70

A. Schinzel

In the footnote on p. 254, replace $A \equiv B+1 \pmod{4}$ by $A \equiv 1 \pmod{4}$. The formula for $Q_n^{(k)}(\alpha, \beta)$ on p. 255 must be replaced by

$$Q_n^{(i)}(\alpha,\beta) = \psi(\chi_{n/\eta_e}; \alpha^{1/e}, \zeta_e^i \beta^{1/e})$$

and the corresponding change must be made in formula (15), p. 256, which as it stands applies to $Q_n^{(0)}(\alpha, \beta)$.

In formula (16) replace $\psi(\chi_{n/\eta_e}^i; x, y)$ by $\psi(\chi_{n/\eta_e}; x, \zeta_e^i y)$.

Reçu par la Rédaction le 30.12.1967

ACTA ARITHMETICA XV (1968)

A note on solid partitions

ŀ

LORNE HOUTEN (Pullman, Wash.)

- 1. The purpose of this paper is to extend some of the results of [2] to solid partitions.
- 2. We define a solid partition of a positive integer n to be a representation of n as the solution to a Diophantine equation of the form

$$n = \sum_{i,j,k=1}^{\infty} n_{i,j,k}$$

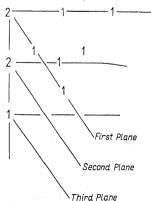
where the $n_{i,j,k}$ are non-negative integers satisfying $n_{i,j,k} \ge n_{i,j,k,k}$, $n_{i,j,k} \ge n_{i,j+1,k}$, and $n_{i,j,k} \ge n_{i,j,k+1}$. We may represent such a partition as a three dimensional array obtained by placing the non-zero part $n_{i,j,k}$ in a position i-1 units to the right of, j units below and k units underneath some origin. For example, the solid partitions of 4 are:

First Plane	4	31	3 1	3	22	$rac{2}{2}$	2	211	21	2 1 1
Second Plane				1			2			
Third Plane	-									-
Fourth Plane										

First Plane	21	2	2	1	111	111 1	11 11	11 1 1	1 1 1	111
Second Plane	1	1	1							1
Third Plane			1							
Fourth Plane										
First Plane		1	1	1 1 1	11	11	1	1	1	
Second Plane		1		1	11	1	1	1	1	
Third Plane		anaguara meneral de meneral	erajatio			1		1	1	
Fourth Plane	•								1	

where one imagines the *i*th plane placed under the (i-1)st plane, e.g. the solid partition of 11 with 211 on the first plane, 21 on the second plane 11

and 1 on the third plane can be thought of as





We define a(n) to be the number of solid partitions. We see from the previously enumerated partitions that a(4) = 26. We define

$$A(x) = \sum_{n=0}^{\infty} a(n)x^{n}$$

to be the generating function for solid partitions. MacMahon [3] conjectured that

$$A(x) = \prod_{\nu=1}^{\infty} (1 - x^{\nu})^{-\nu(\nu+1)/2}$$

but recent computations, [1], have shown this to be incorrect.

We will also consider solid partitions with the restriction that $n_{i,j,k} > n_{i+1,j,k}$, i.e. partitions with distinct parts along rows. We define b(n) to be the number of such partitions and the corresponding generating function

$$B(x) = \sum_{n=0}^{\infty} b(n) x^{n}.$$

For example b(4) = 16, the relevant partitions being

First Plane		4	31	3 1	3	$rac{2}{2}$	2	$rac{21}{1}$	$rac{2}{1}$	21
1.10110						4		т.	1	
Second Plane					1		2			1
Third Plane										
Fourth Plane									-	
First Plane		$rac{2}{1}$	2	1 1	1 1	1 1	1	1		
				1 1	1					
Second Plane		1	1		1	1	1	1.		
Third Plane			1				1	1		· · · · · ·
Fourth Plane					-			1	111	

3. THEOREM. Let $f_{i,j}$ be integers such that

$$f_{i,i} \geqslant f_{i+1,j} \geqslant 0$$
 and $f_{i,j} \geqslant f_{i,j+1} \geqslant 0$ $(i = 1, ..., \varrho, j = 1, ..., \sigma)$.

Let $b(n; f_{1,1}, \ldots, f_{\varrho,\sigma})$ be the number of solid partitions of n strictly decreasing on rows with the property that there are precisely $f_{i,j}$ parts on the i-th row of the j-th plane. We call such a partition a partition of type $(f_{1,1}, \ldots, f_{\varrho,\sigma})$. Let $B(x; f_{1,1}, \ldots, f_{\varrho,\sigma})$ be the corresponding generating function. Then $B(x; f_{1,1}, \ldots, f_{\varrho,\sigma})$ satisfies the recursion formula

$$B(x; f_{1,1}, \ldots, f_{\varrho,\sigma}) = x^f \sum_{\epsilon_i, j=0}^1 B(x; f_{1,1} - \varepsilon_{1,1}, \ldots, f_{\varrho,\sigma} - \varepsilon_{\varrho,\sigma})$$

where $f = \sum_{i,j} f_{i,j}$; and is uniquely defined by this recursion subject to initial conditions that

$$B(x; f_{1,1}, \dots, f_{\varrho,\sigma}) = \begin{cases} 0 & \textit{unless} & f_{i,j} \geqslant f_{i+1,j} \geqslant 0, f_{i,j} \geqslant f_{i,j+1} \geqslant 0, \\ 1 & \textit{if} & f_{1,1} = \dots = f_{\varrho,\sigma} = 0. \end{cases}$$

In addition, $b(n; f_{1,1}, \ldots, f_{\varrho,\sigma})$ satisfies the partial difference equation

$$b(n; f_{1,1}, \ldots, f_{\varrho,\sigma}) = \sum_{\varepsilon_{l,d}=0}^{1} b(n-f; f_{1,1} - \varepsilon_{1,1}, \ldots, f_{\varrho,\sigma} - \varepsilon_{\varrho,\sigma})$$

and are uniquely defined by the initial conditions

$$b(n; f_{1,1}, \ldots, f_{\varrho,\sigma}) = \begin{cases} 0 & \text{unless} & n \geqslant 0, f_{i,j} \geqslant f_{i+1,j} \geqslant 0, f_{i,j} \geqslant f_{i,j+1} \geqslant 0, \\ 1 & \text{if} & n = f_{1,1} = \ldots = f_{\varrho,\sigma} = 0. \end{cases}$$

Proof. The proof is analogous to that of [2]. We can classify the set of partitions of type $(f_{1,1},\ldots,f_{\varrho,\sigma})$ according as to which rows end in 1. Thus for each matrix

$$\varepsilon = \begin{pmatrix} \varepsilon_{1,1} & \dots & \varepsilon_{1,\sigma} \\ \ddots & \ddots & \ddots \\ \varepsilon_{\varrho,1} & \dots & \varepsilon_{\varrho,\sigma} \end{pmatrix}$$

where $\varepsilon_{i,j}=1$ or 0, we can associate those partitions of type $(f_{1,1},\ldots,f_{\varrho,\sigma})$ whose i,jth row ends in 1 or not according as $\varepsilon_{i,j}=1$ or 0. It we subtract 1 from each part of a partition related to a matrix ε we obtain a partition of type n-f of type $(f_{1,1}-\varepsilon_{1,1},\ldots,f_{\varrho,\sigma}-\varepsilon_{\varrho,\sigma})$. Since this correspondence is bijective, the number of partitions associated with ε is equal to $b(n-f;f_{1,1}-\varepsilon_{1,1},\ldots,f_{\varrho,\sigma}-\varepsilon_{\varrho,\sigma})$. Summation over all matrices ε yields

$$b(n;f_{1,1},\ldots,f_{\varrho,\sigma})=\sum_{\varepsilon_{1,j}=0}^{1}b(n-f;f_{1,1}-\varepsilon_{1,1},\ldots,f_{\varrho,\sigma}-\varepsilon_{\varrho,\sigma}).$$

We can multiply both sides by x^n and sum over all $n \ge 0$ to obtain

$$\sum_{n=0}^{\infty}b\left(n;f_{1,1},\ldots,f_{\varrho,\sigma}\right)x^{n}=\sum_{n=0}^{\infty}\sum_{\varepsilon_{i},j=0}^{1}x^{n}b\left(n-f;f_{1,1}-\varepsilon_{1,1},\ldots,f_{\varrho,\sigma}-\varepsilon_{\varrho,\sigma}\right).$$

But the left side is $B(x; f_{1,1}, \ldots, f_{\rho,\sigma})$ hence

$$B(x; f_{1,1}, \dots, f_{\varrho,\sigma}) = \sum_{\substack{\epsilon_{\ell,j}=0}}^{1} x^{j} \sum_{n=0}^{\infty} b(n-f; f_{1,1} - \varepsilon_{1,1}, \dots, f_{\varrho,\sigma} - \varepsilon_{\varrho,\sigma}) x^{n-f}$$

$$= x^{f} \sum_{\substack{\epsilon_{\ell,j}=0}}^{1} B(x; f_{1,1} - \varepsilon_{1,1}, \dots, f_{\varrho,\sigma} - \varepsilon_{\varrho,\sigma})$$

since

$$b(n-f; f_{1,1}-\varepsilon_{1,1}, \ldots, f_{\rho,\sigma}-\varepsilon_{\rho,\sigma}) = 0$$
 for $n < f$.

The uniqueness is obvious. This completes the proof.

Remark. If we define $B_{\varrho,\sigma}(x)$ to be the generating function for the number of ϱ row, σ plane partitions of n, i.e., solid partitions with $n_{i,j,k}=0$ for $i>\varrho$ and $k>\sigma$, then

$$B_{\varrho,\sigma}(x) = \sum_{\substack{f_{i,j} \geq f_{i,j+1} \geq 0 \\ f_{i,j} \geq f_{i,j+1} \neq 0 \\ f_{i,j} \geq f_{i,j+1}}} B(x; f_{1,1}, \dots, f_{\varrho,\sigma}).$$

Hence

$$B(x) = \lim_{\theta \to \infty} B_{\theta,\sigma}(x)$$

4. Let $f_{1,1} = \ldots = f_{\varrho,\sigma} = g$. The partitions enumerated by $b(n; g, \ldots, g)$ are precisely those obtained by superimposing any unrestricted ϱ row, σ plane partitions with at most g parts on any row upon the array

	g	g-1	g-2	 1	
	g	g—1	g-2	 1	
First	•				o rows
Plane	:				-
	g	g-1	g-2	 1	
		•			
_		•			•
	g	g-1	g-2	 1	
			g-2		
$\sigma ext{th}$					
Plane					e rows
	•				
	g	g-1	g-2	 1	

L. Houten

76

The sum of the numbers in this array is $\varrho\sigma\binom{g+1}{2}$. Hence if $a(n;f_{1,1},\ldots,f_{\varrho,\sigma})$ denotes the number of unrestricted ϱ row, σ plane partitions of n with at most $f_{i,j}$ non-zero parts on the i,jth row. Hence

$$b\left(n;g,\ldots,g\right) = \sum_{f_{i,j} \leqslant g} a\left(n - \varrho\sigma\binom{g+1}{2};f_{1,1},\ldots,f_{\varrho,\sigma}\right).$$

Multiply both sides by $x^n - \varrho \sigma \binom{g+1}{2}$ and sum over n. We obtain

$$egin{align} B(x;g,\ldots,g) &= \left.x^{e^{\sigmaigg(egin{subarray}{c} g^{q+1} \ 2 \ \end{array}
ight)} \sum_{f_{i,j}\leqslant\sigma} \sum_{n=0}^{\infty} a(n;f_{1,1},\ldots,f_{\varrho,\sigma}) x^n \ &= \left.x^{e^{\sigmaigg(egin{subarray}{c} g^{q+1} \ \end{array}
ight)} \sum_{f_{i,j}\leqslant\sigma} A\left(x;f_{1,1},\ldots,f_{\varrho,\sigma}
ight) \end{array}$$

where we may replace $n-\varrho\sigma\binom{g+1}{2}$ by n as the summation index in the right since the terms vanish for $n<\varrho\sigma\binom{g+1}{2}$. If we let $g\to\infty$ and note that

$$A_{arrho,\sigma}(x) = \sum_{f_{i,j}} A(x; f_{1,1}, \dots, f_{arrho,\sigma})$$

we can obtain an expression for $A_{\rho,\sigma}(x)$. Further we can see that since

$$A(x) = \lim_{\substack{\varrho \to \infty \\ \sigma \to \infty}} A_{\varrho,\sigma}(x),$$

a solution to the recursion of the theorem will enable us also to obtain a solution to the unrestricted case. At present only a numerical solution is available.

References

- [1] A. O. L. Atkin, P. Bratley, I. G. Macdonald and J. K. S. Mackay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc. 63 (1967), p. 1057.
- [2] B. Gordon and L. Houten, Notes on plane partitions I, J. of Comb. Thy. 4 (1) (1968).
 - [3] P. A. MacMahon, Combinatory Analysis, II, Cambridge 1916.

WASHINGTON STATE UNIVERSITY

Reçu par la Rédaction le 23. 1. 1968

ACTA ARITHMETICA XV (1968)

A note on the representability of binary quadratic forms with Gaussian integer coefficients as sums of squares of two linear forms

by

JOHN HARDY (Athens, Ga.)

1. Notations. Let G denote the ring of Gaussian integers. Small Greek letters will denote elements of G, except for the unit i, and small Latin letters will denote ordinary integers in Z. If α is in G, the norm of α will be denoted by $N(\alpha)$.

DEFINITION. a in G is called odd if N(a) is odd. a in G is called even if N(a) is even.

With each integer a+bi in G, there are associated three other integers, namely -a-bi, -b+ai, b-ai.

DEFINITION. The number x+yi of the four associated odd integers a+bi, -a-bi, -b+ai, b-ai is called *primary* if

$$x \equiv 1 \ (4), \quad y \equiv 0 \ (4)$$

or

$$x \equiv 3 (4), \quad y \equiv 2 (4).$$

In any group of four associated odd integers, exactly one is primary. DEFINITION. If α in G is even, we distinguish between the associates of α by taking as *primary* that one which can be written as $(1+i)^k \beta$ where β is an odd, primary integer.

DEFINITION. Let α , β , δ be Gaussian integers. δ will be called the greatest common divisor of α and β if

- 1) δ is a common divisor of α and β ,
- 2) if γ in G is a common divisor of α and β , then $\gamma \mid \delta$,
- 3) δ is primary.

We shall write $\delta = (\alpha, \beta)$.

2. The following result may be found in [2].

THEOREM. If a is an odd Gaussian integer of the form a+2bi, then a can be expressed as a sum of two squares of integers in G. If a is even,