70 A. Schinzel

In the footnote on p. 254, replace A = B+1(mod4) by 4 = 1(mod4).
The formula for Q) (a, f) on p. 255 must be replaced by
QD (a, B) = v (Kojm,; @' LB

and the corresponding change must be made in formula (15), p. 256,
which as it stands applies to Q% (a, B). .
In formula (16) replace v(xum,; #5%) bY ¥ (dnpm,; @, Le¥)-

Regu par la Rédaclion le 30. 12. 1967
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A note on solid partitions
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LorNe HoureEN (Pullman, Wasgh.)

1. The purpose of this paper is to extend some of the results of [2]
to solid partitions.

2. We define a solid partition of a positive integer n to be a répre-
sentation of » as the solution to a Diophantine equation of the form

o0
= 3 m

17k=1

where the m;;; are non-negative integers satisfying ;0> nix,
Pige 2= Nigyrx s A0 Mige > Nijr,,. We may represent such a partition
as a three dimensional array obtained by placing the mon-zero part
fige in a position ¢—1 units to the right of, j units below and %
units underneath some origin. For example, the solid partitions of 4
are:

First 4 2
Plane 1 2 1 1
1

Second 1 2
Plane

Third
Plane

Fourth
Plane
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11 11
11 1

First 1111 111 111

Plane 1 1

[

Second 1 1 1 1
Plane

Third 1

Plane |

Fourth

Plane

First 11 11 11 1 1 1

Plane 1

R

Second 1 11 1 1 1 1
Plane 1

Third 1 1 1
Plane

Fourth ’ 1
Plane

where one imagines the ith plane placed under the (¢— 1)st plane, e.g. the
solid partition of 11 with 211 on the first plane, 21 on the seecond plane
11 .
1
and 1 on the third plane can be thought of as

2 1 1

Third Plane
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We define a(n) to be the number of golid partitions. We see from the
previously enumerated partitions that a(4) = 26. We define

5]

A(x) = Z a(n)x”®
=0
to be the generating function for solid partitions. MacMahon [3] conjectured
that

A@) =[] (@1—a")—t+e
(0 =[] =0
but recent computations, [1], have shown this to be incorrect.

We will also consider solid partitions with the restriction that
Nigx > Nig1sn, -8 partitions with distinet parts along rows. We define
b(n) to be the number of such partitions and the corresponding generating
function

B(z) = Zm:b(n)m".

=0

For example b(4) = 16, the relevant partitions being

First 4 31 3 3 2 2
Plane 1 2 1 1

Second 1 2 1
Plane

Third

Plane

Fourth

Plane

First 2
Plane 1

[
o
[y
[=
[

Second 1 1 1 1 1 1
Plane 1

Third 1 1 1
Plane

Fourth 1
Plane
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3. TEHEOREM. Let fi; be integers such that
figzfip; =0 ond fi,j?fi,j+1>0 (i=1,..,0,§=1,...,0).

Let b(n; fury -« s fo) b6 the number of solid partitions of m strictly decreasing
on rows with the property that there are precisely fi; parts on the i-th vow
of the j-th plane. We call such a partition a partition of type (fiy, . s foo)-
Let B(®; fi1, ..., fo0) be the corresponding generating function. Then
B(@; finy «voy foo) satisfies the recursion formula

1
=a Z B(2; fin—eny .-

‘i,y'=°

B(w;f1,17"-7fg,a) ;fn, Eo0

where f = 2 fig; and is uniquely defined by this recursion subject to initial

conditions zhat

0 umless  fi;=fir; = 0,012 fi0 20,
B fos o food =1, VT e
1 if fir=...=f.=0.
In addition, b(w;fi, ..., o) Satisfies the partial difference equation
1
B3 fuy oo for) = D) D—F5 fra—811; vy Foo— )

Ei,i=0
and are uniquely defined by the initial conditions
0 unless =0 f%j>f1+11' >0 f’f;l?fm,i.( = 0
1 o =n =f1,1 = .= fp = 0.

Proof. The proof is analogous to that of [2]. We can classify the seb
of partitions of type (fyq,...,f,,) according as to which rows end in 1.
Thus for each matrix

)

b(w; frs -

Eo,1 ++ Sg,u

where ¢;; = 1 or 0, we can associate those partitions of type (fi,1, ..., fo0)
whose 7, jth row ends in 1 or not according as ¢4 = 1 or 0. It we subtxaet
1 from each part of a partition related to a matrix ¢ we obtain a partition
of type n—f of type (fi1—en1y.--) foo— &0 Since this correspondence
is bijective, the number of partitions associated with ¢ is equal to b(n—f;
Fri—811y ooy foo—0) . Summation over all matrices ¢ yields

1fod = D b(n

8,j=0

b(m; fias .- "'f;fl,l_ai,l!"‘!fo,a_

Eg0) -
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‘We can multiply both sides by 2™ and sum over all n > 0 to obtain

Zb(n3f1,17' 7fea)m *“2 anb —fifii—eL1, .- <y Joo— o0
N=0 n_oa,”,_.
But the left side is B(w;f,;,...,f,,) hence
B(@; fi1y oy foo) = mezb(’” i fuu—enty ooy foo— E00) a™7
8i,j=0 B=0
=mf2B(m§f1,1"sl,ly' 5fga Sgu
87,5=0
since ’
b(n—f;fl,l_sl,li' !fgu qa _O for 7‘b<f.

The uniqueness is obvious. This completes the proof.

Remark. If we define B,,() to be the generating function for the
number of ¢ row, ¢ plane partitions of m, i.e., solid partitions with
Nigx = 0 for ¢ > p and % > o, then

Be,a(m) = (m;fl,lr")fe,a)-
HiZzs
Hence
B(z) = lim B, ,(%).
2,0—»00
4. Let fi; =... = fos =¢g. The partitions enumerated by

b(n;g,...,g) are preclsely those obtained by superimposing any unre-
stricted ¢ row, ¢ plane partitions with at most ¢ parts on any row upon
the array

g 9—1 g—2 ... 1
. g 9—1 ¢g—2 ... 1
First @ TOWS
Plane
g g—1 g—2 1
g g—1 g—2 1
g 9—1 g—2 1
oth
Plane @ Tows
g g—1 g—2 1
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The sum of the numbers in this array is ga(yzl). Hence if

a(W; fiay -y for) denotes the number of unrestricted o row, ¢ plane
partitions of » with at most f;; non-zero parts on the i, jth row. Hence

-1 .
bin; g,...,9) = 12 a(9%~9<7(g-|2 \)5f1,17 ---;fa,u)-

e

Multiply both sides by o"— go(g';l) and sum over n. We obtain

741 o0
B(z;g,...,9) = muﬂ( : ) 2 Za’(n3fl,1;---7fu.a)m"

Fi,g<0 =0
7+1
=meu( : ) 2 A(@; fras s fo)
1i5<0
where we may replace n— go (g—g 1) by n as the summation index in the

right since the terms vanish for n < po (g ")2'1

that

). If we let ¢ — oo and note

Ag@) = D' A(@5 fray s o)
T
we can obtain an expression for A4,,(#). Further we can see that since
A(r) = lim 4,,(2),

o->00
000

a solution to the recursion of the theorem will enable us also to obtain
a solution to the unrestricted case. At present only a numerical solution
is available.
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A note on the representability of binary quadratic forms
with Gaussian integer coefficients
as sums of squares of two linear forms

by
JorN HARDY (Athens, Ga.)

1. Notations. Let G denote the ring of Gaussian integers. Small
Greek letters will denote elements of &, except for the unit ¢, and small
Latin letters will denote ordinary integers in Z. If ¢ i in @, the norm of a
will be denoted by N (a).

DEFINITION. ain G is called odd if N (a) is 0odd. a in G is called even
if N(a) is even.

With each integer a-bi in @, there are associated three other in-
tegers, namely —a—bi, —b+ai, b— ai.

DEFINITION. The number %+ i of the four associated odd integers
a+bi, —a—bi, —b+ai,b—ai is called primary if

v=1(4), y=0(4)
or

r=3(4), y=24).

In any group of four associated odd integers, exactly one is primary.

DEpINITION. If @ in G is even, we distinguish between the agsociates
of a by taking as primary that one which can be written as (1 4)* 8 where
B is an odd, primary integer.

DEFINITION. Let a, B, § be Gaussian integers. ¢ will be called the
greatest common divisor of a and g if

1) 6 is a common divisor of a and 8,

2) if y in @ is a common divisor of « and 8, then y| 4,

3) 4 is primary.

We shall write 6 = (a, f).

2. The following result may be found in [2].

TrgoREM. If a 48 an odd Gaussian integer of the form a—-2bi, then
o oan be ewpressed as a sum of two squares of integers in G. If a is even,
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