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for i =1,2,...,r imply # = y(medXN). The theorem will be proved
if we show that mo system 7V, =(a®,...,a®,(1,1,...,1); 4) with
A>N—1 and o corresponding for ¢ =1,2,...,¢ to orbits of the
form (X, X) can be admissible. Assume the contrary, and let

a® = (ePhy[2, ..., & 8y02,0,...,0)  with &P =0,1.

The vectors & = ({?,..., &) are linearly independent over GIF(2)
(due to admissibility of V,), thus we ean find 7y, ..., 7, == 0, 1 such that
with M = Le.m. (hy/2, ..., hg/2, hyrq, ..., by) and some intogral ng, ..., n,

Ml o8 = (202 M [hyy ooy 202 M [Ry) .
Now an easy checking shows ug that the kth component of
a4 A pe@ M1, 1, .., 1)

is congruent to zero (modhy) for & =1, 2, ..., #, which in view of admissi-
bility of V, implies M > A, but clearly M < N /2, and as 4 > N—1,
we obtain a contradiction. The theorem is thus proved.
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Modules and binary quadratic forms
by

Huserr 8. Burrs and GorDoN PArL* (Baton Rouge, La.)

1. Introduction. The basic result of this article is Theorem 6.1, which
gives an algorithm whereby the transformations 7 of a primitive binary
quadratic form f into a multiple ¢-¢ of a primitive binary quadratic form
g are uniquely related to representations of ¢ by one of two specific forms
according as e(detT) is positive or negative. Allowing e to vary, one
deduces eerfain remarkable additive properties of the transformations of
2 binary quadratic form into an arbitrary multiple of another. These,
it may be mentioned, are useful in a new theory of reduction of the qua-
ternary quadratic forms which arise as norm forms of modules in quaternion
rings.

The article developed when we sought to interpret these phenomena
in connection with modules in a quadratic field. This led us to re-examine
the Dedekind relations between classes of modules (or ideals) in a quad-
ratic field under multiplication and classes of binary quadratic forms
under composition. It appeared that Dedekind had somewhat artificially
forced the omne-one association between module and form classes, by
adopting a different convention for definite and indefinite forms, by
restrieting bases artificially, and by defining a narrow module equivalence.
Technically what he did was correct. But he did obscure the essential
simplicity of the relationship, which we will describe in § 3, and which
seems to us to be more natural and still pleasing. Our approach. generalizes
better. Dickson’s History of the Theory of Numbers lists on p.70 of Vol. IIT
several items concerned with the Dedekind relation (H. Weber [15],
R. Konig [11], J. Sommer [14], who mentions in § 35 a paper by B. . Kum-
mer [10], P. Bachmann [1], R. Fricke [6]). Subsequent items that
we know of are due to E. Hecke [8], E. Landau [12], and Z. I. Borevich
and I. R. Shafarevich [2].

* This work was supported in part by National Seience Foundation grants
GP 6467 and GP 3956,
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Tn his treatment of composition in the Disquisitiones [7], Gauss
starts by generalizing the age-old identity expressing a product of two
sums of two squares as a snm of two squares, and defines a form

' =aa"2 b ey 40y
(of nonzero determinant 4) to be compounded of the forms
f= am‘2+bmy+cy2 and 'f' =a'a2F b’y - c'y'?
if there exists a primitive bilinear substitution
o' = powa’+ Py + 2.5+ Paly
Y = g’ + oy’ +q0'Y + gy’

under which f = ff’. Primitive means that the coefficients are inte-
gers and that the six determinants P =9,¢;—P190; @ = Pola—Psl0,
B =pogs—psfes 8=p10s— P21, T =Dp10s—DPsq1, U =Dags—Dsgs are
coprime. Subsequently it iy shown that if such a primitive substitution
exists the determinants of f and f" have the form An? and 4n'® where n
and #’ are rational; and that the signs of » and n’ can be chosen so that

’, P (R—S)oy+ Uy =n'f and Qo2+ (R+8)a'y Ty = nf.

If the primitive substitution can be chosen so that # and »’' are positive,
then f” is in a strong sense the compound of f and f'; and if composition
is defined in this strong sense the classes (provided clags is defined under
the group of transformations which are unimodular, i.e., have integral
coefficients and determinant +1) of two of the three forms determine
the class of the third. Then the primitive classes of a fixed discriminant
d form an abelian group. It is this group, or a subgroup thereof of index 2,
which is the famous class group.

Gauss actually studied composition for forms of different discriminants
and was in large measure aware of the semigroup which we will develop
in § 2, and which is needed to make the agsociation between module and
form classes complete. But the post-Gaussian, literature on composition
of binary quadratic forms has usually been restricted to forms of one
diseriminant. This is probably due to the fact that Dirichlet in his doctoral
dissertation gave an alternative treatment of composition based on rep-
resentation of numbers, or what is essentially equivalent, on wunited
forms; and chose in his eminently readable and beautiful book [5] to
treat composition only for forms of a fixed discriminant. Dirichlet also
omitted square discriminants (which Gauss had treated — with a remark
that any property which holds for definite and indefinite forms alike
will extend o forms of nonzero square discriminants). As a result the
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picture of composition in subsequent work has been somewhat incom-
plete and the connection with modules correspondingly imperfect.

Instead of focusing on the maximal ring we have tried to study the
various orders of integral elements alike, and have used forms or modules,
whichever seemed simpler. This has perhaps enabled us o uncover new
and interesting aspects of an ancient subject.

Notations. Unless otherwise stated small Latin letters demote ele-
ments of @ (the field of rationals); w is a squarvefree infeger. If w # 1, j
denotes a fixed value of Vo, and Fy is the quadratic field @ (). Tfw =1,
denotes a symbol (not a number) such that j2 = 1, and F; is the commuta-
tive associative algebra of order 2 over @ with the basis 1, j. Small Greek
letters denote elements of F;. If « = ag+a4j, ¢ = ay—ayj, No = di
= aZ—wa}. Thus if w 21, =0 if and only if Na =0. Set dy =w
or 4w according as w = 1 or w = 1(mod4). We will deal simultaneounsly
with the set of diseriminants :

(1.1) G ={des? s =1,2,3,...}.

To each d in 2 corresponds an order (ring of integral elements with unity)
(1.2) Ry = {alls,+ 2 0| o, %, in Z}.

Here Z is the set of rational integers, and o = g is

(1.3) (I+sj)j2 if d=1, sj if d=0(mod4).

Thus o = (s—H/?Z—)/B, where ¢ = 0 or 1 according as d = 0 or 1(mod4),
and Vd means 4 if d =% (1> 0). Also, o+o =&, 0® = sw— (e— d) /4,
and

N(@y+2i0) = 55+ e2y@,+ (e —d) 2t [4.

2. The abelian semigroup & of primitive classes of binary quadratic
forms with discriminants in 2.

TEEOREM 2.1. By a technigque given below there is associated with any
primitive classes C,, Cy with discriminants in 2 a uwnique primitive dass
C which may be called their product wnder composition. If the discriminants
of Oy and Cy arve dys; and doss, then the discriminant of O is dys® where
s = (84, 83). Under composition the set of all primitive classes of discriminants
wn D form an abelian semigroup &, which can be partitioned into subgroups
consisting of the primitive classes of each discriminant in 2. The identities
I in these subgroups are the only idempotents of &.

Proof. We will use two lemmas, the first easy and elementary.

LeMMA 2.2a. The g.c.d. (a, b, ¢) of the coefficienis of a form aw®-- by +
ey (which we write as [a, b, ¢]) is an invariant of s class, and is called
the divisor of the class. If the divisors hy and hy of the classes K, and K,
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of diseriminant d are coprime, then the classes contain infinitely many
united forms
(2.1)  [ay, b,a.c] in Kq, [89, b, 656 on Ky,  with ayey % 0.

LuMMA 2.9b. For all such pairs of united forms the “product form”
(2.2) (@102, 0, ¢]
belongs to o wnique class Ty hyC, which has discriminant d and divisor hyh,.

Olassical proofs of Lemma 2.2b use the Gauss Lemma (see [4], pp. 89,
136 or [13] (a)). Following a suggestion of our student, Carter Waid,
we will deduce Lemma 2.2b from our method of forming the product
of unit-classes in § 3; hence associativity is obvious.

To define the product C of primitive classes Cy, 0, take sy, 8, > 0,
seb (s, 85) = 8, 8, = sky, 8, = sky; thus k,C, and ,C, have diseriminant
do(sk,%,)? and coprime divisors. By the lemma their product is k.%,C,
with O primitive of discriminant d,s

The group properties (other than associativity) for the primitive
clagses of discriminant d are worth sketching. Since 1 can only be repre-
sented primitively, and any forms [1, b, (b2~—~d)/4] and [L, D', (b*—d)/4]
with b = b’ = d(mod2) are obviously equivalent, there is only one class,
I;, which represents 1. Since

[1,b,acl[a,b,c] = [a,b,c¢], Is0=0.
Since [a, b, ¢] is primitive,
[a,b,¢]l[e,b,a] =[ac,b,1], in I,.
Hence the inverse of the class of [a, b, ¢] is that of [¢, b, a], hence that
of [a, —b,c].

Similarly the forms of digeriminant d which represent —1 also con-
stitute a unique class, say —1Ig.

THEOREM 2.3. Let ¢’ = dv® (v > 1). For any primitive class C of dis-
criminant d, IpC = C; thus Iy aclts as identity for primitive classes of
discriminants dividing d'. If C contains [a, b, ¢], then (—Iz)C contains
[—a,b, —c].

Proof. We have

[1,vb, v?ac][va, vb, v¢] = [va, vb, ve] = v[a, b, ¢],
and

[—1,vb, —viac][va, vb, ve] = [—va, vb, —ve] = v[—a,b, —ac].

THEOREM 2.4. The mapping C — OI; maps the group of primitive
classes O of discriminant dv® homomorphically onto the group of primitive
classes of discriminant d.

i=m®

Modules and binary quadrotic forms 27

Proof. Since (1,%) =1, CI; is primitive and of discriminant d.
If H also has diseriminant do?, H — HIz;, CH — OHIz; = CI4HI;, which
proves the homomorphism into. We can suppose for the primitive form
[a,b,c] of diseriminant & that (a, 2v) =1, > 0. Then [a, bv, cv?] is
primitive and of discriminant dv?, and

[a, bv, cv?][v, vb, vac] = [va, vb, ve] = v[a, b, ¢].

Hence the map is onto.

THEOREM 2.5. The class CI; onto which a primitive class C of discrim-
inant dv? is mapped can be characterized as the unique primitive class
of diseriminant & which can be carried into C by some integral transformaiion
T of determinant |v).

Proof. We may take v positive. Any primitive form of diseriminant
dv? is equivalent to a form [a, bv, ¢v?] with (a, 20) = 1. For the form
represents an integer prime to 20 primitively, hence we can suppose
(a,20) =1, and then a translation will make the middle coefficient
divisible by ». Thus the class of [a, bv, cv?] maps onto that of [a, b, c],
and evidently the latter form transforms into [a, bv, cv?] by replacing
y by vy. If another form of discriminant d can be carried into [a, by, cv?]
by a transformation T' of determinant », an equivalent form will be so
transformed by UZT, U unimodular. By choice of U we can make
vy k

UT——-[ ], V=00 01>0, 1,>0, 0<k <o,

0 o,
Thus (UT)"! must replace [a, bv, v®] by an integral form ¢. In g the
term in o® is (a/v])a’. Hence »; = 1 and v, = ». The term (b— 2ak v)my
shows that k¥ = 0, or ¥ = %% (v even). But in the latter case the coefficient
a/4+b/2+c of y® is not integral. Hence g = [a, b, ¢].

An examination of this proof gives a corollary:

COROLLARY 2.5.1. If f and g are primitive, f in 0, gin OLq, and if T is
the matriz of one transformation of determinant v carrying g into f, then
every such transformation is expressed by WT, where W runs through the
wntmodular automorphs of g.

By Theorem 2.1, if (; is primitive of discriminant d; (4 =1, 2),
then ¢ = 0,0, has discriminant @ = (dy, d,). Also, (I;0,)(140,) =0,
that is we can form the product of ¢, and ¢, by multiplying their images
at the d-level. In particular (—Ig)(—1Ig) = I;.

It we identify ¢ with (—I)C we obtain a semigroup *. One may
of course verify that the product of the pairs {(— 13)) 0y, Or} and {(—15,) Oy,
Oy} is the pair {(—I,)C, 0}, where 0 = 0:0.. We will show presently
that &* is isomorphic to the group of equivalence classes of two-dimen-
sional modules in Fj.
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3. The association between ordered pairs in F; and binary quadratic
forms. We consider only ordered pairs <a,, a,y of elements of F; for
which «,, a, are linearly independent over . We define the norm form
of A = <ay, asp by

(3.1) fu = (way+ya,) (wa, 4+ ya,) = o'z oy + o'y

The coefficients o' = a,ay, b’ = ayds+ a0y, ¢ = aya, are in . The
norm form of B = (1, 1/203 is #*—wy? Since «, and a, are linear combi-
nations of 1 and Vw with rational coefficients, wo have:

LeMMA 3.1. The norm form of any linearly independent ordered pair
is in the rational class of w2—wy? and so has a determinant —ws? (8 £ 0),

Proof. By a rational class we mean a set of forms obtained from
one by nonsingular rational linear transformations. If, in the linear form
xTay+yas, we put ay = Bt Pafs and a, = fil,+Pauf,, or in matrix
notations

il t2
(3.2) {ag, ag) = Py, fodT, where I = [5 t]’

3 4
obviously f4 (4 = oy, as)) is obtained from fz (B = {fy, f.)) by replac-
ing » and y by @t +yt, and xt;-+-yt,.

If d is monsquare there are forms of determinant —ws* which are
not norm forms; but any such can be transformed. into &{x2— wy?) for
some nonzero rational k. Hence:

LeMMA 3.2. If ¢ is of determinant —ws? (8 #0), and kyg and Ly
are norm forms, then kyk and kyk are represented rationally by x®—wy?,
and hence &y [k, = Ny for some y in F;.

«  Removing a rational factor from o', ¥’, ¢’ in (3.1) we can write

(3.3)  fa=Tlaw*+boy+cy®) (I in Q;a,b,cinZ;{a,b,e) =1)

and except that we can use —I(—aw®—Dbey—ocy? this exprossion is
unigue.

Writing a; = a,+ a7, ay = @y aqj, wo call a,ap— a0y the determi-
nant of {ay, az); and its sign 41 the sign of {a,, «z>. We adopt the

CONVENTION. I n (3.3) 45 to have the sign of {a;, ap).

With this, the I and the primitive form [a, b, ¢] in (3.3) become
unique. We will call [a, b, ¢] the primitive morm form, or primitive
norm, of A; and may call |i| the norm of A (¢f. Corollary 4.7.2).

Lzyvma 8.3. The determinant of (yay, yas) is the product of Ny and
the determinant of {ay, asy. Hence if Ny 0, the sign of {yay, yo,> is the
product of the signs of Ny and {ay, as>.
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Proof. (co+eyf)(ai+ a";.?) = (6ot + w0, a3) + (egui+ €1 05)5,

’ 14 ’
@3 Co+Way 6y 161+ 0,6y a; @y | ¢, €

’ ’ . 7
G2 Co Wy C; Myl Qg Cy @y Gyl |wey e

OOROLLARY 3.3.1. If Ny # 0, A and yA have the same primitive norm.

DEFINITION. A wunii-class is a set of ordered pairs obtained from
one such {a;, a,» by unimodular transformations and multiplication by
elements of F; of nonzero normj; i.e., a set

{y<ay;, ad>T] y such that Ny s 0, T integral, £f,—i,t; = -1}.

COROLLARY 3.3.2. 4 unil-class yields a unigue class of primitive norms.

THEOREM 3.4. All ordered pairs with a given primitive norm [a, b, ¢]
are given by {yay, ya,> (Ny £ 0), where {ay, ay> is one such pair.

Proof. We can assume that ¢ # 0. Consider

N(zway+yas) = ky(az®+ bay + cy?),
N(wpy+yBs) = kalaw® -+ bxy - cy?),

I, having the sign of <ay, a,), k, that of <f;, f,>. By Lemma 3.2 we may
put ky/k, = N6. Hence N (#0a; +yda,) = ky(an?+ bay 4 cy?), and {da,, day>
and <fy, f,> have the sign of k,. Set o = ayfa;, v = B,/f,. Since N (day)
= N(B1) = ksa, <1, 0> and <1, v) have the same sign. Also, (z+oy) (w+
+0y) = (w+7y) (@+7y). It follows easily (put o = go-48,j, ete.) that
o=t or 7. But <1,7> and <1,7> have opposite signs. Hence ¢ = =.
Thus f;/a; and fs/a, have a common value y, f; = ya; (i =1, 2).

Further, if a # 0, the primitive form [a, b, ¢] of discriminant d
arises from 4 = <a, (b—e)/2 4 ). Hence:

THEOREM 3.5. With our sign convention the procedure in (3.3) sets
up o bi-unique association between wnit-classes of ordered pairs and classes
of primitive forms.

The term smodule, unless otherwise indicated will denote a two-di-
mensional Z-module

(3.4)

(3.5) M = [B1, B2] = {@:81+afs| @1, @, in Z3.

The various bases of M are obtained from any one of them by unit-modular
transformations, ie., by integral transformations of determinant 4-1.

A class of modules consists of all modules obtained from one by mul-
tiplication by elements of F; of nonzero norm. Thus the various basges
in a module class appear to be distributable into two unit-clagses; if one
is generated from <a;, a,> the other arises from {ay, —ay>. Can these
unit-classes coincide? For this to oceur it is clearly necessary and suffi
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cient that there shall exist an element y of F; of monzero mnorm, and
an integral matrix 7' of determinant —1, such that

(3.6) oy adT = y{ag, as).

The question will be answered in Corollary 3.7.1.

The bases of positive sign in a module M form a set which we may
denote by M, and those of negative sign by M~. Hence y(M*) = (yM)*+
or (yIM)~ aceording as Ny is positive or negative; similarly for p(M~).

If <ay, asp gives [a,b,c], {a;, —a) gives [—a,d, —e]. Ilence
it M* gives the class of [a, b, ¢], M~ gives the class (—I)C of [—a, b, —cl.

The product MN of the modules M = [ay, ay] and N = [y, f,]
is the module P generated from a,fy, a,fs, tsfy, azfs; and can (cf. next
paragraph) be given a two-term basis. Clearly the product is independent
of the choice of Z-bases of M and N; and if M or ¥ is multiplied by Y
50 is P. Thus module multiplication extends to their clagses. We also
define products of unif-classes by proceeding aceording to the rule of
signs:

(3.7) M*N* =Pt = M-N-, M*N- =P~ = M~ N*.

Evidently this is consistent with multiplication by y, and with multipli-
cation of module classes.

In fact, an elegant way of forming the product of two unit-classes
is by means of united forms (Lemma 2.2a). Suppose that the classes of the
associated primitive norms are ¢, and O, with discriminants dyst and
de53. As in Lemma 2.2a we choose in k5 Cyand k, 0, united forms [ay, b, aye]
and [ay, b, @,0], where since the divisors are coprime, (a,, b, a,) = 1.
Consider the ordered pairs

(3.8)  Ay={(ty,r+0), 4,= {ag, r+w), Ay = a0y 1+ 0,

where b = 2r+&, d = b*—4a, a0, © = oy, hence N(r+w) = a,a,¢e. Thus
4; is in the unit-class associated with ¢; (5 =1 , 2). Since

(3.9) (r+ ) =b(r+w)—N({r+w)

and (@, @, 0) = 1,74+ is in the product of the modules [@y, r--wl,
[as, 7+ @], hence this product is [a,a,, r+ o], and so A4 determines the
unit-class which is the product of the unit-classes of 4, and 4,. The
primitive norm of 4, is the quotient by 1k, of [aya,, b, ¢]. This proves
Lemma 2.2b and also

TrmorEM 3.6. The system of unit-classes over Fy under multiplication
i8 isomorphic to the semigroup &. The system of module classes under multi-
plication is isomorphic to the semigroup S* obtained, from & by identifying
each primitive class C of discriminant d with its “negative” (— I)C.
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Three obvious remarks are useful at this point:

(3.10) If the elements a; and a,, f; and 8., of F; are linearly independent
over @, then there iz a unigue nonsingular rational matrix T sat-
isfying (3.2);

(8.11) [ay, @] = [B1, B3] if and only if By, B2>T = (ay, @) for some
integral matrix T of nonzero determinant;

(8.12) For given nonzero discriminant d, each element y of F; is uniquely
expressible as ({+uVd) /2,t and w in Q. Here y is in Ry if and only
if ¢ and w are integers such that ¢ = du(mod?2).

THBOREM 3.7. Assume ay, a, linearly independent over @, and let [, b, ¢]
be the primitive norm of <oy, ayd, d = b*—4dac. Let y = (1+ ul/d)/Z, i, %

n Q, Ny 5% 0. Then

[(t— )2 —ou ]
(3.13) T, =
as (t4bu)/2

is the unique rational matriw T satisfying (3.6). Also, T, is integral if and
only if y is in Ra. Also, |T,| = Ny.

Proof. Obviously T, is integral if y<R,;. If T, is integral, then since
(a,b,¢) =1,1, au, bu, cu, hence u, and (¢—du)/2 are integral. Since
! in (3.3) has the sign of <a,, a,), and

(ayag— a;a,)* = (aya,+ A5 0)?— 40,0, 2,0y = *d,
we have ayap— a,a, = IVd. Also, aja,--a,0, = Ib. Hence

Gay =10+VA)[2, aya, = I(b—Va)2,
and so

aoy = al(b+1/ﬁ)/2, oy (8—bu) /24 ayou = al(t+uﬁ)/2 = ayy;
similarly,
— 00U+ ay (P bu) (2 = ayyp.
If in (3.6) T is to be integral and to have determinant —1, v must
be in R; and Ny must be —1. Hence

COROLLARY 3.7.1. The two unit-classes into which the bases of the module
class determined by {ay, ay> subdivide coincide if and only if there is a unit
of morm —1 in Ry. Here d denotes the diseriminant of the primitive norm
of <ay, as).

COROLLARY 3.7.2. [ay, ay] = y[ay, as] if and only if v is a unit in
Ry of morm 1.

COROLLARY 3.7.3. y[ay, a;] « [ay, 5] if and only if y is in Ry.
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Under what condition is [ay, a] = [0, @3]? Then [a;, —ay] and

[a;, a;] have the same sign. Hence the primitive norms [—a, b, —¢]

and [—a, —b, —¢] arc in the same class. Ience [a, —b, ¢] and [a, b, ¢]
. o 2 . >l

are in the same class A, Thus K* = J; or K = K™%

Dr. Olga Taussky-Todd drew our attention to § 76 of Hilbert’s “Die
Theorie der algebraischen Zahlkorper”, where HHilbert counts classes
which are self-inverse and yet do not contain an ambiguous ideal (which
Hilbert defines as a self-conjugate ideal). In the Gaussian theory, which
Hilbert used as a model in his study of ideals in quadratic fields, an am-
biguous form-class is characterized as containing an ambignous form
(a form [a, b, ¢] in which a|b). The explanation of the apparent paradox
is that Hilbert in effect identified a class ¢ with (—I)C, and so his gelf-
inverse classes K in a sense may satisty K* = — I rather than K* = I.
The Gaussian theory is here simpler.

We mention what happens in one case where the coefficients a, b, ¢
are taken in some other ring than Z. If the coefficient ring is Q[#] (poly-
nomials in ¢ with rational coefficients), the module classes correspond
to the system of classes of forms [ka, b, ¢/k], where & may be any squarefroe
integer.

4. Ideals, or fractional ideals, in the various orders Ry. For our pur-
poses we may think of a fractional ideal in Ry as the product of a two-
dimensional ideal in Ry by an element of F; of nonzero norm, or as a two-
dimensional Z-module closed under multiplication by Rg. Lvidently,

Leyma 4.1. The fractional ideal [ay, as] in Ry is an ideal in Ry if and
only if a; and ay are in Ry.

Any two-dimensional Z-module M can be written as k[a,, a;], where
a; and ap are in By, and % is in @. Hence M can be given a Z-basis k[m, r -
+so], where o = wgz, m and s are positive integers, and = is an intoger.
In the Z-module [m,r+sw],

s is the least positive integer coefficient of w among the elemenis
(4.1) of the module; m is the least positive integer in the module; r is
unique mod m.

Moving a factor into % if necossary, we can suppose that (m,r,8) =1

TogoreM 4.2. The module [m, r+-swl, with (m,r, s) = 1, is an ideal
in Ry if and only if ‘
(4.2) s=1 and m|N(@r+o) (=rter}e—d).

Proof. If [m,r-sw] is an ideal in [1, @], it containg r-sw, mao,
o(r+sw) = (r+se)o—}(e—d), with the three coefficients of w coprime.

Hence s = 1. Since the module contains (r+o)(r+w), m|N(r+w).
Conversely, if (4.2) holds, [m,r 4+ w] contains me = m(r+o)—rm and
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4w o =@F+to)(—r—o)+@r+o)(r+s). Henee the module is an
ideal in [1, w]. ‘

CoroLLARY 4.2.1. The ideals in Ry can be characterized as having
a module basis k[m, r+w], where k& and m are posiltive integers and
m|N(r+ w).

The diseriminant @ of the primitive norm of a Z-basis of a module
I will be called the discriminant of the module, and denoted by 9(M).
From Theorems 2.1 and 3.6 follows that if P is the product of the modules
M, N then 0(P) = (0(M), B(N)).

TaEOREM 4.3. 4 module M in F; is o fractional ideal in the order
Ry if and only if d'[d is an integer, where d = 0 (M).

Proof. Multiplying by a rational factor we can suppose M = [m, r-4
+sw']l with (m,r,s) =1, ' = ('+Vd')/2. Set B = my r+sw’.

Assume M is a fractional ideal in Ry. Then [m,r-+sw’] is an ideal
there. By Theorem 4.2, s =1 and N(r+o') = me, ¢ in Z. Thus fx
= N(om-+y(r+o') = mf’, where f' = mz?-(2r+&')ay +¢'y® is an in-
tegral form of discriminant d’. Since d = (M) and f' must be an
integral multiple wf of the primitive norm f of B, d' = duz

Suppose conversely that d'/d is a square. By definition of o(M)
and the primitive norm of B, we can write fz as

Ho'z*+-b'wy+c'y?), with ¢ in Q; a',b",¢ in Z; d' = b'2—4a'¢’.
Hence
(4.3) mAat+m(2r 4" ) oy -+ N (r+s0')y? = t(a’ a2+ oy -+ o' y?).

But B is obtained from (1, o’> by an integral transformation of deter-
minant ms. Hence the same transformation carries &2 e'cmj—l-i(a’~ d')y?
into fp. Equating discriminants in (4.3) gives d’'(ms)® = ¢*d’. Hence
t = +-ms, and ¢ is an integer; and ms divides the three coefficients m2,
m(2r+¢'), N(r+4-sw’); and s|(m,r?). Since (m,r,8) =1,s = 1. Hence
m|N(r+o') and [m,r+so’] is an ideal in Ry. ‘

COROLLARY 4.3.1. If & = 0(M), Ry is the largest order within which M
is a fractional ideal; and M is a fractional ideal in Ry if and only if 4|&',
or .Rd' = _Rd.

It 9(M) = dy and d|d,, one ean find a module N such that MN = Ry
by considering the corresponding problem for primitive forms.

A fractional ideal M in Ry is said to be invertible in Ry if there oxists
a fractional ideal ¥ in Ry such that MN = Ry, If d = 0(M), then d|d’
by Theorem 4.3, and d'|d since 9(Ry) = (0(21), 0()). Hence 8(M)
= 0(N) =d'. . ‘ :

TemormM 4.4. A module M is an invertible fractional ideal only in the
order Ry where d = 0(M). ) S

Acta Arithmetica XV. 1 B 3
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Tor any module M, MRy is obviously a fractional ideal in Ry .
If @|d’ and M is a fractional ideal in Ry, then

(4.4) MRy = (MRg)Ry = M(ByRy) = MRy = M.

TurorEM 4.5. Let d|d’. The function vy which maps each fractional
ideal M’ in Ry on the “extended” fractional ideal M'Rg in Ry is a homo-
morphism from the semigroup 8, of fractional ideals in Eg onto the
semigroup S, of fractional ideals in Eg.

Proof. (M'R)(N'Rz) = (M'N')(RyRs) = (M'N')Ry for any two
fractional ideals M', N’ in Rz . The map is onto: for if 4 is in 8y, 4B,
is in 8, and (ARg)R; = A.

THREOREM 4.6. The ideal A = [m, r+ w] tn Ry i8 invertible in Ry if
and only if AA = mR;.

Proof. The form ma+(2r+e)ay+y2N(r+ w)/m iz primitive if
and only if

[m, r+w]llm, r+w] = [m? m(r+ ), m(r4+o), Nr-+w)]
[m2, m(2r+¢), N(r-+w), m(r-w)]
=m[Ll,r+ o] =mk,.

THEOREM 4.7. Let A; = [m;, v+ w;] be dnvertible ddeals in Ry,
(t=1,2). Write A =A,4,=Fk[m,r+o0], o =wz, d=(dy,d,). Then
mymy = k*m.

Proof. Bg Ra, = Ry; A, A4, = A, myRg myRe, = K mBg, mymy = K'm.

We define the norm of the module M to be h*m, where M = h[m,r+
+ ], hrational, © = wg, & = d(M). If & is an integer, h*m ig the number
of residue classes mod M in the ring Rj;.

COROLLARY 4.7.1. For any modules M, N in Fy, the norm of MN. is
the product of the norms of M and N.

COROLLARY 4.7.2. In (3.3), the number |l| is the norm of [ay, ay].

5. The relation between invertible fractional ideals in R; and Ry,
d'=dn* (n>0). Let R=DR;=1[1,0],R =Rg =I[1,']; and leb
8, 8" denote their respective groups of invertible fractional ideals wonder
multiplication. We will study the funetion ¢: §" — 8§ defined by ¢(4’)
= A'R for 4’ in §'.

An ideal k{m, r+ o] is invertible in R if and only if the form [m, 2r+
&, N(r4+w)/m] is primitive. Since d = (2r--¢)2—4N(r+ w), the last
condition can be replaced by

(8.1) (m,a, N(r+o)/m) =1.
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We will study the relationship 4 = A’R where A’ is invertible in &'
By mnultiplying by a nonzero rational number we can assume that

(52) A=[m,r+0]l, m>0, m|N@r+o), (m, d, N(r+o)/m) = 1;

(5.3) A =R[m', v + '],
m' >0, m'|N(@'+o), (m,d, N+ o')/m) =1;
(5.4) Efm', v +o'][1, 0] = [;n, r-+w], % rational.

LemMa 5.1. If A' = [a,7"-+w'] is an invertible ideal in R, an in-
teger s ewmists such that '+’ = s+nw, and

(5.5) A'R = e[ale?, v+ o],
where ¢ = (a, s, n) and r is defined by
(5.6) 't = s'(modafe?).

Here s' = sle,n’ = nle, and ale® is an integer.

Proof. Since o' = nw+(c'—ne)/2, r'+ o’ = s-+-no with s an in-
teger. Hence

(5.7) A1, 0] =ela’,s'+n' 0, d' », —n' oo+ (s’ +n's)w],

where o = afe, ww = (s—d)/4. Since (n’, o, s'-+n'e) =1, we have
(5.8) 1 =030 +030"+v4(s" 4-n'e)

for certain integers vy, v,, v;. Hence A'[1, w] = ¢[m, r+w], where
(5.9) = 018" — 030 (e—d)/4

and m is the g.c.d. of the four numbers ay8'+n'o—n'(r+ ), o’ w—
—a'(r+ ), '+t w—1¥(r+w), where u = —n'(e—d)f4 and ¥ =s¢'+
+n’e. By (5.8) and (5.9),

§'—n'r = 138’8 4 v, N (s’ +n' w),

(5.10) )
W—t'r = —va'n’ (e—d) [A—v, N(s'+0' ).

_For any prime p in ¢ denote the precise exponent in a, ¢ by a, 8. Since 4’
is invertible,

PN (' +n'w),  a>28, Pp=F|N(s'+n'w), " "o’
Thus o> g, pt(vy, vs) by (5.8). Hence by (8.10), p** is the precise

%)’?vivg)r of p in (s'—n'r, w'—1'r). Thus m = aje® and (5.6) follows from
5.10),.
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TEEOREM 5.1, If A’ in (5.3) is an invertible fractional Mo_al in R and
A = [m,r+ o] is an invertible ideal in R such that A = A’R, then there
emists a matric H such that

e h
(5.11) Eém'y v+ o'y = (m, r+wdH, H= [0 . ],

. "1
where e, h, n, are integers such that n = eny,e>0,n.>0,0<h '< e.
Conversely, if A s an invertible ideal in K and A' is an invertible fraclional
ideal in B’ obtained from (5.11), then 4 = A'R.

Proof. As in Lemma 5.1 we can write '+ o’ = s-+nw, ¢ = (m', s, n),

and define t by nt = s (modm’[e), k[m', v'+ '] B = ke[m'[e?, t-- w]. Hence
A = A'R reduces to

(5.12) k=1le, m =m'le?, r=t(modm).

Thus if A = A'R, then A’ = [me, s;-+n,w] where n = en; and s = es,,
and since 4’ <= A thereis aninteger i such that s,+n; 0 = mh-+(r+w)n,.
We can adjust the mh modulo me, and suppose 0 < h << e. Thus (.11)
follows. The converse follows from Lemma 5.1.

Remarks. The matrix H in (5.11) is a canonical “Hermite matrix’:
any integral matrix N of determinant n and order 2 can, by multiplying
on the right by unimodular matrices U, be carried into a wnique H. We
can of course also multiply both 4 and A’ by a nonzero rational factor.
Two corollaries resulf, the first being merely a reformulation of Theo-
rem 5.1.

COROLLARY B5.1.1. Consider invertible fractional ideals, A = [ay, 0]
in B, A" = [a, ] in RB'. Then A = A'R if and only if for some integral
matrie N of determinant +-n,

<a;a dyy = {agy asp N,

COROLLARY 5.1.2. Let {ay, a,> and {By, B> both have discriminant d,
and let both of (o, apd Ty and By, Pod T, hawve discriminant dn?, where
Ty and T, are integral matrices of determinant n or —n. Then oy, apd 1
= {P1, Ba) Ty requires that [ay, as] and [B, f,] be the same module.

THEOREM 5.2. If @' = dn? and n = pfL... pln in powers of distinet
primes, then the number of invertible fractional ideals A' in R’ such that
A'R =R is

(513) = [ [k {pi—(@|pa)}.
il

Proof. We take'4 = R in Theorem 5.1, and need only count the
number of pairs e, b such that e|n and 0 < h < ¢, and (with n, =nfe)

i=m®
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[e, h-+ny0] is an invertible fractional ideal in B’. By (5.1) the condition
for the last is (e?, dn?, N (h+n,0)} =1, or since ¢|n,

(5.14) WP+ en b+ 1(e—d)n? is prime to e.
For each ¢ (=1, ..., k;-+1), the gth term of the expression
B = 1+H(0i— 1)+ pi(pi— 1)+ ...+ pi (ps— 1)+ pF~ {pi— (d|ps) — 1},

gives the number of residues h(modpf~!) for which (5.14) holds with
¢ =pf,i=1,...,u In the distributed product of the u factors, each
choice of one term from each factor corresponds to a divisor e of n, and
for that ¢ the product of the corresponding terms is the number of residues
h modulo ¢ which satisfy (5.14). Hence (5.13) follows.

THEOREM 5.3. The function @ is a homomorphism of S’ onto 8.

Proof. If 4; and A; are invertible fractional ideals in R’, then A} A}
is an invertible fractional ideal in R, and AR is an invertible fractional
ideal in R. By Lemma 4.5, ¢ is a homomorphism from &’ into 8. To prove
that ¢ is onto, consider an invertible ideal 4 = [m,r-+w] in R. The
primitive norm of 4 is f = [m, 2r+¢&, N (r+ w)/m] and has discriminant d.
The class of f contains a form [a, b, ¢] with (a4, n) = 1. The ideal B
= [a, $(b— &)+ w] has [a, b, ¢] as its primitive norm, hence by Theorem
3.6, 4 =yB with y in F;. The form [a,nb,n%¢] is also primitive of
discriminant dn?, and the corresponding fractional ideal [a, n(r+ w)]
is invertible in B’ and maps onto A. ’

CorROLLARY 5.3.1. If A is an invertible fractional ideal in R, then the
number of invertible fractional ideals A’ in R’ such that A'R = A is given
by (5.13).

Proof. This is the number of elements in the kernel of the group
homomorphism ¢.

We defined two fractional ideals A, B of the order R to be equivalent
if there is an element  in F; of nonzero norm such that 4 = pB. Thiy
equivalence relation partitions 8, §’ into collections H, H' respectively
of equivalence classes; and H, H' are abelian groups under the natural
operations determined by multiplication. Define a function @: H' -» H
as follows. Tf 4’ is a fractional ideal in a class I” of H’ and @(4') is in the
class I' of H, set B(I") = I". Clearly @ is a homomorphism from H’ onto H.

THEOREM 5.4. Let &, G' denote the groups of units in R, R respectively,
and let o be the index of G in G. Then o is fimite, o|%, and the kernel of ®
contains exactly x/c- elements.

Proof. The kernel of @ consists of elements of H containing an in-
vertible fractional ideal 4’ such that ¢(4’) = R. Since there are only x
such fractional ideals 4’, the kernel of ¢ containg at most » elements.
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If A’ and B’ are in the same equivalence class and their images are
equal, then @(4') = ¢(B’') and A" = yB’ for some y of nonzero norm
in Fy. Then also B'R = yB'R, B = yR, hence y is in B. Since B’ = y~' 4/,
similarly ~" is in R, hence y is in @. Conversely, if y is in G and B’ is in
&, then ¢(yB') = p(B').

Further, y, B’ = y, B’ with y, and y, in & if and only if y, R’ =y, R’
(since B'C’ =R’ for a certain ¢’ in §’). Hence yB’ == y, B’ if and
only if y7'y, and y7'y, are both in R', i.e. pi'y, is a unit in R’
Thus, y; B’ = p, B’ if and only if y, and y, are in the same coset of @
modulo &'.

Let A4; (i =1,...,1) be representatives of the distinet eolementsy
of H' forming the kernel of @ such that gp(dy) =R (1 =1,...,1). If
@ = U 0, is the coset decomposition of G modulo ¢, then the ideals

6,4; are distinet and ¢(0,4;) = R. It follows that the index ¢ of ¢ in ¢
is finite and that x» = ol.

CorOLLARY 5.4.1. If & and &' denote the orders of H and H' respec-
tively, then xh = oh'.

6. Transformations of binary quadratic forms.

TerorEM 6.1. Let f and g be primitive binary quadratic forms of non-
zero discriminants d, do? respectively, v > 05 4 and B their matrices. Let ¢ be
a-nonzero integer. We will give am algorithm by which each imtegral matvis
T such that

(6.1) T AT = ¢B

i8 associated one-to-one with each integral represemtation of e by a form in
the class KL if detT = ev, and by a form in KL if detT = —ev. Here
K is the class of f, L that of g.

Remarks. 1. By Theorem 2.5 we may take L to be the class of
diseriminant ¢ which can be transformed into ¢ by an integral transfor-
mation of determinant ». 2. If d is nonsquare the theorem also holds
with ¢ = 0; for, if d is nonsquare, 0 is only represented with both
variables 0, and T =0 is the only solution of (6.1) with. ¢ == 0.

Proof. The problem is mot changed if we replace f, ¢ by equivalent
forms. Hence we can assume ac’ #0, (¢, 2a0d) = 1,fe={[a,b,e],
g=1[a,b,0']. It 4y, ..., 1, are the elements of 7' in the usual order, (6.1)
expands as follows:

ea’ = ati+Dbhtgtely, e = at+biyty+cfl,

(6.2) )
€b’ = 2atytyt- b (by5s+ oty) +- 20ty t,.

Taking determinants, (6.1) gives t,f,—i,ly = -+ ev,
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We construct from the columns of T the two elements

(6.3) o =thatts(r+ow), o =ta+t+t(r+ow),

of the ideal [a, 7+ ], where r+ o = 1(b--Vd). Hence:

(6.4) Nay = a(ati+btytg+cts), Nap = a(at by, +otl),
(6.5) a0+ 030y = a{2at byt b (tyty - tyts) + 2etyt,},
(6.6) @8y — gty = — aVa(tt,—tyls).

Hence if detT = ev, (6.1) implies the ‘“factorization”
(6.7) ea}(V' —oVd) = 038y, Na; =eana’y, No, = eac’;

and if detT = —ev, the same with » replaced by —v. Note that (6.7),
implies that ead (b’ +vVd) = ay0,. Hence if ay, a, are elements of [a, 7+
=+ o] satisfying (6.7), and ¢y, ..., ¢, are defined by (6.3), then T is an in-
tegral matrix of determinant ev satisfying (6.1).

Each pair a;, a, satisfying (6.7) is associated one-to-ome with each
@y in [a,r+4 o] satisfying

(6.8) (1/¢") oy (' —0Va)/2 is in [a, 7+ 0], Nay = eac’.
For if a; = (1/¢')ay(b'—vVd)/2, Na, = eaa’. Further,

(6.9) (foa+t(r+ ) (' —0Vd) [2 = a8+ (r - w) By,
where

By = 1,(b'+ob) 2+ t,e0, B, = —tyav+13(b'—wb) /2.

Here avB,+ (b’ +vb) B, — o’ ¢’t,. Hence both E, and B, will be divisible
by ¢’ it B, is. Thus (6.8) reduces to

(6.10) to{—av)+1,(b'—wb) /2 = 0(mode’),

(6.11) aty - byt + o2 = eg'.

‘We can choose an integer 4 such that

(6.12)  avi = (b'—ob) (mode’), or v(2ai4b) = "(mod2¢).
Thus (6.10) reduces to f, = ity(mode¢’), or to

(6.13) by =c¢s+iy, t, =y, with o and y integral;
and (6.11) then becomes
(6.14) ac’ 2 (2ai+b)wy + sy? = e,

where s (¢f. (6.12)) is the integer determined by ¢'s = ai?-- bi-I- ¢, or
by d= (2.4115—[— b)*—4dsc¢'a. From thiz follows eagily that the forms
fi=1[6,2ai+b,0's] and f, = [¢',2ai-+b, as] are primitive and of diserim-
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inant d, and have the compound [a¢’, 2ai-+b, s]. Bvidently f; is in I,
and f, is carried by a transformation of determinant v into [¢/, v(2aé -
+b), sv?] in the class of [¢', ', '], or L~'. Changing v to —wv gives the
result for detl = —ev.

Since the number of solutions #, y of (6.14) can be infinite, when d
is positive but not square, but the number of “automorphic sets’ obtained
by grouping solutions derived from one another by unimodular auto-
morphs of the form is always finite, it is of interest to note:

TEEOREM 6.2. The bi-uniqueness of the associalion im Theorem 6.1
extends to automorphic sets.

Proof. As is well known there is one unimodular autiomorph

[%(‘!—bu) — U J
(6.15) W=

an (14 bw)
corresponding to each unit § = (¢--wV/d) of norm 1 in Ry, for any prim-
itive form [a, b, ¢] of discriminant d. One eagily verifies that if 7' ig
replaced by WI, o; and «, in (6.3) are replaced by a,0 and «,0. To prove
Theorem 6.2 we observe what happens to a solution of (6.14) when 7 is
replaced by WT. Then ?, becomes §(i— bu)t,— out, = ¢'o' -4y’ (say) and
1, becomes aut,+-%(t--bu)i, =y’ (say), and by (6.13),

@ =} {t—(2ai+-b)uts—suy, Y = ac'uw+}{+(Qai-+b)uly,

where one recognizes the unimodular automorph of [ad¢, 2aé--b, ¢} with
the same 0.

COROLLARY 6.2.1. If ¢ 0 the number of sets {WT| W in (6.15)} of
solutions of (6.1) n which e(detT) > 0 is equal to the number of automorphic
sets of representations of ¢ by a form in KXL™; likewise with a form in KL,
if e(detT) < 0.

In view of (6.4) and (6.5), (6.1) can also De written as

(6.16) N(woyt+ya,) = ea(a'@*+b'wy-+¢'y?, o and ay in [a, r--o].

Also, i a; and «, ave given by (6.3), {ay, u;> hag the sign of a(detT).
Henece:

THBOREM 6.3. Ordered pairs Cay, and satisfying (6.1G) which have
the sign of ea correspond one-to-one to representations of e by a form in KL,
likewise, those having the sign of —ea, by o form in KL. Fur thwmom,
automorplic sets of such representations of ¢ correspond one-to-one 1o sets
of ordered pairs

(6.17) {18, 20| 0 any unit of norm 1 in Ry}

i=m®
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In Theorems 6.1-6.3 we regarded ¢ as fixed. If we let it be free
something quite remarkable happens:

THEOREM 6.4. Let f and g be as in Theorem 6.1, and assume that d is
not square. Consider the integral soluiions T of (6.1) with e arbitrary. Those
with e(detT) > 0 form a two-dimensional Z-module M, ; and those with
e(detT) < 0 form a two-dimensional Z-module M_ .

Proof. Since d is not square, only T7' = 0 corresponds to ¢ =
What makes the theorem hold is the fact that if ¢ = 0 (cf. (6.8))

(6.18) ay (b’ —oVd )2 = ¢ ay,

and hence either column of 7' (a; or «,) determines the other uniquely,
once the sign of v, or of e(detT), is fixed. The possible second columuns
of T' are expressed in (6.13), for each sign of v. For each such second column,
(6.18) determines a unique «; and the T that corresponds. If 7', is so
formed with # =1 and y = 0, and T, with # = 0 and ¥ =1, then using
arbitrary integers # and y will give T =a1,4+yT,. Thus the matrices
T constitute a two-dimensional Z-module, with the zero matrix the only
one of determinant 0.

This process applies when d is a nonzero square if we assume s not
zero in (6.14); then » = 0 and y =1 makes det7, = 0. The matrices
I = o, +yT, will all satisfy (6.1), but may include only a proper subset
of the matrices T such that 1" AT = 0. Thus:

COROLLARY 6.4.1. In this modified sense, Theorem 6.4 holds when
d s & nonzero square.

COROLLARY 6.4.2. The rational matrices T satisfying (6.1) for arbitrary
rational e can be distribuied into two two-dimensional vector spaces over
@, N, and N_; N, consists of all with e(detT) >0 along with the zero matriz,
and if @ is square other matrices T' of determinant 05 N_ similarly has e(detT)
<0, 0r 6 =0=detT. ,

Clearly, any Z-basis given by our algorithm will serve as a @-basis
for 9., or N_. Any two non-proportional matrices in %, or N_, will
serve as o ¢-basis. Since the set of all integral matrices in M, is closed
under subtraction it is a Z-modnle and must coincide with M, ; similarly
for M_.

Let us consider as an example the case where f =g = [a,D), ¢,
(@,b,¢) = 1. The four matrices (with respective determinants 1, ae,
— a? —ac)

10 0 —¢ a b 0 ¢
(6-19) 8; = [0 1]5 8, = [a b:l; /5'3 = [0 -—(LJ, er = [ll 0]’

carry f into e¢f, with ¢ = 1; ac, a*, ac respectively. Hence, if ac 5 0,
(6.20) -9t = {kS;+18,| E,Tin Q}, M = {kS;+18, Kyl in Q}.
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But k8,418, is integral if and only if %, I are in Z; hence
(6.21) M, = {k8, 418, k,1in Z}.

It is not nearly so easy to deduce a Z-basis for M_ from the @-basis for R_,
although there are methods in the literature which may be applied to this
type of problem (cf. [16], pp. 246-247); it is less tentative and ecasier to
use our algorithm. A neat way in the present example is to trangform
f by a unimodular transformation into a form [, b, ac], whence (a, b) = 1,
Then in place of (6.19) one writes the matrices

(623) T 10 T 0 —ac r a b o 0 4
o T e wf T o = T i)

and has
My = (KT1+10] &, 1in 2}, M- = {BL5+11,) k, 1 in Z}.

It I'= kI 41T, ¢ = |T] = k24 bkl 4 acl?; if T = ETy+11,, ¢ = —|T|
= a?k?4 bkl +cl2.

One easily verifies

THEOREM 6.5. The module MM, for f=g = [a,b,c] i3 an integral
domain if d s not square, a commutative ring if d is a noneero square. Also
mt_'_ o .Rd.

Let us re-examine Theorem 3.7. From Ky ad T, = p<lay, ay> and
ey, ap Ty = 8<ay, ay) follows

Cayy @3> (T, + 1) = (y+ 6)<ay, 0> and oy, ugd T, Ts = Oy ay, ay).

The uniqueness of the transformations implies that 7,4+ T, =
T,Ts = Ty, and it easily follows that

THEOREM 6.6. The set # of matrices T, for y in Fy is isomorphic to F;,
and the set £ of indegral matrices T, is isomorphic to By. Further, 5 is a two-

dimensional Z-module and & is a two-dimensional vector space, with the
expression

10 0 —¢
(6.23) T, =w %
Y [0 1] + a b !

where for &, v = }(t—bu) and w are arbitrary rationals, and for S, arbi-
trary integers.

COROLLARY 6.6.1. Let B, 8, also be linearly independent elements
of Fy, and denote by & the set of all rational matrices 8, such that
(6.24) Cary agd 8y =y <y, B> (v in Fy),

M:Ld by &, the subset of & consisting of integral matrices. Then & is a two-
dimensional vector space over Q, and &, is a two-dimensional Z-module.

Y0
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Proof. If T'is defined by <{a;, a;>T = (B, f2), then clearly §, = T, T,
and & has the Q-basis

0 —e¢
(6.25) T, [ ] T
a b

As for &, it is clearly a Z-module, and the existence of a two-term basis
follows by familiar methods [16].

Notice that &, coincides with the module I, of Theorem 6.4. The
module J_ consists of the integral matrices V, such that {ay, a,d>V,
= 0<ay, a,>, where [a,b,c] is the primitive norm of (ay, a,>, hence
[—a, —b, —c] is that of {a;, a,).

We made the assumption in Theorem 6.1 that the discriminant of f
divides that of g. However, (6.1) can have solutions 7' in certain cases
where this assumption does not hold. We show how to reduce the problem
to a case where the assumption does hold.

THEOREM 6.7. Let d = dyn® If (6.1) has an integral solution T, then

6.26 e, n’) 98 a square, say e (e positive);
K

and then if we write d' = dje; and ¢ = elel, the discriminant of g must
have the form d'v* with v a positive integer. If these conditions hold, there
exisis A, of discriminant d', and R of determinant e,, such that A = R' A R,
and there is a one-to-one association between the solutions T of (6.1) and
the solutions S of

(6.27) 84,8 =¢'B,

defined by T = RS.

Proof. We can suppose that (ac’, 2n) = 1. We show how to remove
primes p dividing (e, n) one by one. By a translation we can make P2|b.
Then since d = b®*—4ac, p2le, or if p=2 and d= 4(mod16),

= —a(mod4). In the latter case, (6.2) shows that 1y = 1,(mod2),
4le, 1, =13(mod2), and we can put 4 = Ry 4, R,, where R, is the matrix
with 2 1 on first row, 0 1 on second. In the former case, (6.2) gives
P, p2le, plt,, and we can take 4, to be the matrix of [a,b]p, ¢/p?]
and R, the matrix with p 0 on first Tow, 0 1 on second. We thus remove
the primes in (e, n) one by one. To prove that the discriminant of g is
d’v? we equate discriminants in (6.1):

(6.28) (b —4da'c’) = dff, 1 =detT;
setting ¢ = e,s, ¢ = ef¢’, we have

(6.29) e'?(b*—da'c’) = d's?,
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where ¢ has no prime factor guch that d'/p* = 0 or 1(mod4). Hence
e'?|s2 e'|s, and we can put s =¢'v.

It may be noted that although the relation between matrices 8
is one-to-one, the relation between sets {WZ| W any wnimodular auto-
morph of 4} and {W,8] W, any unimodular automorph of 4} is ¢ to 1,
where ¢ is the index of a subgroup isomorphic to the group of W’y in
the group of W,'s.

We would like to express our appreciation to our student, Dennis
R. Estes, for various suggestions and help in the writing of this paper.
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A reduction of the Cebotarev density theorem
to the cyclic case
by
C. R. MacCruer (East Lansing, Mich.)

The two most useful theorems of Algebraic Number Theory are
Kummer’s Theorem on prime factorizations and the Cebotarev Density
Theorem. Unfortunately until now Oebotarev’s Theorem has been inac-
cessible to the beginning student because of its difficult proof. I present
here a reduction of Jebotarev’s Theorem to the case of cyclic extensions,
a case that can be handled by abelian L-series. (See [1], page 165 and 218.)

Notation. If % is & number field and a a fractional ideal of %, then
lallz will denote the absolute norm of a (over the rational number field Q).
If K is a finite galois extension of %, p a prime ideal of &, and P a prime

ideal of K, then
[K/k and (I{/k)
PN P

will denote the Frobenius and Artin symbol respectively. If @ is a group,
then Cg(o) and xg(o) will denote the centralizer and the conjugacy class
of ¢ in @ respectively. Finally if § is a subset of ¢, then |S| will denote the
cardinality of 8.

TaeoreM (Cebotarev Density Theorem). Let & bé an algebraic number
Jield and let K be a finite galois extension of k with galois group G over k.
If o is an element of G, then the Dirichlet density of all primes p of & with

(L) — i
P — G

18
g ()] /(G:1).

Reduction to the case that I/k is cyclic. Let H denote the eyclic
subgroup of & generated by o. Suppose p is a prime of % with

(%’5) = »fa(o)'.
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