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The sum of the numbers in this array is ga(yzl). Hence if

a(W; fiay -y for) denotes the number of unrestricted o row, ¢ plane
partitions of » with at most f;; non-zero parts on the i, jth row. Hence

-1 .
bin; g,...,9) = 12 a(9%~9<7(g-|2 \)5f1,17 ---;fa,u)-

e

Multiply both sides by o"— go(g';l) and sum over n. We obtain

741 o0
B(z;g,...,9) = muﬂ( : ) 2 Za’(n3fl,1;---7fu.a)m"

Fi,g<0 =0
7+1
=meu( : ) 2 A(@; fras s fo)
1i5<0
where we may replace n— go (g—g 1) by n as the summation index in the

right since the terms vanish for n < po (g ")2'1

that

). If we let ¢ — oo and note

Ag@) = D' A(@5 fray s o)
T
we can obtain an expression for A4,,(#). Further we can see that since
A(r) = lim 4,,(2),

o->00
000

a solution to the recursion of the theorem will enable us also to obtain
a solution to the unrestricted case. At present only a numerical solution
is available.
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A note on the representability of binary quadratic forms
with Gaussian integer coefficients
as sums of squares of two linear forms

by
JorN HARDY (Athens, Ga.)

1. Notations. Let G denote the ring of Gaussian integers. Small
Greek letters will denote elements of &, except for the unit ¢, and small
Latin letters will denote ordinary integers in Z. If ¢ i in @, the norm of a
will be denoted by N (a).

DEFINITION. ain G is called odd if N (a) is 0odd. a in G is called even
if N(a) is even.

With each integer a-bi in @, there are associated three other in-
tegers, namely —a—bi, —b+ai, b— ai.

DEFINITION. The number %+ i of the four associated odd integers
a+bi, —a—bi, —b+ai,b—ai is called primary if

v=1(4), y=0(4)
or

r=3(4), y=24).

In any group of four associated odd integers, exactly one is primary.

DEpINITION. If @ in G is even, we distinguish between the agsociates
of a by taking as primary that one which can be written as (1 4)* 8 where
B is an odd, primary integer.

DEFINITION. Let a, B, § be Gaussian integers. ¢ will be called the
greatest common divisor of a and g if

1) 6 is a common divisor of a and 8,

2) if y in @ is a common divisor of « and 8, then y| 4,

3) 4 is primary.

We shall write 6 = (a, f).

2. The following result may be found in [2].

TrgoREM. If a 48 an odd Gaussian integer of the form a—-2bi, then
o oan be ewpressed as a sum of two squares of integers in G. If a is even,
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then a cam be expressed as a sum of two squares if and only of (1-+1) 4 a
or (1+4)4 a.

The next result is well-known.

LeMmA 1. (Gauss Criterion.) Let [a, B, ] and [o', f', v'] be t;wo binary
quadratic forms with coefficients in G such that Br—da'y’ = (ﬁ — 4. ay)e?
for some & in G and B’ = fe-+2v for some v in G. .’l’h(m.there em.zsts a trans-
formation of determinant e with coefficients in G whmi.b carries [a, ﬁ? v]
into [a, B, '] if and only if there exist elements vy, v5 tn G which satisfy

ot} + By m+y7s = o
caty+3(ef+p)rs  and  F(ef— )T t-eyrg

are divisible by a'.

LemMMA 2. Let mw and % be two non-zero Gaussian integers which are
each sums of two squares. Then mx s & sum of two squares, say mx = £2-+ 72
Then, there exist a, and ay n G such that

= af—{—aﬁ, n'x = (§a1+77a2)2+(§az““"7al)2:
and
#|(Eayt+nay)  and  w|(Eag—nay).

Proof. Clearly, ax is a sum of two squares. There exist Sy, B2, 71, #s
in @ such that

& =Pyt Paray, 9= fixs—farts
where w = i+ 65 and x = »}+ 2. Taking o, = §; and a, = —f,,
w'n = (&f1—nBa)" + (nfr+£Ba)" = (Blra+ Fara) 4 (Blna+Pina)’.

TEEOREM 1. Let f = az?+2vwy -+ By? be a binary quadratic form
with coefficients in G and af = 0. Necessary and sufficient conditions 'that
f be ewpressidle as a sum of squares of two linear forms with coeffioients in G

f = (a1 @+ B1y)*+ (agm+ Bay)*

are that A = af—n? be a perfect square and that a, B, and & == (a, 29, f)
be sums of two squares of elemenis in @.

Proof. Suppose f = aw®+2nay+ fy* = (ay0+ fry) 4 (agm - foy)? for
S0Me ay, Gy, By, By i 6. Now a = i+ o, f = Fi+ 4 and n = a3+ 0P
Then 4 = af—n* = (axfy— 0 f)°. If o or 8 is odd, then & = (a, 29, B)
is odd and J can be expressed a8 a sum of two squares. Suppose « and
are both even. Clearly (1-+4)+ 8. Assume (14-7)*|8. Then (144 |29
and (14-¢)||y which is impossible. Therefore, § can be expressed as a sum
of two squares.
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Now assume 4 = af—4" is a square, say 42, and 8, a, and f are
each sums of two squares. Without loss of generality, we can assume
6 =1. By Lemma 2, there exist a;, a, in @ such that

@ = (dyoytna) +(doa—na)?, o =dtad,
al(dyay+nay), and a|(dyas—nay).

By Lemma 1, there exist g, f, in @ such that the transformation whose
matrix is [Zl gl] carries [1,0,1] into [a, 2%, f]. Hence, f can be
2 2
expressed as a sum of squares of two linear forms with coefficients in G.
We might note here that f = aa®4- 29wy py® may be a sum of
squares of two linear forms without (a, 5, §) being a sum of two squares
of Gaussian integers. For example,

40”2 (— 6+ 26)wy + (— 4+ 83)y?

= {1+d)a+ 20+ {1+ 5o+ (—2420)y)
but

(48, —6-24, —4+84) = (1+40)* = —24+2
which is not a sum of two squares.

THEOREM 2. Let f = an®+ 2nuy+ By* be a binary quadratic form with
coefficients in @ such that § = 0, @ = 0. N ecessary amd sufficient conditions
that f be expressible as a sum of squares of two Uinear forms with coefficients
n @ are that 6 = (a, 2%), a are each sums of two squares and 7 is divisible
by aytiay or ay—ia, where @ = o2+ o} for some a, oy in G.

Proof. Assume f can be expressed as a sum of squares of two linear
forms, say

f= (a1$+ﬂ1y)2+(azw‘f‘lg2y)2

With ay, a5, 1, f2in G. Then a = a+ta,0=p= Bit+fayn = a1+ asfa.
Since f; = £y, 5 = (ay—iny)p, or 7 = (a3+1%0.)f,. An argument
similar to that in Theorem 1 shows & — (@, 27) is a sum of two squares.

Now, suppose «, § are each sums of two squares and % is divisible
by a;+4-ia; where ¢ = al+df. Now af—1' = —y* = (5i)®. Bince n is
divisible by a;+iay, q (noyitnay) and a|(—pa;+ yia,). Thus, by
Lemma 1, there exists a transformation of determinant i which carries
[1,0,1] into [a, 27, 0]. Hence, f can be expressed as a sum of squares
of two linear forms with coefficients in @. If 7 iy divisible by o,—tay,
there is a transformation of determinant —nt which carries [1,0,1]
into [a, 29, 0].

THEOREM 3. Let f = aw?+ 2@y -+ By® be a binary quadratic Sform with
coefficients in G such that a, B =0. A necessary and sufficient condition
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that f be a sum of squares of two linear forms with coefficients in G is that g
be divisible by 2.

Proof. The theorem is trivial if » = 0. Assume % = 0 and f can be
expressed as a sum of squares of two linear forms, say

= {am+p.y)*+ (a20+ B9)*
2 2
with a, @y, By, Bz In G. Now 0 =a = a;—.i—aﬁ, 0= /3 = fi+ps, 2?11(1
N =afitasfs. It oy =day, fy =i, or if o =.—W2’ fr = ‘:”'”/,)’2:
then n = 0. If a; = —iu, or f; = —if,, say f, = —iff,, then 5 0——- ua2ﬁ2.‘
Now, assume that % £ 0 is divisible by 2. If we put % == 2a, 5, for
some a,, B, in @, f can be expressed as
(a3 @+ Bry)*+ (Gay v — 1B, y)*.

‘We note here that if % is divisible by 2 (a = f = 0), then 2% is a sum
of squares of two Gaussian integers.

3. In this section we attempt to determine the number of ways
a binary quadratic form with coefficients in @ can be represen-ted as & .sum
of squares of two linear forms. The procedure followed here is essentially
the same as that in [4]. ‘ .

Let f = aw®4-27zy+ fy* be a binary quadratic form with af 0
which can be expressed as a sum of squares of two linear forms, namely

(1) = (084 8,9)2+ (axz+ Boy)2.

We can express this using matrix notation asg

an a /31.
= r = T == .
T"T'=B where B |:’7 ﬁ]’ [az ﬂzJ

The determinant of the matrix B must be a square, say |B| = u2
In case u =0, f is a perfect square,

f=é(a'z+py)? («)f)=1.

Bach of o;z-+p,y must be proportional to o'z4-p'y. If 2“1“12"1‘/31?/
=e(a'o+8'y) and aoBoy = ey(a’z+p'y), th.en 6y = 31’}“32» 1115
8, = (@, 29, B), and |B| =0, the number of solutions of (1) is 'eq-ua
to 7,(4,), the number of representations of §; as a sum of squares of two
Ga‘usffm]]lBl[nf: g;f:‘zé 0, |T] = u or —u. The number of solutions Wl-lct}}
|T| = —up is equal to the number with |{T| = u. Suppo/se U= (1—1—-e) 12
where p’ is an odd integer of the form 2a--bi. The form f' = -[- a, 241, B]
can also be expressed as a sum of squares of two linear formf‘;.
In fact, the number of representations of f' as a sum of tzwo sql}z;res is
the same as f. The determinant of f' is —af+#* = —p* = (ui)® and

@)
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wt=(1-+ 'i)’”( —b+2ai). Thus, we shall assume that if 42 is the determinant
of f, then u = (1+4i)*4, where & is an odd integer of the form a--2i.

A matrix with entries from @ of the type

A
H = My
Uy

() ] OSN@) < N(pa)y  pyps = i,

= (149", po = (144)°u; where 4! and s are odd integers of the
form a+2b4, will be called an Hermite-matriz of determinant He

Two matrices § and 7T with entries from G are called lefi-equivalent
if there exists a unimodular matrix ¥ (ie., a matrix with entries from @
of determinant +1) such that § — UrT.

LEMMA 3. An integral matriz (of order 2) with determimant 4= {1+
+0) i, where i is an odd integer of the form a--2bi, is loft-equivalent
to one and only one Hermite-matriz of determinant u.

Tmvma 4. Write p = otz ... 2% a5 g product of powers of distinct
primes m, i =1,..., s, where the odd primes are of the form a--2bi. Ifr
is a given matriz of determinant 4y then, for each i, there exmists a wunigue
Hermite-matriz right-divisor of ' of determinant m;.

LeMMA 5. Any given system H,, ...
spective determinants 31, ..., alp
mite-matriz H of determinant Ly
tegral matriz T of determinant u
ular factor.

The method of proof for the three
for the corresponding ones in [4].

Given a matrix B such that B = 7' 7T
the number of such matrices 7. It is sufficient to construet the matrices
H'-'BH™' with H ranging over all the Hermite-matrices of determinant
# such that H'-'BH-! ig equivalent to the identity matrix. In view of
the preceeding lemmas, we need only apply the matrices H; whose deter-
minant is a power of a prime. H'~ BH-! ig integral and of determinant
prime to y, if and only if for each of the divigors H; of determinant wit,
H;'BH;" iy integral and of determinant prime to ;.

In applying these conditions for a given prime , we can replace B
by any equivalent matrix. Before proceeding, we state the following two
lemmas.

Levva 6. For any odd prime = and integer ¢ (> 0),
J is equivalent to « form with the residue

(4) 7 ('@ + 2" By*) (mod )
where 7%(| 8y, (o' B', m) = 1.

Acta Arithmetica XV, 1

s Hy of Hermite-matrices of re-
determine as righi-divisors a untque Her-
and hence are the vight-divisors of an in-
which is determined up to o left unimod-

breceeding lemmas is the same

for some T, we wish to count

if 8y = (a, 29, B,
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LeMMA 7. For the prime 1414, f s equivalent to o form with residue
(14+4)*(a’ e+ (1+4)°F 97) (mod (1+4))
where (144)"(|6y, o' and § are odd, or

(1+9)"(ja" + oy +3y°) (mod (1+4))
where j =0 or 1.

The proofs of the above are similar to those for forms with coeffi-
cients in Z.

The second possibility in Lemma 7 is excluded here since it cannot
be transformed into a sum of two squares. Sinee |B| is a square, » is even,
(@'f|m) =1 if 7 is odd, and o = §'(mod(L+4)%) if w = 14-i.

We apply to f, assumed to have the residue (4), the inverse of trans-
formation (3) with u; = «, uy = #°, 0 < N (1) < N(a°) and obtain a form
congruent to a sufficiently high power of = to

fi= a0 + 2,2y + B, ?/27
where

u—2r 7
a,

o = N = __nu‘z'r—sla" 181 — a' Zﬂu—”"%*}— /3' n’u—{-'u-za‘
We wish to count the number of systems r, s, and 2 for which «;f,— 7}
ig prime to = and f; is integral and transformable into @242

If A =0, then 5, = 0, and a; and B, must be integers prime to 7.
This means that = 2r and %+ v = 2s. Clearly, [a,, 0, 8,] can be trans-
formed into [1, 0, 1]. Since v is even, the number of systems 7, s, and A
in this case i3 {L+(—1)%.

We now consider 0 < N(1) < N(x°). Set 4 = a’u, with u prime
tow and e =0,1,...,s—1.

I w=2r,9 = pe is nob an integer. Hence, u > 2r and 7,
must be prime to z in order that a;8,—#; shall be prime to = Hence,

B = (ol a0 ) =,

hence, ¢ = r-$v. Also, a,f;—n; is a square mod = for = an odd prime
and m = 1-+4. Using Lemmas 1 and 2, we can show that [ay, 29, fi]
can be transformed into [1,0,1].

Let = be an odd prime. Then o u®-+ g = 0(mod«x""%) has two solu-
tions u(moda’"°), and hence 1 = =’y has two values modn®. Now r can
be given any of the values 0,1, ..., [${(#—1)]; and for cach value of r, s
is uniquely determined by e = r-+3v,2r--(s—e) = 4. The number of
systems 7, s, A is thus 2[4{v-+1)]. Including the case 1 = 0, the number
of gsystems is

) 8
e—8

U+e¢ = 2r+s,

Fi4+(—1¥+2[3(@+1)] = u+1.

bm@
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Now consider # = 1-4. Since 22+ y* cannot represent primitively
an odd multiple of (1—]—73)’c for k¥ < 4, the same must be true of f1- There-
fore, u—2r>5 and s—e>5 Also, o' p?+p = 0(mod(1414)°"¢) has two
solutions w(mod(1+4)*%) and A = (1+14)°s has two values mod (1-4)°
Again, r can be given any of the values 0,1,...,[$(u—5)]; and for
each value of r, s is uniquely determined by e =r440,2r4+(s—e) = u.
The number of systems r,s, A is thus 2[%(u—3)]. Including the case
4 =0, the number of systems is

i+ (=19 +2[3(w—3)] = u—3.

A glance at Theorem 2 in [4] shows that if & is an odd prime (of
the form a+25i), the number of representations of #* as a sum of two
squares is 4(14wu). Also, the number of representations of (1-+4)* as
a sum of two squares is 4e, where go=1and ¢ = [u—3] if 4 >2.

We may now summarize the preceeding results in the following
theorem.

THEOREM 4. Let f = am?-+ 29wy -+ fy? be a binary quadratic form with
coefficients in G and of £ 0 which can be expressed as o sum of squares
of two linear forms with coefficients in G. Also, et f = 6,f, where f, is prim-
itive and of square determinamt w2 If w? # 0, the number of representa-
tions of f as a sum of squares of two linear forms is 2r,(8y); if u? = 0, the
number is v,(8,). Here, r4(8;) denotes the number of representations of 6,
as a sum of squares of two Gaussian integers.

We finish the section by proving two theorems which correspond
to Theorems 2 and 3.

THEOREM 5. Let f = aw®--2nmy+ y? be a binary quadratic form with
coefficients in G such that a #0, 8 = 0 which is expressible as a sum of
squares of two Unear forms. Also, let f = 6.f1 where f is primitive and of
square determinant u? If u® 0, the number of representations of f as a sum
of squares of two linear forms is 275(04);5 4f u® =0, the number is r,(8,).

Proof. If u? = 0, then # = 0 and 6, = a. In this case, f = aw? and
the number of representations of f as a sum of two squares is clearly r,(a)
or #,(48;).

If u? %0, then 5 £ 0. For each ay, ¢y In G such that a = o+ of
and 7 is divigible by a;+4a, or a;—iay, we have 5 = (a,+1iay)f; or
(a1~—1%a,) f;. Thus, 8, is determined as is B> such that 0 = g7+ ;. The
number of representations of f as a sum of two squares is twice the number
of representations of a as af+of such that 4 is divisible by ay-+ia, or
a;—1a,. This is just the number of representations of 4, a8 a sum of two
squares.

THEOREM 6. Let f = am?+2qmy-+py* be a binary quadratic form
with coefficients in G such that o = p = 0 which can be expressed as @ sum
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of squares of two linear forms. The number of representations of f as a sum
of two squares is 7,(27).

Proof. If 5y =0, ry(2n) = 1,(0) is infinite as is the number of rep-
resentations of f as a sum of two squares. Suppose n # 0. From Theorem 3
we see that » must be even, and with every factorization n = 2a, 4, there
is associated a representation of f as a sum of squares of two linear forms,
‘We have only to count the number of factors a4, f;. We may write
2y = ' (L+4)°aial2 ... afr  where the =; are odd primary primes,
r=0,1,2, or 3, and s>4. The number of factors of 2n/4 is then
4(s—3)(ky+1) ... (k,+1) which is just r,(27).
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On a problem of P. Erdos and S. Stein
by
P. Erpos and E. SzeMEREDI (Budapest)

The system of congruences

(1) a;(modng), gy <... << 7y

is called a covering system it every integer satisfies at least one of the
congruences (1). An old conjecture of P. Erdos states that for every
integer ¢ there is a covering system with fy = ¢ Selfridge and others
settled this question for ¢ < 8. The general case is still unsettled and
seems difficult.

A system (1) is called disjoint if every integer satisfies at most one

of the congruences (1). It is trivial that in a disjoint system we must
have

Mw

(ngym;) >1  and 1/n; < 1.

1

i
il

It is known that a disjoint system can never be covering [2] and that
for a disjoint system we have [3]

. 1

(2) — =
Ny 2

1

P\
jun
I

2

i=

(2) is easily seen to be best possible.

Denote by f (m). the largest value of & for which there exists a disjoint
system (1) satisfying g <@ P. Brdés and 8. Stein conjectured that
f(@) = o(a).

The main purpose of this paper will be to prove this conjecture,
In fact, we prove the following

TamorREM 1. For every ¢ > 0 if o> #o(e) we have (¢q,¢,, ... denote
suitable positive constants)

@ x

exp (o)™ <7 < {iogay
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