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L. Introduction. I. J. Schur was one of the original discoverers of
what are known as the Rogers-Ramanujan identities [4]. In 1926, Schur
proved the following result which somewhat resembles the Rogers-Rama-
nujan identities [5]. .

THEOREM 2. Let H,(n) denote the number of partitions of n into
parts = +1(mod 6). Let Fy(n) denote the number of partitions of n into
distinet parts = +1 (mod 3). Let G1(n) dencte the number of partitions
of n of the form n = by+...+ by, where bi—Dbiy 1 = 3 with strict inequality
if 8|b;. Then Hi(n) = Fy(n) = Gy(n).

Recently [2], a general partition theorem of this type has been
proved which contains Theorem 2 as & special case. The method of proof
is based on the use of g-difference equations and Appell’s Comparison
Theorem. Since a proof of Theorem 2 has been given utilizing recurrent
sequences and Appell’s Comparison Theorem [1], it might be expected
that if such a technigque were suitably generalized, it would yield an
alternative proof of the main theorem in [2]. Surprisingly a completely
different result is obtained. For example, the main theorem in [2] implies
the following result.

TreorEM. Let Cy(n) denote the number of partitions of n into paris
=1,9,11 (mod 14). Let Dy(n) denote the number of partitions of n inio
distinet parts =1, 2, 4 (mod 7). Let By(n) denote the number of partitions
of n of the form m = by ... 4-b,, where by—byyy > Tif by =1, 2, 4 (mod 7),
bi—biyp1 212 4f byyy =3 (mod 7), by—byyy > 10 if by, =5, 6 (mod 7),
and by—b;, =15 if by = 0 (mod 7).

Theorem 1 of this paper implies the following result.

TamorEM 3. Let H,(n) denote the number of partitions of n inio
parts = 3, 5,13 (mod 14). Let Fy(n) denote the number of partitions of n
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into distinet parts = 3,5, 6 (mod 7). Let Ga(n) denote the number of parti-
tions of 1 of the form n = by +...+bs, where by—by =T if by =3,5,6
(I'DOd 7), bli—l)i+1 =12 ’If Z)i =4 (1110(1 7), bi_b'i-|-1 =10 ’Lf b‘,; = 1, 2
(mod 7), by—Dby, =15, if b = 0(mod 7), and by #£1,2,4,7. Then
Hy(n) = Fy(n) = Gy(n).

The striking symmetry between the statements of these two the-
orems is made even clearer in the relationship between the main theorem
of [2] and Theorem 1 of this paper. In Section 2, we shall make certain
definitions and state Theorem 1. In Section 3, we shall prove Theo-
rem 1.

2. Preliminaries. The notation needed for our work here is precisely
that used in [2]. Tlnoughout this paper we shall write 2(n) for 2". We
congider a set 4 = {a(1),...,a(r)} of r distinet positive integers which

will be fixed thr oughout our discussion and which satisfy Z 1) < a(k),

1<k<r. We note that this last condition implies that the 2(r)—1
possible sums of distinet elements of 4 are also distinet; we denote this
set of sums by 4’ and its elements by o(l) < a(2) <...< a(2(¢)—-1).
From the previously stated inequalities for the ’s, it is clear that
a(Z(i)) = a(4-++1) and that all the «’s with a(k—1) < « < a(k) have
a(k—1) as the largest summand in their defining sum. We let IV be a posi-
tive integer with N > a2(r)—1) = a(l)+a(2)+...4+a(r). We further
define a(2(r)) = a(r+1) = N4a(1). Let —Ay be the set of all positive
integers which are congruent to some —a()(mod N). Let —Ay be
the set of all positive integers which are congruent to some — a(¢) (mod N).
Let fn(m) denote the least positive residue of m (mod N). If meA’, let
w(m) be the number of terms appearing in the defining sum of m, and
let »(m) denote the smallest a(i) appearing in this sum. With these defi-
nitions, we are now prepared to state Theorem 1.

THEOREM 1. Let F(—Ay;n) denote the number of partitions of n
into distinct parts taken from —Ay. Let G(—Axy;n) denote the nuwmber
of partitions of m into parts taken from —Ay of the form n =
bitoodbay b= by, bi—beny = N w(Ba(— b)) +0(Ba{— bs)) — B (— i),
bs > N +(w0(By(—bs)) —1) . Then G(—Aly;n) = F(—Ay;n).

Let us now note how Theorems 2 and 3 are derived from Theo-
rem 1.

To prove Theorem 2, take N = 3, a(1) =1, a(2) = 2. Then imme-
diately F'(—Ay;n) becomes Fy(n). We also note that — A} is the set
of all positive integers. Finally if b, =1 (mod 3), then b;—b;; > 3-1+
+2-2=3; if b =2(mod3), then b—bi,>31+1—1=3; if
by = 0 (mod 3), then by—b; ; > 3-2+1—3 = 4. Thus G (—Ay; n) = Gy(n).
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The fact that H,(n) = F,(n) follows directly from
n(1+q37+1 1+qaz+° H (1_q6)+1 gni+s)_1
The condition by > N - (w(ﬁy(—bs))~1) is superfluous in this case.
To prove Theorem 3, take N =7, a(l) =1, a(2) = 2, a(3) =4.

Then immediately F(—A4y;n) = Fy(n). Also we note again that —A4j%
is the set of all positive integers. Finally

if by =1 (mod 7), then b;—by, > 7-2+2—6 =10 and b; > 71 = 7
if b; = 2 (mod 7), then bi—bi 12 T724+1—5=10and b; > 7-1 = 7
if b; = 3 (mod 7), then bi—bi1 27 1+4—4 =17 and b; > 7-0 = 0;
if b; = 4 (mod 7), then bi—bi = 72+1—3 =12 and b; > 71 = 73
if b =5 (mod 7), then b;—biyy > 7-14+2—2 =7 and b; > 7-0 = 0;
it by =6 (mod 7), then b;—b; ;> 7 1+1—1 =7 and b;> 7-0 = 0;
it b =17 (mod 7), then b;—d;,, > 7-834+1—7 = 15 and ;> 7-2 = 14.

Thus
G(—Ay;n) = Gy(n).

The fact that H,(n) = Fy(n) follows directly from

n (1_]_q71+3)(1+ q7j+5)(1+q7!+6)
j=0

(1_ ql4i+3)-1(1_ q14i+5)_1(1_g14j+13)_1.

<,
1
=

f
]

3. Proof of Theorem 1. Let #(m, n) denote the number of partitions
of n of the type enumerated by G(—Ay; n) with the added restriction
that no part exceeds m.

Levma 1. If > 1,

(81)  a(jN—a(m),n)

= aljN— a(m+1), n) +x(j¥N —w(a(m). ¥ —o(a(m)), n—jN +a(m)).

Proof. We break the set of partitions enumerated by =(jN — a(m), n)
into two sets: 1) those with largest part < j¥ —a(m) and 2) those with
largest part = j¥ —a(m). The partitions in the first of these sets are
enumerated by m(j¥ — a(m+1), n,). If we remove the summand jN — a(m)
from the partitions in the second set, then we see that we are now parti-
tioning n—jN+a(m), and by the conditions defining these partitions
the largest part is now < Nj—a(m)— N -w(a(m))—v(a(m))+ a(m)
= jN—w(a(m))- N—v(a(m)). Thus the partitions in the second set
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are in one-to-one correspondence with those partitions enumerated by
n(jl\*—ua(a(m))~N—?)(a(m,)), n—jN+ a(m)). Thus (3.1) is established.
Define

d(m) =d(m;q) =1+ Zn(m, nyg", gl <1, m =0,

n=1

We now wish to derive a functional equation for the d(m) utilizing Lemma 1.
In order to have this functional equation valid when one or more of the
arguments is negative, we further define
a 1 for —N<m<O,

m) =

(m) for m<—N.
This definition makes the following equation consistent with (3.1) and
the condition on the partitions that b, > ( (Bw(—b5)—1 )
(3.2)  A(jN —a(m))

= d(jN-—a(m-l—1))—}—qiN““(m)d(jN—w(a(m))'N—v(a(m))),

provided the argument on the left hand side is > —XN.
Since a(2(i)) = a(i—1), we may add the equations (3.2) together
for 1< m < 2(k+1)—1, and we obtain
(3.3) d(jN—a(1)) = d(jN — a(k)+ 2 VAN —w(a)- N —(a)).
a<a(k)
If now we add the equations (3.2) together for 2(k) <m < 2(k+41)—
we obtain

(8.4) a(j¥N—a(k-1)
= d(j¥N—a(®))+

a(k—1)<a<a(k)

¢ (N —w(a) N —o(a)).
Now every a in the interval (a(k—1), a(k)) is of the form a(kt—1)+ '
where o' < a(k—1). Hence
(8.5)  d{jN—a(k—1)) = d(jN — a(k))+ ¢V FDq(N- (j—1)— a(k—1))+
+ Z qiN.—a(k—l)_u’d(N_(j__l__,w(a/))_,v(af))

a'<a(k—-1)
= A(jN —a(k))+ g™ V(N (j~1)— a(k—1)+
+ "I (@((—1) N — a (1)) — d(( —1) )N —a(k—1)))
= d(iN — a(k)) 4+ ¢"="*Na((j—1)- §N — a(1)—
— "D (L — ) (N (j—1) — a(k—1)).
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LemMA 2. If 1 <k <741,
(3.6)  dQ(jN—a(1)

k-1 i—1
= 4N —a®)+ Y Y q"‘\"”)H(1—gN(j“”))(Z((j—'[)-N—a-(l)).
q=1 u<a(l) h=1
w(a)=1

Proof. For %k =1, (3.6) reduces to A(jN —a(1 )) = A(iN—a(1)).
Assume (3.6) true for a particular & < r +1. Then

A(jN —a (1)) — a(jN — a(k+1))
= A[jN —a(1))—a(j¥ — a(k))+ d(j¥ — a(k) ) — A(jN — a(k+1))
= AN —a(1)) = a(i¥ — a(k)+ "~ ((j—1)- ¥ — a(1)) —
—a" A=A (j-1)— a(k))
= AjN —a (1)) = A(jN — a(k)+¢"~"@a((j—1)- ¥ —a(1)
A= (a(j—1) N —a(1)) -

k—1 -1
=2 2 ) [ a9 5 an))
wia)=1

= d(jN~ a(1))— A(jN — a(k)) 4 ¢V -2® a((j—1)-N—a(1)+

1

+ 2( =) [T a— "= a(j—i—1)- ¥ —a(1)).
i=1 u?;)z(k) h=1
Now if « runs over all elements of 4’ less than a(k), then o’ = a+a(k)
runs over all elements of A’ in the interval (a(k), a,(k-|—1)). Hence
A(jN —a(1))—d(jN — a(k-+1))

= d(jN~a(1))—d(jN—a(7c))+

k—~1 % ’
+ 203 ) [Ja— g Mya(—i—1) N—al1))
=0 a(k)fa;<q(k+1) =1
k-1
:‘;’( 3 1\_a)n(1 =My q ( —i)- N—a(1))+
u7(a]:
k -1
+ jN—a _ N.(j_h) AN
g; (a(k)<? ;a(wqy ) h[l (1—q )d((é i)- N —a(1))
J i-1
=20 X ) [[a—d"Ma(j—a) N—a).
i=1 QE&(}E;;I) h=1

Thus we obtain (3.6) for %41, and the lemma is proved.
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Proof of Theorem 1. If we define
4 = d(jN —a(1)),
then, by Lemmsa 2 with &k = r+1,

t,-=tm+j(2 - )H(l Py

i=1 aed’
_w(e)=i

By definition of d(m) for negative m,?, =1 and ¢{_, = 0 for » >0.
Hence by Theorem 2 of [1], p. 129,
) 'lmN>

1+ ZG — Ay m)g _}?;tj=[’[(1+2( Y

n=1 Mm=1 i=1 aed’
w(a):'b

= ﬁ (1 g™ 0) (L V) (L g™ )
M=1
=1+ D) F(—Ay;n)g".
n=1
Thus G(—Ay;n) = F(—Ay;n).
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Corrigendum to the paper “On the zeros of L-functions”
(Acta Arithmetica 11 (1965), pp. 67-96)
by
E. FoeELs (Riga)

The formula (34) of the paper in questlon should be replaced by

the following:
m 'L‘wj
> ()

IV

i A(n) Al

A(m)
log*T

nm

(B4%) V< h

€%
BT3B 7B e 3B

m=n{mod D)

Proof. By the arguments of §9 and § 5 we have

92
;o o r(n)A(n)R(n) |*
v <e y 1--1(Tu+u) -

1<V | 7BInT 3B
< o6 x(n) A(m)R(n) J?
= nl+7(T0+u S

<<V g 1By TR
cw 3y A ) A (] B

T Ty 1— (T 105
&<y 5 rB&TmE M o 7B S sp M )
A(n)R(n Y A(m m U To+wy)

_ o ()R (w) Al 2 _)

1<7<V TBIn<r3B # 1B e riB m n

m=n{mod D)
An)R(n Alm i \*Toty)

= ¢ (n) R(n) 2 Al )R(m) 2 m

TBlncriB " 1Bim< 3B m 1</<V "

m=n (mod D) =
< €6 A(n) | R(n)| 5 Alm) A(m) " ( )z(T0+w_,;)
< —_— h ——— E
3
7B 2aZm3B K B mE m s n
m=n(mod D)

whence (34*) follows. Using (34*) instead of (34) we can proceed as in § 9.
The formula at the end of § 10 undergoes a similar exchange.

Eegu par la Bédaction le 15. 12. 1967
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