EXE] Ur) < Cy

holds, and the assertion is proved.
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(b) Following (a) we have

379

2
<[] 1)
j=1 ‘le Cy
and thus
() < es(B4+1)™
for ¢ >0.
(e) Let my, my, ..., m, be integers, max fm,] >0. If max |u;| < %
then according to (a) i=1,2,, F=1,2,...1 =
Uy m; 1 . 1
(16) w(-—h—) >—¢ min - = 2.
Vi “ 4 17'=1,2 r V3 5
If now

. s 1
luj| < mlll( — min Vi 5| =
C1 7=12,..,7

(=12,...,7

v(us V) < e,

and the assertion (c) is proved.
Let now

Bp = min Q(j’——agk)

MMy, My 1,
and

Py =  max (a,-]l[;k).

I=1,2,,,.,7

From the assertion (a) of Lemma 3 we obtain immediately

) Py < Ry.

then (16) holds and according to (a) we have -

Let us now present a basic relation which will be used to find the

O-estimations.

LemmA 4. Let v >4 and let the coefficients of the form (1) and the

numbers by, by, ..., b, be integers, My, M,, ...,

. 1
Imn(A, F) =4 for A >0. Then

r 1 r 1
(18) P(z) = o(ﬁ_? minrg(f’_ L)l 2k)-
K<z B R

Proof. Cf. [5], Theorem 2.

M, natural numbers. Let
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Remark 1. (a) Similarly as in [5] let us define the numbers &8, ,
as follows: if the relation

(19) R=0Q (—;S.— — «zﬂc)

is satisfied by only one system i, My, ..., m,, let

(20) Sue = Sn,e,ny-

If (19) is for some % satisfied by more systems my, my, ..., m,, then,

for this %, we choose one of them and define the number §;,; as in (20).
Let us note that the assertion (¢) of the Lemma 3 implies that there
exists such a constant ¢ = e¢(Q, M., M,,..., M,) that if R, < ¢ or
Py, < ¢s then (19) is satisfied by only one system my, m,, ..., m, and in
this case there also

{ayMyky = |ay M;Te—my)

(1=1,2,...,7) holds. Thus we have a certain indetermination in the
choice of 8z only for those values of %, for which Ry > ¢.

(b) On the base of (17) we can write instead of (19)
r

1
R atc ot |
Z min (705’ —1—3—2—) 1g27c) .

E<yz k

(21) Pla) = o(aﬁ'?

From the proof of Theorem 2 in [5] it follows that in (18), respectively
in (21), it is sufficient to sum only over those values of k, for which there
exists such an kb that Sy, s 0, ie. more precisely, e.g.

1 r 1

r 1 - 1 z
P(x) = O(m“ z Z:min4 2 (%’1_37) lg2k 4zt lgm)
o

holds, where the summation runs over all % < ¥ for which Sur# 0
(ie. 8 % 0 for suitable h).

(22)

§ 3. O-estimation. Let (only in this paragraph) o =a, =... =a
= «. The aim of this paragraph is to investigate the dependence of the
exponent in the O-estimation on the properties of a.

Remark 2. Let us present some known properties of continued
fractions (2). Let a be an irrational number and let

{@0; a5 @, ..}

(*) Cf. e.g. [2], pp. 240-242,

m@
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be the corresponding continued fraction. If we put p_y =1

g1=0
Po =@, g =1 then the recurrent relations T '

Pn = GuPn_1+Py_,,
n = Gnn_1+ Gn_s
give the numerators and denominators of the ¢

(23)

onvergents of a.

By means of induction we easily find that the mumbers Py and g,
satisfy the relation
(24) GPn1—Ppln_1 = (_1)"'
(which implies (p,, g,) = 1). Let n be given. Then (for n = m > 0)
(25) 0 > qmz(n_m)ﬂ‘

Further we can write

(26) — Frni1Pnt Doy
Tort1Qn= Gn_1 ?
where
) 1
Tn = {Gu] Bny1y nys, ...} = a,+
Tnt1
and thus
(27) Uy < 1y < ap+1.

(26) and (27) imply
_ (=
I Gn(Tnga Gt Guy)

From fhese relations we can draw three important conclusions.
Let » and » be nonnegative integers and let

(28)

1<k = ugy+v < guya,

(a) If v = 0, then according to (28)
(—1)"u

GnTnprtn_y’

v < o

ak—up, =
L.e. according to (23) and (27)

(29) {ak) =

(B = ugn < Gnya)-
Iny1

(b) If v = gpn_; (and thus % < a,,;) Wwe have according to (24) and (28)
(_l)n+1("n+1“ %)

ak— UPy— Pp_y =
P P nTns1t Gna
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and thus according to (23) and (27)

Oy g — W

(30) (aky = (f = 1+ Gn-1 < Qnt1) -

Qny1

(e) Let finally v # 0, gn_1- According to (28) there is

W _ a0
ah—upn— = = = Gt
Since
_ MtV gy
GnTn1t o1
and

VPn (—1)"*! (mod ga),
there exists such a natural j < g,/2 that

(81)  jlgn < <ak) < (fH+L)/gn (B = tgn+9 < {gny1, ¥ # 0, gn_a).

The number j depends only on », » and o (and thus is independent on ).
On the other hand: for each § (0 < § < ¢»/2) there exist for every u < ap,,
at most two such values of v that for & = ug,+ v < ¢uyy (31) holds. In
the following we shall use the notations and results of this remark.

THEOREM 1. Let o = a5 = ... = o = a be irrational numbers. Lel

(32) Caky > k°
hold for all % (and thus B > 1). Let the coefficients of the form (1) and the
aumbers by, by, ..., by be integers and My, My, ..., M, naiural numbers.
Then

(L_i)ﬂ
(33) P(x) = O(z'* *'*™ 1gm)
for r > 6,

(Lnl)fﬂ
(34) Px) = O(w'* 2"+l 1gey)
for r =6 and

r o)

(35) P(z) = O(z* lgtx-+o* 2" PH11gs)
for r =5.

Proof. Let the assumptions of the Theorem be satisfied and let
r >4, According to (21) it iz sufficient to estimate the sum

2 I gz,

k<yz

(36)

icm®
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where
ILr e
(37) Iy =2* ZTmin? ﬁ 1
kP,
ful‘th(jl? First, let M, =M, =... =M, =1. Thus P; — <ak> and
(38) n< 2
BE
and
r_ 1
4 2
(39) I < _"”'_T_
Caky®
hold.

If <ak) < 70/]/;7 it is convenient to use (38); for <akd> > k/l@ use
(39). By (29) we obtain (for u = 1)
(40) Iny1 < Qﬁ
for all natural n.

Let & > ¢ be given. Let ¥ be such a natural number, that

Iy < 1'/; < N1

and for every n (1< n << N) let
(41) 8= DT,
where the summation runs over all %, which satisfy the inequalities

(42) G <E<guua, k<Va

Let us now choose a certain n (1 <n <N ) and consider the sum S,.
For every % satisfying (42) it is possible unambiguously to find a natural
and such a nonnegative integer » that

(43) I1<u<an, 0<0<gs k= ug,+o
holds.

Let us write -
(44) Sn = 8P+ 89,

where in §{ the summation runs over all % satisfying (42) and (43),
where v =0 or v = g,_, and in 8P over all other k satisfying (42).
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In view of (29) and (30) we use (38) in 8. For the corresponding (and thus B < N). Using (25) we easily obtain from (45), (46) and (47
L there is % > ug, and thus N s 7)
r [ r
Y 71 2 \T "t r 1) 28+
G 1 o\F" wy D<o Yoo (j_) < R
(45) R Y (ﬁ) - o & i T\ :
=1 (u/q )—E“‘l q'n Qn
. . o (50) ngf)
According to (c) of the Remark 2 we can find for every % in S (e, of =

the type (43), where v #* 0, gn_1), Such a natural j, 0 < j < ¢u/2, that

(31) holds and j depends onlv on v, a and n. If now r 3 N r_3
ot 1 1 2 ? (-1t
(’”1"1’1)% A g T < EN <t P for r > 6,
Z Ve In ak
N
then i < m§~§ . min(Vas, gpys r_ 3
i +1) < 2® *lgz  for r=6
k U+ (%+1)gn J ! =R q !
— = — << = < - < (ak) :
Vo Vo Vo Gn r 3 X
o 2]/ min(Va, min(Vo, V) _ .
) o C (utl)gn B < algw for » = 5.
and we use (39). For other j’s, ie. for 0 <j < —7=" v (so far they =R In
exist), we use (38). In view of (c) of the Remark 2 we can thus write It remains to estimate
r o1 r , R I
we Y [FF Y (TR Y
,_ ——1 )
1<u<£i‘1‘%%1_’ - U+, - @i (Ugn)* According to (29), (39) and (48) there is
= < —
vz vz r.rr, (_"__l) 28+1
r. . or, r_ 1 IqR <ot P <ao° el
< 2 w4 2qn2 ( - ]/5 )2 2+m (’M—'—l) . )’ 1
1 o — q 1 )
e DI nD) gn (1) Vo (“qn)2 1 We can associate to each k < gg, % # gr_, (according to (c¢) of the
R Remark 2) such a natural j, 0 <j < gg/2 that
ie. ) - )
.3 holds jlar < <aky < (j4+1)/1z
2% 2 g S.
(46) 8P < w T, In view of this part of the Remark 2 we can write, according to (39)
53 - and (48
qu lcus in(Vady 1) ( )’
In (r 1)2ﬂ-|1 1 1 1
= 4 B+l )
Now we determine such a natural E that Iy = Top , + Z Iy <z ot 2 -
Fean kein E<ig (a7>iﬁ
1 Erap—y1 e r,
2(1+5 * o 1y26+1 _
&0 ar1 <@ <. < w(“ Bk —{—m%_% (_@3)2
By (40) there is Fon j
1 (LR == R N U A A 1]
(48) gr < @*0H < 5* g d VI L GTTET o 8 TR

Acta Arithmetica XIV.4 ®
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ie.
(Z- 32l
(51) Dno<a® T
k<gp
Combining (36), (41), (44), (49), (50) and (51) we obtain the relations
(33)-(35) for the case M, = M, = ... = M, =1.

(b) Let S(x) be the sum (36) (for M, = M, =... = M, =1) and
let M, M,,..., M, be arbitrary natural numbers, N =, ?;&XTM,'. Sue-
cessively we obtain

- T

@ lgx 2 min T P
k< VT
ro1 r ro1
i3 i~z 2 1
4 2 42y T
<" lgz 2 — (kz’ (aMﬂc)z)
k<vE I=1
r 1 r 1
Rt e 1
iTZ s ATE S(Na).
<% lgx Z min (kQ’ <a7c>2) < 8( )
k<NVZ
With respect to the part (a) the relations (33)-(35) holds, without the
restriction M, = M,=... = M, = 1.
§ 4. The general Q-estimation.
LemMA 5. For complex s, Res >0,
Z"i.gl"'fbi o0
O(s) Me '~ 4
(52) 2o =f S P(£)dt
[
holds.

Proof. For T > 0 there is

T T
sfe®A(gas=s[e* ) andé
0 0

A<t

= 2 a8 fre‘s”df = 2 ane= 7 — =T A(T).
I

I <T n<T

Since according to (b) of Lemma 3 (we put vy =@, M ;= V;, 4 =10
for j =1,2,...,7) A(T) < 7(T) < (T+1)" holds, we obtain, using the
limiting process T — +oo,

(53) O(s) = sf B A(E)ak.

m@
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As
“'r:izr'a-bj 27t 3 ash
m am ai0;
r —s Me =V ~ Me T
sfe V(E)aE =T68fe‘535”2d§ ==
i r(; +1) b *

we obtain immediately (52) from (53).

Lemma 6. Let the assumption of Lemma 3 iake place and let d be
a positive number. For ¢ > 0 let

fla) = Zg—”‘ﬂ("p“z ----- ),

where the summation runs over all u, y Uoy ooy Uy which satisfy

(54) WUy, Ugy vy Up) = 4
and
(55) =2 (mod V), j=1,2,...,7r.

Then for o >1

flo) <ely, Vi, Vo, ..., V)%
holds.
Proof. For ¢ >1 there is

flo) < e—da/zze_w(u;,uz,...,ur),

where the summation runs over all u,,u,,..., u, which satisfy (55).
In the notation of Lemma 3 there is (by (b) of this Lemma)

7(t) < e, 717 Va, ceey Vr)(t')“l)rlz
for ¢ > 0 and thus

flo) < =9 2 e ™y (m41)
M=0

-]
< 0(‘/’7 Vl: Vz; ¥, )‘9—dal2 Zg"mﬂ(m_i_g)?’ﬂ =c¢(p, Vi, Vs, ceay Vr)e—daﬂ:

Mm=0

q.e.d.

LemMmA 7. Let, for a certwin f >0, be
(56) P(x) = o(z).
Then for s = o-+4t, 0 - 04,

2"7;2'107'%'
O(s) Me '~ 1

o0 e

holds uniformly on te(—oo, o).
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Proof. Tet ¢ > 0. As we have assumed that there exists such a ¢,
that for & > &,
e&f
PS5

holds, then also

o

oo ‘o
f G-ESP(E)d51<f ]P(E)ld&—]—-m f g—E"Sﬂ[ZE
] o

0

o
<[ IP(olag+teo
0
Thus, for sufficiently small ¢ >0
o0 _Es e
| [ e=pag] <
0

Herefrom and from (52) we obtain (57), q.e.d.

On the base of these lemmas we can easily prove in a different way
the Walfisz Q-estimation which is quoted in § 1:

TrmoreM 2. Let the form (1) have integer coefficients, let the numbers
by, byy ..., by beintegers, My, My, ..., M, natural numbers N Oy, Clgy vuvy Op
rational numbers. Denote by H the least common denominator of the numbers
a My, My, ..., @ M,. Let there exist numbers b and & such that

(58) k=0(mod H) and Spx #0.
Then

P@) = 2@ ).

Proof. Let P(x) = o(¢"* ). According to Lemma 7 there is for
§=otit, 0> 0+,

i 3 ki
O(s Me 7=
(89) i L a0 =0(c™")

uniformly on te(—oo, co).

Let b and k be numbers satisfying (58). If H >1 then necessarily
h+#0(and § =0). If H =1 we can obviously choose k& =1 and & ar-
bitrary. From the definition of Spm) (see (13)) it follows further, that
Snjemy = Swpmy for b =1’ (mod k). Thus we can choose the numbers

icm®
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h, T satisfying (58) so that b >0. Put in (59) s = g (4> 0)
- )

According to the relation (12) of Lemma 1 we obtain for ¢ — 0+

60)
M8 ki ’") ‘

“o(5;
DL -
“T;jh)]r o m( nlh) Sh’“("”eXPl ko

(o

Mexp {2 rl S‘ajb}
———— 5= 0(c™"™)

i\
g
(+ k )

(the summation runs over all my, m,, ..., m, with the exception of the
system o, M1k, apMyk, ..., o,]M,k). In the sum there is obviously

~ [ m;
Q(ﬂ—lfj—ajk) > ¢ and thus according to (14) and Lemma 6 there is

m.
Q j ik ” [
M 5 — 5
Z Shk(m)eXP < kze kg

k2
for ¢ < 1. For o — 04 there is clearly

=20 mo_ k)
i 2 Sk ,(m) 8XP { ’ (J[ i
'(U‘I' u,b) o T e

Mexp {2n4 Z a;bi}
- J=1
[+

M8y
PR )

8= o(c™™).

From (60) we thus obtain
=0(1)

for ¢ — 0+ ; this is & contradiction.

LeMmA 8. Let the coefficients of the form (1) and by, by, ..., b be
integers, M, M,, ..., M, natural numbers. Suppose that, for a certain
system h, k, my, My, ..., My we have

(61) Shiemy # 0.


Pem


390 B. Novak

Then we have
(62) |Sn o] > BT
Proof. Pub

,
A=2D]] M.
1
By Lemma 2 is

(63) | Sh,k,(m)]z =% 2 GZn’irp(h,k,d,mf,fi) — krg,

where & = (k, A) and
”

1k 1 ¢ o
W)wmh%wm=?WWMFﬁéWWF$2%th

1,j=1

and the sum runs over all systems f,fs, ..., fr of integers, 1 <f;<d
(j=1,2,...,1), satisfying the congruences

N
2 > ay My Myf; = 0 (mod d)
=1
T=1,2,...,7).

In view of (64), Q depends only on hmodd?, on kmodd?
and on my; (j=1,2,...,7)mod d. We have only ¢ possibilities for d
and, for every d|4, at most d"t* different values of Q. Following (61)
and (63), at least one value of Q is positive; the minimum of the positive
values of Q is a “¢”, and so (61) implies (62).

THEEOREM 3. Let the coefficients of the form (1) and the numbers
by, bay ...y by be integers, M;, M,, ..., M, natural nwmbers. Let at least
one of the numbers ay, ay, ..., ar be rrational. Let f be a positive real num-
ber and let there ewist the sequences

(65) byylgy ooy Bi<ly<...

such that for b = hy,, & =Fky and all n 48

(66) h<l,
(67) Ry < &
and
(68) Sh,k # 0.
Then
(1_1) 2641
Pz) = Q(z'* ¥ 1)

hﬂfj

Lattice points with weight in high-dimensional ellipsoids 391

Proof. According to Lemma 8 we can assume that f

] X or b= Iy,
k =k, even (62) hold and obviously % # 0 for n > 1. Put

wzg_ifﬂg
2]
and suppose that

2rih
For s = o+ » 0 = 0-- we have, according to Lemma 3,
O(s
(69) ~§—) =o(e7")

(in view of the asswmptions there is & = 0) uniformly with respect
to & and k. Now, let & =k, b = h,, where n is sufficiently large

" (consequently, by (67), (65) Ry, is sufficiently small). According to

Lemma 1 we can write

2

Ry, a2Q (% —u,-k)

M8 ~ 7% M ’ - o
(70) @(S) = kro_r/z é +Wz Sh,k,(m)e #

where the summation runs over all systems My, Moy -.., M, Sabisfying

_ [ m;

Q(j[i —aﬂc) # Ry; according to (a) of the Remark 1 this inequality
7

is satisfied for all systems with a unique exception, if Ry is small enough,

and thus if # is sufficiently large. According to (¢) of Lemma 3 we have

7
for 20 < 1 there is

~[m,
then Q(—f — o L) > ¢ in the sum 2’. Aceording to (14) and Lemma 6

~ My
0w s i S
] ————— g Ko
(71) T T 2 S, mpe Ko < —mE
Now, put
o = Ryfk.

Thus ¢ - 0+ for n- -4oo. From (70) and (71) we obtain

M .
|6(s)] = TR (185,%! e — 12 e—chk)
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for sufficiently large n, h = hny & = kn. As
Ry B 1]
<3t <%

we obtain using (69) and (62),

Pty
g = 0 1
h(ak) ™ S
(for m — J-o0), i.e. according to (66)
a,w+1~r/2
—grmr = o(1)
and thus after substitution
1
sy = 0 1
Rk S
for n —» co. This is a contradiction with (67). Thus the theorem is .
proved.
LemMA 9. Let the coefficients of the form (1) be integers and M,, M,, ...,
very M, matural numbers, by =b, =...=0,=0. If a;, ag,..., 0 areé

rational numbers, then the assumptions of Theorem 2 are satisfied. If ot
least one of the numbers ay, ag,y ..., a 98 wrrational and if for a ceriain
B >0 the inequality

1
(72) By < -

k
s satisfied for infinitely many ¥, then the assumptions of Theorem 3 are
satisfied (with the same value f).

Proof If a, as, ..., @, are rational numbers, let H be the least

common denominator of the numbers oM, aM,,..., e, M,, kt =H

| m;
and so By = Q(ﬁ—[L -a7‘k) =0 (with my = oqM;k, j=1,2,...,7).
My
In the opposite case put H = 1 and let k be a sufficiently large number
satisfying (72). Denote A = 2D[JM?. In both cases there is H2A’%
i=1

= 0 (mod H) and according to (¢) of the Remark 1

= [ My
Ry =Q|=L — ok
v Q ( o, a4 )
implies in the first case Rysm2 = By = 0 and in the second case
= 'm,jAZHZ ) 1
Riepr = Q| ——— — kA H?| = A*H*R ——
e Q( M, P A Y

icm®

Put = 1. By Lemma 2 there is (d = (kA H?, 4) = 4)
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|Sh,kA‘-‘H‘l|2 — krAzrﬂer 1’

where the summation runs over all systems fy,fs,...,f, of integers
which satisfy 0 <f; <4 (j=1,2,...,7) and

r
2 (lzljﬂfll[jfj = 0 (mod A)

=1
(1=1,2,...,7). Choosing f; =f, = ... =f, = A we obtain
Sy pa2e # 0.

The lemma is proved.

Now, question arises, whether it *~ possible to omit the assumptions
(68) from Theorem 3. First, we pruve the following lemma, making use
of one of Walfisz's ideas (see [7], Lemma 4, p. 50):

LEMMA 10. Let r >4,

Q(“l; Ugy oony Uy) = 'LL“;’}‘QI(UM ceny Ur),

where Q, is a positive definite quadratic form with integer coefficients. Let
ay = P1/q1, G2 = Palls, where 0 <Py <y, 0Py <gy are integers,
(P, 0) =1, (Ps,¢s) =1. Let ag, a4y...,0 be arbitrary real numbers.

Let further by = 1, by = by = ... = b, = 0 and*M,, M,, ..., M, be natural
numbers, M, >2, M, =1, ¢, = 0 (mod 4M3¢,). Then

A(m) #0
and

P(z) = Oz ga).

Proof. I & = 0 (mod ¢,), then necessarily By, > ¢. Let k = 0 (mod ¢5).
If

_ [ my
Ry = Q(“*ﬂ‘[j" —‘U’—jk)

7

then either Ry >¢ or my = &Mlk. Consider the lagt case. Then ob-
viously L

Ie

27l 27t m
Sip = D) @XP{“ T2 (ML ‘<“1M1+1)}“

k kM,
ay=1
k , 07 r
2nih 27t m;
% E exp— @y (4 M)+ —— *—]—(“iMi)}-
k k& M;
9,050 slp=1 j=2
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Let us consider the sum
I
2 ih ot m
8= ZeXP{‘- % (@, M, +1)*4 7 ﬂi(%M'l'{‘l)}

a;=1
Similarly as in Lemma 2 we obtain that

[k . 1 2h
|8]2 = 702 exp {97”(“5; (f1M1)“—'(if1m1+ —(Z*flMl)},
where ¢ = (k, 20{7) = 2] and the summation runs over all integers f,,
1<f; <4, satisfying
2Mif; = 0 (mod d).

In view of the assumptions of the lemma we have

2m2

& hf

—
Si2=k GX){Z 7}—;1—}:0.
18] ,Z PRy

Thus there exists such a constant ¢, that for R, < ¢ there is Spp =0
for all k. From (22) of the Remark 1 we obtain

.l 1g2%
P =0 I g o

k<Vz
Rp>=c

As the relations

Qg Usy vy ) = WG (Ug, Us,y oeny 1) <1,

u = b; (mod M;), j=1,2,...,r,

are satisfied only for

Ui =1, Uy Uy e, U =0,

we have .
A1) = ™ s ¢,
The lemma is proved.

Let now a >0 be given, » >4 and let us choose the numbers

Y83 Y4y ---, ¥ In such a way that at least one of them ig irrational and
the inequality

(13) max (k> < o5

J=B4,,r P

m@
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is satisfied for infinitely many %'. Let the assumptions of Lemma 10
be satisfied and pub o = /Mg, (j=3,4,...,7). Put &k = k'g,q.;
from the Remark 1 (part (a)) it easily follows that the inequality

R, < o
is satisfied for infinitely many %, but according to Lemma 10 there is
A(w) # 0 and P(z) = O(«"*1gz). For sufficiently large § we thus obtain
that
r 1) 2;8_4-1

P(z) = Q(w(ri AL

cannob hold and thus the assumption (68) of Theorem 3 cannot be gen-
erally excluded.

§ 5. Conclusion. From the Theorems 1-3, Lemma 9 and I of § 1 we
obtain our main Theorem:

THEOREM 4. Let the coefficients of the form (1) and by, bs, ..., b,
be integers, My, M,, ..., M, natural numbers. Let a;, = ay = ... = o, = a.
Let y = y(a) be the supremum of all § >0, for which the relation

1
{aky < 7

18 satisfied for infinitely many k. For y = +oo put 2y-+1)/(y+1) =1r
and let

T _ 1 2r+1
: 4 2 y+1°
Then
P(z) = 0(2'*")
for r > 5,
P(a&') — O(mmax(f,r/d,).(-s)
for r = B, where ¢ is an orbitrary positive real number.
If by = by = ... = b, = 0, then for every positive ¢

Plz) = Q).

(The constants in O- and Q-relations depend on e.)

Remark 3. Let the coefficients of the form (1), the numbers b
and M; be integers, M; >0 (j =1,2,...,7). Let y = p(ay, az, ..., &)
be the supremum of all numbers § >0 which satisfy

liminf Ryk~% < +o0.
ksto0
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The Theorem 3 gives (under certain assumptions about sums 8y, ;) the lower
o r 1) 2y+1

estimation f> (Z — E) ST

tions about 8, are always satisfied by Lemma 9). In the special case

.= ¢ = 0o we obtain also by Theorem 1 the inequality

(for b, =1b,=... =0, =0 the assum-

ay = Oy = ..
(for » > 5)

(74) f<(i__1,) 2y+1

4 2]y

In general case I have presented in [4] the following upper estimation

1) 2941
(for 7 >4) f<(£—;)—ﬁ—o—. On the base of Lemma 4 this
Tyt —
estimation can be improved; we obtain, e.g.
P S
4 2) T TR0

The exact value of f has not been found in the general case. First
of all we observe that y can assume (see (17)) all values from the interval
[1/r, +oo]. For » >3, v < 1/(r—3) we have

7 1) 2 1 r—1
(_—.—B‘) 7}+ < B
4 2] y41 4

and thus for those y (and A(@) # 0) in view of (4) the estimation
(74) cannot hold. For r >4, y < 2/(r—4) we have

(r i) 2941 7

T72)55 ST
but using Lemma 4 we cannot obtain a better 0-estimation than O (@™1gm).
Finally, let us note, that for » = 2 and » = 8 the Theorem 3 does not
give better results than Landau’s estimation (4).
Remark 4. In connection with Lemma 10, there arises a question
whether the assumption (68) in Theorem 3 is needed in the case of irra-

tional ay, ay, ..., a.
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