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A note on factorizations in quadratic fields
by
W. NARERIEWICZ (Wroctaw)

1. In [1] and [2] the following result was obtained:

If K is a quadratic number field with the class-number & 1, 2
moreover k and 1 are natural numbers and D = (k,!) has all its factor-
izations into integers irreducible in K of the same length, then for the
number Gy;(«) of the rational positive integers not exceeding #, congruent
to I(mod%) and having all factorizations into integers irreducible in K
with the same length one has the following asymptotic evaluation:

Gra(®) ~ O(k, 1, E)z(logloga)” (logm)*+SD)-Rrzk
where O(k,1, K) is a positive constant, ¥ is a nonnegative rational in-
teger depending on the class-group H of K, and finally §(D) is a rational
integer satisfying the inequality 0 < S(D) < g, with ¢ equal to the number
of even invariants of H.

In the case D =1 it was shown that S(1) =g, and it was con-
jeetured that the equality §(D) = ¢ holds for every D.

This conjecture was shown to be false by A. Schinzel, who produced
the following counterexample: K = Q(V —14), D =9 in which case
H ~(,, thus ¢ =1, but §(9) =0.

The aim of the present note iy to characterize all those quadratic
fields K for which 8(D) does not depend on D, and so is equal to g.
(We assume that D satisfies the condition stated above, as otherwise
the number S(D) is undefined.) We prove the following

TeEOREM. The equality S(D) = g holds for every D (subject to the
condition stated above) if and only if either the field K has an odd class-number,
or its class-group H has the form Oy x0y X% ... X 0,.

At firgt we recall some definitions and notations introduced in [1].
Let Oy, X ... X0y, be a factorization of the class-group H into eyclic groups
and let X; be the generator of 3, for 4 =1, 2, ..., ». For a given rational
integer o and ¢ =1,2,...,r define

hi-a if a # 0,

als =
[ak 0 if a=0
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and consider the set T' of all r-tuples (ay, ..., a,) of nonnegative rational
integers (not all equal to zero), satistying the following conditions:

Aoy <h—1 (1 =1,2,...,1),

(i) @y < [ay]; and if for ¢ =1,2,...,t—1 (with some 7) one hag
a; = [a;);, then a < [a;.

As observed in [1], the mapping

(Byy.eny @) — (XS X, X790 X0

gives a one-to-one correspondence between 7' and the set of all orbits
of H under the action of the Galois group C, of X, distinet from the orbit
(B, B) (where F i3 the unit element of H). A rational prime p which does
not generate a prime ideal in K is said to belong to the orbit (X, X' it
D =P1Ps With peX, poe X !

Now let of = (al),...,a?)eT for ¢=1,2,...,m, and assume
that the distinct r-tuples a,‘l) ey 0 (82 0) correspond to orbity of the
form (X, X), i.e. 2af) = O(modhj) fori=1,2,...,sand § =1,2,...,7,
whereas the remaining r-tuples do not share this property. For any ra-
tional integer m let us denote by £;(m) the number of prime divisors
of m belonging to the orbit corresponding to a®, each divisor counted
according to its multiplicity. Let finally Agp1y ...y Ay Do given positive
rational integers. ;

Wé shall say, the system V = (a®,..., a"™; Ay 4, ..., 4,) is admis-
sible if it satisfies the condition

(iii) For every two ditferent sequences (&y, ..., &), (1) -+«y %) with
0<eg,pm<lfori=1,2,...,8 and 0<eg, <4 for ¢ =s-41,...,n
there exists an index j such that

" n
Dleal = D'k (modhy).

Fem=1 k=1

‘We shall say also that the admissible system V iy D-admissible if
for ¢ =1+s,...,n one has (D) < 4; and moreover every prime divisor
of D either generates a prime ideal in K, or belongs to one of the orbity
corresponding to a, ..., a™ or finally belongs to the orbit (¥, H).

It was shown in [1] that 8(D) = maxs(V) where V ranges over
all D-admissible systems. 4

2. Proof of the theorem. The case of odd % is trivial, as then
0< 8(Dy< g =0, hence we may assume in the sequel that 7 ig even.

We introduce now a partial order in the set of all admissible systems
by defining

Vi=(a®, .y a™; Ayyey ey A 2 Vo= (00, ..., 0™ By, ..., Bp)

i=m®
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it {a®,...,a"} = (B9, ..., 5™} and moreover the equality & = bp®
for some j, ¥ implies A4; < Bk

Observe that for every D there exists a minimal D-admissible system
V(D) such that for every D-admissible system ¥ one has V(D)X V.
In fact let a®,..., a®™ be the r-tuples from T such that £;(D)>1 for
i=1,2,...,n, ordered in such a way that a®,...,a® are all of them
which correspond to orbits of the form (X, X), and define

V(D) = (a®, ..., a™; Q,,4(D), ..., QH(D)).

As it was assumed that D has all its factorizations of the same length,
Lemma 3 of [1] implies that V(D) is admissible, and its D-admissibility
and minimal property follows immediately.

Note also that every admissible system V is of the form V = V(D)
for some D. In fact, it V=_(a®,...,0M; 45,4,...,4,) then take
D =p;...pepistt ... pan, where for i =1,...,n the number p; is
a rational prime belongmg to the orbit conespondmg to the r-tuple af®.

Finally note, that if ¥ is D-admissible, and ¥V = V,, then V; is also
D-admissible.

Now we prove

(i) The equality S(D) = g holds for all D if and only if to every admdis-
-gible system V there exists an admissible system V, withV XV and s(Vy) = g¢.

Proof. Assume the equality S8(D) = g for all D, and let V be admis-
gible. For some D,V = V(D). As S(D) = g there is a D-admissible
system V, with s(V,) = g, and the remark made above shows that VX V,.

Conversely, let D have all its factorizations of the same length, and
consider V = V(D), which is admissible by Lemma 3 of [1], and let V7
be admissible and such that s(V,) = g, and V= V;. As V, is D-admissible,
8(D) = g follows.

Now we can establish one part of our theorem:

(i) If H ~CyX ... X0y, then 8(D) = g holds for all D.

Proof. In this case every r-tuple from T is of the form (e, ..., &)
with & = 0,1, and so, after adjoining the r-tuple (0,0, ..., 0), we may
treat I' as g-dimensional vector space over the field GF(2). From the
definition of admissibility follows that a system (a, ..., a!™) is admissible
if and only if it is linearly independent. Moreover in our case the relations
V.2V, and V, = V, coincide, whence the equality S(D) =g follows
from (i) and the fact that every independent system in 7T can be extended
to a basis, necessarily of g elements.

To prove the remaining part of our theorem let H = O, X .o x(:‘;,,r
(where hy,..., R, are even and hgiy,y...,h, are odd), with ¢>1 and
mf»xh, >3. Note that the system V ={(1,1,...,1); N—1) with

N =lem.(hy, ..., k) is admissible, as the congruences @ = y(modhy)
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for i =1,2,...,r imply # = y(medXN). The theorem will be proved
if we show that mo system 7V, =(a®,...,a®,(1,1,...,1); 4) with
A>N—1 and o corresponding for ¢ =1,2,...,¢ to orbits of the
form (X, X) can be admissible. Assume the contrary, and let

a® = (ePhy[2, ..., & 8y02,0,...,0)  with &P =0,1.

The vectors & = ({?,..., &) are linearly independent over GIF(2)
(due to admissibility of V,), thus we ean find 7y, ..., 7, == 0, 1 such that
with M = Le.m. (hy/2, ..., hg/2, hyrq, ..., by) and some intogral ng, ..., n,

Ml o8 = (202 M [hyy ooy 202 M [Ry) .
Now an easy checking shows ug that the kth component of
a4 A pe@ M1, 1, .., 1)

is congruent to zero (modhy) for & =1, 2, ..., #, which in view of admissi-
bility of V, implies M > A, but clearly M < N /2, and as 4 > N—1,
we obtain a contradiction. The theorem is thus proved.
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Modules and binary quadratic forms
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Huserr 8. Burrs and GorDoN PArL* (Baton Rouge, La.)

1. Introduction. The basic result of this article is Theorem 6.1, which
gives an algorithm whereby the transformations 7 of a primitive binary
quadratic form f into a multiple ¢-¢ of a primitive binary quadratic form
g are uniquely related to representations of ¢ by one of two specific forms
according as e(detT) is positive or negative. Allowing e to vary, one
deduces eerfain remarkable additive properties of the transformations of
2 binary quadratic form into an arbitrary multiple of another. These,
it may be mentioned, are useful in a new theory of reduction of the qua-
ternary quadratic forms which arise as norm forms of modules in quaternion
rings.

The article developed when we sought to interpret these phenomena
in connection with modules in a quadratic field. This led us to re-examine
the Dedekind relations between classes of modules (or ideals) in a quad-
ratic field under multiplication and classes of binary quadratic forms
under composition. It appeared that Dedekind had somewhat artificially
forced the omne-one association between module and form classes, by
adopting a different convention for definite and indefinite forms, by
restrieting bases artificially, and by defining a narrow module equivalence.
Technically what he did was correct. But he did obscure the essential
simplicity of the relationship, which we will describe in § 3, and which
seems to us to be more natural and still pleasing. Our approach. generalizes
better. Dickson’s History of the Theory of Numbers lists on p.70 of Vol. IIT
several items concerned with the Dedekind relation (H. Weber [15],
R. Konig [11], J. Sommer [14], who mentions in § 35 a paper by B. . Kum-
mer [10], P. Bachmann [1], R. Fricke [6]). Subsequent items that
we know of are due to E. Hecke [8], E. Landau [12], and Z. I. Borevich
and I. R. Shafarevich [2].
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