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ACTA ARITHMETICA
XV (1968)

On primitive prime factors of Lehmer numbers III
by
A. ScHINZEL (Warszawa)

§ 1. The main aim of this paper iy to complete the results of [5],
[7] and [8] concerning Lehmer numbers with a negative discriminant.
Aboub the case of a positive discriminant I have nothing new to say
except that J. Brillhart and J. L. Selfridge have found explicitly the sets
M, and N, oceurring in Theorem 1 of [7]. The notation of [7] is retained.
In particular £, = €™/,

(a"—FY/(a—p), =m odd,
(a"—B")[(a’—B"), n even,
where « and p are roots of the trinomial &*— L' 2+M and L and M
are rational integers. %, (n) is the eth powers-free kernel of n, n* is the

product of all distinet prime factors of n,% is the complex conjugate
of 2. We assume

Py(a, ) =

@ L>0>K=L—4M,
(2) (L7 -M) :li <—L7M> ¢<1il>;<271>:<311>’
set

A = max(12,log Mmin{k(—K), ¥(L)}}, B =max{12,log M}
and prove

TemoREM 1. If n > 3-10™ A° then P,(a, f) has at least one primitive
prime factor.

THEOREM 2. For L, M satisfying (1), (2) set
1 i R(LM) =1modd,

= [2 if  ®(LM) =2 or 3modd,
]1 if  B(EM) =1mod4,

T2 i WEM) =2 or 3modd;
1 if K(KL) =1mod4,
=14 i BEL) =2 or 3modd.
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If n>3-10"4° and n = nk(LM)mod29k(LM) or n=nk(KM)mod2 x
Xk (KM) or n=0modn,k(KL), then P,(c,p) has two primitive prime
factors; if all three congruences hold then Py (a, B) has four primitive prime
factors.

THEOREM 3. Let ¢ =3, 4 or 6 and ¢, belong to the field A (I/Ef). Set

1 if K = 0mod8,
ll if KL =0mod27,
N3 =

no=12 if L = 0mod8,
3 4f KL £ 0mod27;
4 of KL s 0mod8;

1 if K =0mod27, M =1mod4 or L= 0mod27, M = 3mod4,

J2 if K =0mod27, M = 3mod4 or L =0mod27, M = 1Imod4,
%213 if K =6mod9, M =1mod4 or L=23mod9, M = 3mod4,
6 if K=6mod9, M=3mod4orL=3mod9, M =lmod4.

If ek, (M) is an integer relatively prime to e,

(2n, 8)

1ol 3
n>310"9B" and n i, 8)

> 3:10%9, B for e¢=23, L = 0mod3,

7et+1
4

then P,(a, ) has e+ (e, 2) [ ] primitive prime factors.

Proofs of these theorems given in §§ 2, 3, 4 respectively require some
facts already established in [6], [7], [8] and also an improved version
of Lemma 1 of [8] stated below as Lemma 3. An application to the esti-
mation of the greatest prime factor of a linear recurrence of the second
order is given in §5. The result obbained completes Theorem 8 of [9].
Unfortunately, the proof of a related result of [7] concerning the greatest
prime factor of certain special Lehmer numbers contains a gap, which 1
am unable to fill in (see Corrigenda at the end of the paper).

§2. LemmA 1. For n #1, 2, 3, 4, 6 primitive prime factors of Pp(a, B)

coincide with prime factors of Qu(a, B)/(n*, Qu(a, B)) and are of the form
nt4-1.

Prootf. Thiy follows from Theorems 3.2, 3.3 and 3.4 of [2].
LEvma 2. For n > 3-10" A% (1) and (2) imply the inequality

. 11
(3) 1Qu(a, B)] > nla® .

Proof. We have
a n(n)d)
(4) Qna, B = la® [ | (E) ~1

dan

i=m®

On primitive prime faclors of Lehmer numbers I11 51
In order to estimate |(/a)?—1| we apply Theorem 2 of [9]. We set
there
o'y a"y
_ [ QVIRE) + WEK(E), YIk(E) - WEREK) it K—K) <kI),
GVIE(L) + WER(L), WLk(L)— WEk(L)> it k(—K)>k(L);
p=p=1,
o'y 'y By B'" are integers of the field 4 (Vﬁ), and we obtain

a
(5) log?2 > log (—g) -1 ‘; —2°-10°a3 (logn+2)%,

a, = max {r, log{[eD|"*, |d 8, [a' 8], [ '], |d" "]}
= max {=, }logmax{|eD|**, Mmin {k(—X), k(L)}}}
and D is the diseriminant of the field ¢ (Vﬁ). Clearly
|D| < 4k(—K) k(L)
and an easy computbation shows that

+logdek(— K)k(L) < max{n, 4log Mmin {k(—K), k(L)}},
thus

a; = max{r, log M min {k(— K), k(L)}-
Since by (1) log|a} = }log M we get from (4) and (5)

Lo

1
log |@u(a, B)|—logn|al®®
> Frp(n)loglal—3,2-10°- 21 g} (logn -+ 2)° — 2")~'1og 2 — logn
= 1 o(n)log M—3,3-10°- 2™~ g3 (logn + 2)°.
For n > 3-10" 4° > 5-10" we have in virtue of Theorem 15 of [4]
>— " > n .
¢’loglogn+5/2loglogn = e’loglogn-+ 0,675
On the other hand, for every
2™ < 397

(this can be proved elementarily). The functions

w1
fe(n) = —
(¢"loglogn+0,675) (logn-+2)2

are increasing for n > €'

(6) ®(n)

(r =1 or b)
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If g, == we find

%zp(fn)log M 10g2
20102 (log n +4-2)* ~ 2Ban

If a; = tlog M min{k(—XK), k(I)} == we find n > 24-10"ad,

f5(5 10y > 10%% > 3,3-10°.

fs(m )/

251 8

2n—log2 2n—log2
log M > —E—ét—;)ilogll'[min{——lf, L} > %al,

hence

Lo(n)log M - 27 —log2
2rM—1g} (10gn—|—‘?) 507 wa?
—log2

= _30‘7_" (24-10")Bf,(24-10" a,)
T

2n—log2
507m

2n— logu

Sor o Js(24-10%a})

fs(n) >

(24-10MPF, (24 10" =*) > 10%% > 3,3-10°.

This completes the proof.
Proof of Theorem 1 follows at once from Lemmata 1 and 2.

§ 3. Lmvma 3. Let e, n be positive integers, n >2, (e,2n) =1 or 2.
Let y be a character modn (e, n) of order e with the conductor f, where

(252, o) = 1. s

n

(2, 9) = [] (0= 20 lnemy)-

(=1
Then
(7) (2’ y°) = n"/)n(xi z, 8y),
881
(8) aﬂ.(?ﬁmﬂy ) = (1) :p(n)/e Pal23 Y, @),
(9) val;9,9) = R y+2ﬁx“”(ﬂm,
i=1

where R; are polynomials over A°(L,) and ©(y) are normalized primitive
Gaussian sums belonging to characters '

Proof. Formula (7) follows at once, since

n

”"pn(xs z,ey) = n H(ﬁ—x(”) 5:1(&,15) 5@/) = ” (m&—'ﬂf{c,ﬂ)yc)~

e =l e =1
&=l rmy=1 * =1 (rim)=1

i=m®
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To prove formula (8) we notice that

(10) X == Xedn?) Anj(etmy

where ye3n2 and gyen ale characters mod(ea,nz) and modn/(e* n),
respectively, the former primitive;

n

M=

r=1
(rn)=1

3mod
1mod

1

8 iftn=4,e¢e=2,

€%, n? otherwise;
b 2

i l —1modn if # has a primitive roof,
r =

otherwise.

Besides
H C‘n(e,n) =\ )qa(n)/(e,n);
(r,n)-—-l
1mod?2 ifn=4,6e =2,
—1
p mod2 if n = p*, p odd,
pn) _ | €
€ - p—1 . A "
3 mod2 if @ = 2p”, p odd, ¢ even,
Omod2 otherwise.
It follows hence
n
n Cn(e,n)
=1
(rmy=1
o)
—xB)=2(—1)* UHn=4,¢6=2,
-1 (11_ ) ?(n)
2(—=1) =(-1) ¢ =(—-1) 2(—1)° ifn:_’p”,p odd,
P—1 27_—-_1 P—1 m

= x“/z(“l)(“l) : =(—

(=) =1=z2(-1)°
M
x) =1=yg(-1)°

D=1 7 =1=yg-1)°
if n =2p" p odd, ¢ even,
if » =29 p,e 0dd,

otherwige
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and we get
n
walt; @ y) = [] (0—720) Gaomyy)
(r:;;il
n "
= (_1)“%) ” X("‘) 55(5,1») n (.7/“%(7') é':;(e,n)m)
(1':5;1 (r:l;il
= (=1)""y, (x5 9, 2).

In the proof of (9) we shall denote DY ay, @py..ey by, bay ooy €hy€ay .00
numbers of the field (), by p: (&, 7,...) and 8 (&, 5,...) the ith fun-
damental symmetric function and the sum of ¢th powers of the indeter-
minates &, 7, ..., respectively. We have

o)

Z(

and by Newton’s formulae

(1) pulzs @ 1Y a9 o, (31 (1) Lugemys -5 (= 1) Crvoy)

- H ;
(12) Py = Oy, STH822 oo SEF.

ay 4209 ..+ kag=]

On the other hand, in the notation of [1], § 20,

(13) i (X(]-) Caemys -y 2(—1) Cﬁ(i,n)) = T(Z‘i] C?l(e,n)) .

1
(n,e)
This is obvious if (n, ¢) = 1; if (n, ) =2 we have by (10)

(14)  g(r+n) = 2pny 4+ 1) Lyen,a (r+ 'n) = — 28 (7) T,y () = — (7);3
n n
2 3 Fnd= Y £+ Z () S5 = (s Eh)
e a1 (a1

Now, by the reduction theory for Gaussian sums, we have
(16 = bir (i),
on the other hand, by the theory of Jacobi sums
(y) = ¢e(y)® with ¢ 0.
It follows by (13) .
(15)

stz ... Skttt

o
Sil = balaz,,.akT(Z

i=m®
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Formulae (11), (12) and (15) give (9) with
(n)+i—j _ [i+e~1] 7=t

e e

Bi(z, y) = 2 (_1)jaa1a2...ukba1mz.uakm Y

0<T<p(n)

@205+ ... +kay —)7 =1i(mode)

COROLLARY 1. Let n > 2, y be o quadratic character modn(n, 2) with
the conductor f, where n(n, 2)[f is odd and let y, have the meaning of Lemma 3.
Then

(16)
1mn
where B and § are polynomials with rational coefficients and

(18)

Qn (w27 y?)
wu(y; @

= wa(x; 2, Wy (x; %, — ),
= R(z% 9% —Vz(—1)fays (=% y?),

Rz, y) = 2(— ¥Ry, 2), S(w,y) = x(—1)*""S(y, 7).

Besides, for n even, e = 41

2n
(19) valzio, o) = [ [o—tiy).
e
Proof. Formulae (16), (17) and (18) follow from (7),(9) and (8),

respectively on taking into account that =(y) = ]/x
Besides for n even, ¢ = £+1

—1)f is irrational.

” 1—ex(r) 7
E%(”') C;n = Czn :
and in virtue of (14) the sequence
1—ey(r
r+—-2—ﬂ~)n a<r<m, (r,n)=1)

is a permutation of the sequence » (1 <
(19).

LeMma 4. Let x be o quadratic character modn with the conductor f and

r < 2n, z(r) = &), which implies

(x5 0,9) = oilw) [ [ 0—g),
r=1
xZ(r)=s
where ¢ = +1 and
n Cn "f f = 35
wn(y) =) 7
2(r)=1
1 otherwise,
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Then
(20) Qulz, y) = O (x5 2,9) B (45 0, 9),
(21) x50, y) = T(e, y)—eV (=D U@, 1),
where T, U are polynomials with rational coefficients and

2 V-2

T(z,y) =a*, Ulg,9) =9~ if f=4d,n=2,
T@,y) =Ty, o), Ulz,y)=TUly,x
(22) if f=8,n=2"y(1)=—1or f=4, n =2 or
f=q,n=¢,q prime = 3mod4,
I(z,y) =Ty, x), Uz, y) = x(—1)U(y,z) otherwise.
Besides we have
B (x5 @, y) DT (x5 w1, —y) (v 0dd),

P (z;0% ¥") =
(23) (x;2° ¥*) ‘ (n even, f # 3).

Proof. Let n = 2“m, where m/f is odd. If f is odd, there exists an
integer s such that x(s) =1,

B8 (13 , Y)

3 it f=3,
(s—1,m)=0¢= .
1  otherwise.
Hence
mn,2) m{n,2) m(n,2)
(s—1) 2 r = Z 8r— Z r = 0modm(n, 2)
ZZ;'T;’ x?ﬁi (r =8
and
n
o Z r=0mod n if n is odd,
#tme
2m
] Z 7 = fp(m)mod2m if n is even.
x(r;;i‘
In the latter case
n 2m gh—1l_y 2m gh—1,
ch:aZ 2 r+2km-a2"“127+mpm Y‘ %
=1 =1 k=0 el k—()

=2 p(m)m+ 2" 2p(m)m (2" —1) = 2% 3p(m)m = mod.n.,

p(n)n
4

bm©
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It follows that for f odd

[] & =1

wr)=e

{n—1)p(n)
2

(24)

In particular o,(y)*=1 and w,(y) belongs to (l/x
for » odd w,(x) = w,(y)*®, thus

(15 2°, y°)
n n n
=on(n) [] @=G) =i [ @~y [] o+t
Hr)=ex(2) H o)
= OF (15 3, y) B (g5 8, —y),
which proves (23) for » odd. For n even, f # 3 we have

n
[l @—ay) =

—~1)f). Moreover

r=1
x(r)y=ex(2)

D (134", 9%) = [] &=ty @—airy)

T= r=1
x(r)=¢ %(r)=¢
21
=[] e—y) = x5 2,9).
2(r)=¢

Since (20) is obvious, it remains to prove (21) and (22). For f odd y is
induced by (r]f), thus (21) follows from Lemma 1 of [6] and the remark
after formula (20) there. Further, by (24)

B (130, y) = ()" (—1)7™P n & 17 (y—tn)
Hme e
= (=1 n GO 15y, @) = (—1"OR D 45y, &

z(r)gs
which implies (22) since 3ng(n) is 0dd only for » = ¢’, ¢ prime = 3mod4.
For f even by (23) and (19)

¥ — et ™ it m =4,
Py (X5 552#7 5."/2”)

and the lemma follows from Corollary 1 since

P (x5 @, y) = B (g5 ™, v*) = )
it m >4

—1 Hf=8, n=2,5(—1)=—
(=1 — l or f=4, n=2"¢, ¢ prime = 3mod4,

1 - otherwise,
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Remark. Lemma 4 can also be deduced from the results of [3].
One has only to rectify the formulae for A;x and A,y given on p. 192 there.

LemMa 5. If n = gk(LM)mod2nk(LM), x is the character modyn
induced by (k(LM)|r),

(25) QNa, B) = yuly; Ve, VB) (e = £1)

§ =k (L){%m(")}’

then 67 Q% (a, B) and 67'QS (a, B) are relatively prime rational integers
dividing Qn(a, B).

Proof. The assertion is proved as Lemma 1 in [7]. One has only
to verify that @\(a, f) defined by formula (6) there coincide with

Q9(a, ) defined here. Alternatively onme can proceed as below in the

proof 0[ Lemma 6.

LeMMA 6. If n = 9 k(K M)mod2x, k(K M), y, is the character mod sy, n
induced by (k(KM)|r),
(26) Q(a, f) = pulzs; Va, eV p)

and

(e = 4£1)

6, =1k (K)ﬁw('b)},

then 67 Q) (a, B) and 67 Qi (a, B) are relatively prime rational integers
dividing Qu(a, B).

Proof. Since y(—1) = —1, it fOHOWb from (17) and (18) that the
functions R(z, ) (3~ y)?"™ and S(z, y)(x—y)P"™! are symmetric of
even degree thus are expressible ramonally by (x+y)? and zy. Hence
the numbers R(a, f)K¥™ and 8(a, f) K™t are rational. Since

___ﬁ/__

is rational, it follows from (17) and (26) that the numbers K™
Va, sVp) and also 6,0, (a, f) are rational.

They are also obviously algebraic integers, thus they are rational
integers. 61Q.(a, f)* are perfect squares and since they ave divisible
by a square-free numbel 8 they are divisible by its square df. Thus

87'Qr%(a, p) ave rational integers (¢ = 4-1). Finally, they are relatively
prime. Indeed, the resultant of %(xl, @, y) and w,(x; %, —y) by (16)
divides the discriminant of Qn(«*, ¥%) and a fortiors (2m)™. Since by (2)
(a, B) =1, it follows from (26) that any common prime factor of
7t @ (a, ) and &'QIY(a, ) divides 2n. On the other hand, by

W (%15
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Lemma 1 any prime factor of 2n divides @,(a,B) at most in first power.

Since by (16) and (26)
Qula, B) = Q" (e, B)@V (a, B),
we reach the desired conclusion.

LeMMA 7. If n>4,n =0modn,k(KL), x, % the character modn
induced by (k(KIL)|7), e = £1,

GO (ga5 0, ) if m=2", K(EL) = —1,

@0 Qe B) =BT (1e5 9, ) if K(KL) = 5modS8,
D (523 @, B) otherwise;

Ve if w=2, kKL =—1,
V=2  ifa=9, KL=

5 — V=1  if n =2¢, WKL) =
l/%(f)_ if n=¢, KkEL) = —gq,q prime = 3mod4,
Vi(L) if n=2¢, REL) = —g,
1 otherwise,

then 67'Qn P (a, p) and 87'Qn"Y(a, B) are relatively prime rational in-
tegers dividing Q,(a, ).

Proof. It is enough to prove that 6,0, («, §) is rational for ¢ = +1;
the remainder can be proved like the corresponding part of Lemma 6.
It n=2"(»>3), k(KL) = —1 we have by (22)

8290 (e, f) = V250 — £,

o9v—2
= q

ov—2 2v—2
Ny g i
o —p

y B) can be expressed rationally in terms of (a+p)2 = L
and af = M and is rational.

If n =2, k(EL) = —2 or n = 2*¢, k(KL) = —1 it follows from
(22) that T(=,y)(x*—y? and U(z,y) are symmetric functions of even
degree, hence T(a, 8) VKL and U(a, f) are rational. Since

thus 6,0, (a

7. KL

(28) k(KL)

Vil ~IFGIEE — wEy )/ 2L

and §, = l/k (KL), it follows from (21) and (27) that VKL@,() (%25 a5 B)
and 6,0, (a, ) are rational.
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It n=¢,k(KL) = —q it follows from (22) that T'(z,y)(w—y)
and Ul(z,y)(z+y)~' are 5y1nmetnc functions of even degree, hence
VE(E) L'(a, p) and VE(K)U(a, B)/VEL are rational. In the 1enm1n111g
cases by (22) T(w ,J)(»v+y)“"”) and Uz, y)(@+9)*" (@ — ")~ are
symmetric functions of even degree, thus

RDEO T (0, B) and k(LR (a, f)[VEL

are rational. The desired conclusion follows from (21), (27) and (28).

Proof of Theorem 2. In order to prove the first part of the theorem
it is enough to show in view of Lemmata 1, 5, 6 and 7 that for n>3-10% .43
(29)  min{|Q(a, A, 1€:(a, B)l, 1¢a(a, B

Bl >0

(e = 4-1).
Now by (25)-(27), (19) and Lemma 3 of [7] we have
@A),y 1€ a, B, 190 (a

Since |a| = VM >V2 we get by (3) and (6) for m > 3-10"A4°

(30)  max{|Q59(a a, B} < |a[**™exp (4ntlogin).

logmin {|Qf (a, A, | (a, B)|, 1Qn® (a
=log[Qn(a,ﬁ)[—logmaxﬂ@&“)(«x,ﬂ)

, B} —logn

1@, B)], 199 (o, B} —logn

> Lo(n)log|a| — ¢ (n)log|a| — 4n'*logn
9log?2 nl?
> — ) log*n |g(n)— 9log2 y
where
12
(31) gin) = -

(¢’loglogn--0,675)log?n
g(n) is an increasing function for n > ¢ and

(32) g{3:10" 4% > ¢(5-10'") > 5-10* >
thus (29) follows.

To prove the second part of the theorem we show that if n satisfies
all three congruences n == ynk(KL)mod2nk(LM), n = u,k(K.M) mod 29, X
XE(EM) and n = 0mod#,k(KL) then

[ 95", ),

LT
=1

(33) Qnla, f) =

bm©
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where
Qnay B)

34 Q0 (e, B) = == ,n v
o4 S ) G, B, AT B

e = V—1 i n =4¢, ¢ prime = 3mod4,

’ 1 otherwise;
Q5 (a, p) are rational integers relatively prime in pairs except for

n = ¢ or 2¢", when two of them have the greatest common factor ¢.
It follows from Lemmata 5, 6 and 7 that for e = +1, 6= 41
(86182)71 Q5 (a, B)QU(a, /)@ (a, B)
is rational. On the other hand

(—1)"¢q
8o

55,5 it n = ¢" or 2¢,
e otherwise.

This implies that @5%(a, f) is rational. Moreover, since y, = yy.,
we have by (25)-(27), (19) and (23) for » odd

o 8,05 (e, )2 (a, )
qu ")(ay ) = N(—-sﬂ) @, B)
— 60"%.%51‘ a, 8]//3)'%(9615 1/;1 OVE)
B (25 Ve, VB B (g1, Vi, VB)
= Syl (1) [] Va—t/p) [[ Vetvp),
0= AHZh
for n even
£,0) 50@2)(0‘;/9) ;1(8)(‘1 8)
(2:0) = ?
(e, B) = Q;,'(‘w)(a,ﬁ)
80P (x5 Va, VB B (13 Va, V) el
= -y =——— =10 [] (Va—0¥§).
PG (103 Va, VE) 5177: &)
21(7)=10

Therefore Q% (a
integer. Since

» B) is an algebraic integer and hence a rational

Q5 (a, B)QS(a, B) = QP (a, B8
(35) Q5 (a, )OS (ay B) = QO (a, B)* &,
Q" (a, BYQS " (ay B) = Qu®(a, B)* &2
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the greatest common factor of QU (a, f) and Q" (a, f) divides at

least two of the numbers

(QS)(“: ﬂ)27 Q’SL—I)(ay /3)2)7 ( (] (a, ﬁ) Qn (“v /3))2)7
(@1 (ay B, QP (a, YY)

equal |6%, |83], |63, respectively. However these numbers are {l,g,q},
{g,1,q} or {1,1,1} according to whether n = ¢, 2¢" or otherwise. It
[ollowa that Q®(a, B) are velatively prime in pairs except for n = ¢

29", when (35) bhOWb‘ that two of them have the greatest common
fa,etor q.

Now, by (3), (6), {30)-(32) and (34) we have for = > 3-10"A4°

22 3

—logn? > Eqv(n)log|a| — —‘z—(p(afz)logla| — 120 log?n

log Q" (, B)]

5
> —p(n)log2—12 n'log’n
5

624 -0
5log2
In virtue of (33) and Lemma 1 the theorem follows.

COROLLARY 2. If ¢ =1,2,3,4 or 6,¢, belongs to the field % (VEL)
and n > 3-10"4% then o éeﬁ hae a mmmml prime factor of the form

5log2 12

— W

log*n (g (n)—

e
—(—_-—)%H: 1, relatively prime to of— f°
i€
Proof. For e =1 or 2 the corollary follows at once from the divi-
sibility Que(a, B)|a"— ", Lemma 1 and Lemma 2.
For e > 2 since
Lo = Lot

it is enough to consider the case ¢ = --1. Then

i ay )| — 0B, @ (a, B)|Quel, )
and the corollary follows from Lemma 1 and (29).

§ 4. In this and the next section we call an integer a--b¢{, of the
field (L) normalized if ¢ = 3 or 6,0 = —1mod3, b = 0mod3 or ¢ = 4,
@ =1mod4, b = 0mod4, semi-normalized if either a--bf, or — (a-bE,)
is normalized. Two normalized integers of #'(,) which divide each other
are equal.

Luvpia 8. Let ¢ = 3, 4 or 6 and o be a semi-normalized integer of A (,)
such that (0, ®) = L. Then there exists a character y of order e, even for

i=m®
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¢ = 6, such that
4k, (ww)*
ko (ww)*

if e=6

otherwise,

, oo = 3mod4,

fly) =

() = o 0’,  where e (L),

e—1
Proof. Let w = J-wf J] ok, where each oy is a produet of distinet
k=1

normalized irrational primes of #'(Z,) and wy’s are relatively prime in
pairs. In virtue of Lemma 2 of [8] there exists for each w; a character
zr of order e such that

—1)(2’ Ve o}, (0 <i<e).

Tl = oxor, (k) =

e—1
Oonsider the character y, = ] xk. Tn virtue of well known theorems
we have k=1

e—1
Fxo) = [ [ oxor = ky(wam),
k=1
e—1 eki ki ki
. —e 1 &q—
() = [] vz n T
k=t Ia$omode
el e—1

serefs] ]

1)(z,e)n—;.e ki kz n %

kz,i_omode
e~1
% E)'I;ke+k1,w}’:z
k=1
ki=0mode
ei
s€) LT E—1 1
=ZO('—1)( )(',_OJ W,
where
e—1 ki ki
e o e
=t wy wp .

k=1

1)79=1. For ¢ = 6

”xk(— =

For ¢ = 3 or 4 we have y,(—

)(f(xlzaxs)— 1)/6
H

thus o (—1) = —1 only if f(y14s%5) = *(0®) = 0@ = 3mod4.
Set now
% i e=06,00 =3mod4,
x .
%o otherwise,
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where y, is the primitive character mod4. For ¢ = 6, ww = 3mod4 we
have
(=1 =1, [l
() = T 7 (%) = (—1) %o(
Thus the character y satisfies the conditions of the lemma.
TEMMA 9. Let ¢,  and x have the meaning of Lemma 8 and & run through
e-th roots of wnity. If m(m,e)|f(x) is an integer relatively prime to e,
(36) Q8 (e, @) = g (— 1) (35 0™

5 is considered as a character modm (m, €) and m > 3-10" max" {12, log we},
then QB (w, ) are rational integers, relatively prime in pairs and

= 4k, (0o)*,

—1f g = oo’

FCDI)

108 (w, ®)] > m.
Proof. We have y(—1)"™” =1 and by Lemma 8
(e(#) (@)~ (e o)) = f(ww)*,
x(— 1) et (2,)
It follows hence that
2= R (@, ©) X (L)

thus

and (1) (o) (€'Y e (L,).

and ) . )
x( _— 1)lp(’m)[23_-r(x’b) ((01/[5)6~l (561[5)1Ri ((A), "a’)‘) EJ{‘(‘C@)

thus by (9) and (36)

(0 < i< e),

Qg;)(w; E)EM(Ce)‘
On the other hand, Q¥ (o, ®) is real because by (8)

2{— 1) (15 @' e0'?) = x(—l),‘“"”"””wm(x'B‘/“ a_l v'l%)
= x(_.]_)'ﬂ(m)lzew (Z ol ]/a)
= g (1) (x5 oY em/ ).

Since @ (o, @) is obviously an algebraic integer it iy a rational integer.
To prove that @ (w, ®) and Q) (w,®) are relatively prime for &= 0
we notice that by (7) the resultant of un(y;®,sy) and w.(x; 2, 0y)
divides the diseriminant of @, (2%, ¥°) and a fortiori (em)™. Since (w, @) = 1
it follows by (86) that any common prime factor of QY (w, w) and
Q$)(w, w) divides em. On the other hand, by Lemma 1, any prime factor
of 6m divides @, (v, ) at most in first power. Since

nQ(s) », @)

(37

Qnlo, a)

we reach the desired conclusion.

i=m®
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Now, if (m,e) =1
(0, D) _w«n(m)/el l ’ l( = )
e

If (m,e) =2 we have f(y) = O0mod4 and by Lemma 8 x = x4%0,
where x, is a character modm/2. Hence

m

[] (@ = ) G

T=1
(rym)=1

QN0 w) =

m

= ” (w”e—x(r(i-l—m/,?)}

r=1
(r,m)=1

r(44mf2) —lle
2’m.+ /)Ewl)

m

= [ (@~ n(em12)100) 2olr) ™)

r=1
{rm)=1
mj2

[ ("= xa+mtanetr) e
(r72.—[_—2}=1
mf2

— 6ow(”)/ﬂlj n ( g 2(&+m/2) T —Cm/o)

96=1 T=1
2glr)=0

Therefore, by Lemma 3 of [7]
192 (w, ®)| <

On the other hand, since k((w—}-?u‘)g) =1 we have by Lemma 3 for
m > 3-10"max® {12, log ww} > 5-10"

[0 exp (2em 2 log?m).

11
Qn(w, ®)| > m]_ajjwq'(m).

It follows by (6), (31), (32) and (37) that for m in question
g 11
log |Q¥ (w, w)|—logm > ———tp(m)log{col—- —-14;7 m)log || —

—2¢(e—1)m**log*m

1 _
> —,]—S-w(m)log]w]—— 60m'*log*m

log2 9360
>0 U210 __ o

156 " 8™ (g(m) 10g2) >0

This completes the proof.

Acta Arithmetica XV. 1
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Proof of Theorem 3. We set for ¢ =3 or 6
[ D) if K = 0mod27,
toa,n 2 S L = 0mod?7,
(n® 8)
1M =N sy if K =6modo,
7 (2, 8) . _ .
<C‘i’2a,—§--m if L = 61’[10{19,
for e =4
{a,n) if K = 0mod8,
(w, m)y =1 {{ya, nf2)> if L = 0mod8,
{aa,nfd> i KL s 0mod8.

It can be verified that for a suitably chosen s = -1, w is a semi-nor-
malized integer of & '(&,) and m > 3-10* B, Moreover

On(0, @) if KL =0mode®/(8, ¢?),

3 = —
(38) Qm (o, w)Qm(C:wi &)

@Qnla, B)

otherwise.

Since ww = M and (n/n.ke(M)*, ¢) =1,  and m satisfy the assump-
tions of Lemma 9. Therefore by (37) Qu(w, @) has e pairwise relatively
prime factors > m and by Lemma 1 @,,(w, @) has ¢ distinet prime factors
= £-1modm. These primes clearly do not divide » and again by Lemma 1
they are primitive prime factors of Pp(a,p). If KL = 0mode?®/(8, ¢3)
we have ¢= e+ (e, 2)[(n.+1)/4] and the theorem is proved. Otherwise
the resultant of @Qn(z,y) and Qn(liz, & °y) divides the discriminant of
their product @, (=, y) and o fortiors #™. The same applies to the greatest
common divisor of @, (w, @) and @, (fsw, {7 ®). Therefore, the primitive
prime factors mentioned beforehand do not divide Qu(few, {7°®). By
Lemma 2 we have for m > 3-10"B*

[Qm(d“’; C;’a)l > m,
thus for ¢ = 3 we get from Lemma 1 and (38)

77¢+1:|

4 =9‘|‘(e;2)[ 1

primitive prime factors of P,(a, B).
Finally if ¢ =4 or 6 and KL s 0mode®/8, P, (Lw, {7°») has by
Theorem 2 two primitive prime factors. These factors by Lemma 1 divide

bm@
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Om(low, &°w), thus we get from (38)

e1+2 = e+(e,2)[

primitive prime factors of Py(a, p).

m+1]
4

§5. TarOREM 4. Let u, be a recurrence of the second order given by the
formula u, = Q"+ Q' o™, where w and o satisfy #*—Ps+Q =0,P,Q,
g, Uy are Tational integers
(39) 4 =P—4Q <0, P %9, 29, 3Q
and oo’y Q]2 are multiplicatively dependent. If e is the number of roots
of unily contained in A (VZ), u and v are the least in absolute value in-
tegers satisfying
(40) (0] )™ = (= Q2" v>0,
n>0 and no-+w > 3-10"max’{12, log2Q*(P% Q)~'}, then

q(Up) = v +u—1

(g denotes the greatest prime factor).
Proof. Let » and s be integers such that

FU-—SV = ¢ = (U, V).

It follows from (40) that (w/o')¥"(—Q/2'y""7 is a root of unity, hence
by the definition of e

@ eufo 0 \—evie
(?) (‘H) -1

and by the choice of % and v, 0 < 2.
It follows further from (40) that

|2 0 \ETU2 [ 7 \esvj2
) ==
® O\ (/.)’ 8\ ev/e
' ((_!7) (—J)) ’

The number (2/2)"(o'[w)’ is & quotient of two conjugates in o V4
and is different from +1 sinee by (39) w o’ is not a root of unity. There-
e T
(Ll/2__K1[2)/2

rational integers, >0, K <0, # (VEL) = 2 (V4) and (4L, —K) — 4.
Set

whence

(41)

fore, it can be represented in the form , where L, K are

L—K =4M, (L'P+EP))2 =a, (IP—K")2 = 8.
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a® and f$° are relatively prime integers of (I/Z) semi-normalized if
H(VA) = #(L). Also o (P%, Q)" and (P’ Q)" are such integers
and since by (41)

w/e(-l:ﬂ, Q)_e/z ﬂﬂ'ﬂ/g‘ )
(P Q)1 = Lo, (P Q) = £,
(42) o = LGP Q) o = 0, (P Q)R

Since (£2°4, Q7 4) = ((2u;— Pug)®, ui— Puyu,+Qui) = 4, is a rational
integer and by (40)
Q2A/A1 evf2 a euvfa
(s —6

it follows as before that
(43)

—vA1/2 o v Al/z Ujo if w>=0
<Q(G)—0J,) Q’(w’hw»: <£ZG P JCZC 1 ﬂ > . = Yy
’ <G AU, o APy w <o,
Thus we obtain

a(m:-}-u)/u_ CZL’H'”.B(%M.M)/G

a'v/v_ C’é‘ ﬂu/a

Uy = C;g(n—])ﬂ—ﬂ Ai[! (PZ’ Q)(’Ib—l)/2('a‘6)(|u|—u)[2ﬂ
Since w/w’ is not a root of unity, by (41) /8 also is not such a root, hence
Ly My #<1,15,42,1, (3,1). Further, it follows from (42) that

M = of < 0o’ (P%, Q)" = Q(P, Q).
Since min{— K, L} < 2M, we get
A < max{12, log2Q* (P% @)%}
and in virtue of Corollary 2 of™*+*/°— [+ gw+Ie hag o rational prime
e no-+u .
— —1t- 1 relatively prime to of— A
Y y P B

Since ((nv4-w)fo, vfo) = 1, the highest common factor of ™ +¥/r ..
LT BTN angd o — ¢4 A7 divides o — 8% Thus p is relatively prime
to o”"— ¢4 6%, we have plu, and

factor p of the form

q(Us) = p = o+ u—1
except possibly if

(44) 0=2, 7nutv=0mode.
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In that case we have by the choice of u, v

© eufs 0 evfd
(-2

w[2 = pu/2mod?2

hence by (42), (43)

and by (38) (nv-+u)/o is odd. The prime p being of the form (nv-+u)t/2 41
must be at least nv+4-w—1, which completes the proof.
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Corrigenda to [5], [7] and [8]

[5] p. 414 line — 4 replace — »(n) by —2"™,
line — 3 replace [No(N,+1)/2]+1 by [No(No+1)/2]+2;
[7] p. 214 ine 7  replace 1, —5> by <1, —1>.

In Theorem 2 and Lemmata 4 and 5 the assertion Lim qf_l_’ﬁ =2

must be replaced by a weaker one: q(Pp)=n+1 for n > n,. Indeed,
if n-+-1 and n—1 are both primes and (KEL{n+41) = 41 one can not
conclude as in the last sentence on p. 223 that at least one of two primitive
prime factors of P, is > 2n—1.

[8] In Lemma 1 the assumption must be added: n > 2 and the
convention made: v =1 for i = 0(mode).
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In the footnote on p. 254, replace A = B+1(mod4) by 4 = 1(mod4).
The formula for Q) (a, f) on p. 255 must be replaced by
QD (a, B) = v (Kojm,; @' LB

and the corresponding change must be made in formula (15), p. 256,
which as it stands applies to Q% (a, B). .
In formula (16) replace v(xum,; #5%) bY ¥ (dnpm,; @, Le¥)-

Regu par la Rédaclion le 30. 12. 1967
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A note on solid partitions
by

LorNe HoureEN (Pullman, Wasgh.)

1. The purpose of this paper is to extend some of the results of [2]
to solid partitions.

2. We define a solid partition of a positive integer n to be a répre-
sentation of » as the solution to a Diophantine equation of the form

o0
= 3 m

17k=1

where the m;;; are non-negative integers satisfying ;0> nix,
Pige 2= Nigyrx s A0 Mige > Nijr,,. We may represent such a partition
as a three dimensional array obtained by placing the mon-zero part
fige in a position ¢—1 units to the right of, j units below and %
units underneath some origin. For example, the solid partitions of 4
are:

First 4 2
Plane 1 2 1 1
1

Second 1 2
Plane

Third
Plane

Fourth
Plane
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