L. Houten

76

The sum of the numbers in this array is $\varrho\sigma\binom{g+1}{2}$. Hence if $a(n;f_{1,1},\ldots,f_{\varrho,\sigma})$ denotes the number of unrestricted ϱ row, σ plane partitions of n with at most $f_{i,j}$ non-zero parts on the i,jth row. Hence

$$b\left(n;g,\ldots,g\right) = \sum_{f_{i,j} \leqslant g} a\left(n - \varrho\sigma\binom{g+1}{2};f_{1,1},\ldots,f_{\varrho,\sigma}\right).$$

Multiply both sides by $x^n - \varrho \sigma \binom{g+1}{2}$ and sum over n. We obtain

$$egin{align} B(x;g,\ldots,g) &= \left.x^{e^{\sigmaigg(egin{subarray}{c} g^{q+1} \ 2 \ \end{array}
ight)} \sum_{f_{i,j}\leqslant\sigma} \sum_{n=0}^{\infty} a(n;f_{1,1},\ldots,f_{\varrho,\sigma}) x^n \ &= \left.x^{e^{\sigmaigg(egin{subarray}{c} g^{q+1} \ \end{array}
ight)} \sum_{f_{i,j}\leqslant\sigma} A\left(x;f_{1,1},\ldots,f_{\varrho,\sigma}
ight) \end{array}$$

where we may replace $n-\varrho\sigma\binom{g+1}{2}$ by n as the summation index in the right since the terms vanish for $n<\varrho\sigma\binom{g+1}{2}$. If we let $g\to\infty$ and note that

$$A_{arrho,\sigma}(x) = \sum_{f_{i,j}} A(x;f_{1,1},\ldots,f_{arrho,\sigma})$$

we can obtain an expression for $A_{\rho,\sigma}(x)$. Further we can see that since

$$A(x) = \lim_{\substack{\varrho \to \infty \\ \sigma \to \infty}} A_{\varrho,\sigma}(x),$$

a solution to the recursion of the theorem will enable us also to obtain a solution to the unrestricted case. At present only a numerical solution is available.

References

- [1] A. O. L. Atkin, P. Bratley, I. G. Macdonald and J. K. S. Mackay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc. 63 (1967), p. 1057.
- [2] B. Gordon and L. Houten, Notes on plane partitions I, J. of Comb. Thy. 4 (1) (1968).
 - [3] P. A. MacMahon, Combinatory Analysis, II, Cambridge 1916.

WASHINGTON STATE UNIVERSITY

Reçu par la Rédaction le 23. 1. 1968

ACTA ARITHMETICA XV (1968)

A note on the representability of binary quadratic forms with Gaussian integer coefficients as sums of squares of two linear forms

by

JOHN HARDY (Athens, Ga.)

1. Notations. Let G denote the ring of Gaussian integers. Small Greek letters will denote elements of G, except for the unit i, and small Latin letters will denote ordinary integers in Z. If α is in G, the norm of α will be denoted by $N(\alpha)$.

DEFINITION. a in G is called odd if N(a) is odd. a in G is called even if N(a) is even.

With each integer a+bi in G, there are associated three other integers, namely -a-bi, -b+ai, b-ai.

DEFINITION. The number x+yi of the four associated odd integers a+bi, -a-bi, -b+ai, b-ai is called *primary* if

$$x \equiv 1 \ (4), \quad y \equiv 0 \ (4)$$

or

$$x \equiv 3 (4), \quad y \equiv 2 (4).$$

In any group of four associated odd integers, exactly one is primary. DEFINITION. If α in G is even, we distinguish between the associates of α by taking as *primary* that one which can be written as $(1+i)^k \beta$ where β is an odd, primary integer.

DEFINITION. Let α , β , δ be Gaussian integers. δ will be called the greatest common divisor of α and β if

- 1) δ is a common divisor of α and β ,
- 2) if γ in G is a common divisor of α and β , then $\gamma \mid \delta$,
- 3) δ is primary.

We shall write $\delta = (\alpha, \beta)$.

2. The following result may be found in [2].

THEOREM. If a is an odd Gaussian integer of the form a+2bi, then a can be expressed as a sum of two squares of integers in G. If a is even,

then a can be expressed as a sum of two squares if and only if (1+i) + a or $(1+i)^3 + a$.

The next result is well-known.

LEMMA 1. (Gauss Criterion.) Let $[\alpha, \beta, \gamma]$ and $[\alpha', \beta', \gamma']$ be two binary quadratic forms with coefficients in G such that $\beta'^2 - 4\alpha'\gamma' = (\beta^2 - 4\alpha\gamma)\epsilon^2$ for some ϵ in G and $\beta' = \beta\epsilon + 2\nu$ for some ν in G. Then there exists a transformation of determinant ϵ with coefficients in G which carries $[\alpha, \beta, \gamma]$ into $[\alpha', \beta', \gamma']$ if and only if there exist elements τ_1, τ_3 in G which satisfy

$$a\tau_1^2 + \beta \tau_1 \tau_2 + \gamma \tau_3^2 = \alpha',$$

$$\varepsilon \alpha \tau_1 + \frac{1}{2} (\varepsilon \beta + \beta') \tau_3$$
 and $\frac{1}{2} (\varepsilon \beta - \beta') \tau_1 + \varepsilon \gamma \tau_3$

are divisible by a'.

LEMMA 2. Let π and κ be two non-zero Gaussian integers which are each sums of two squares. Then $\pi\kappa$ is a sum of two squares, say $\pi\kappa = \xi^2 + \eta^2$. Then, there exist α_1 and α_2 in G such that

$$\pi = a_1^2 + a_2^2, \quad \pi^2 \varkappa = (\xi a_1 + \eta a_2)^2 + (\xi a_2 - \eta a_1)^2,$$

and

$$\pi | (\xi \alpha_1 + \eta \alpha_2)$$
 and $\pi | (\xi \alpha_2 - \eta \alpha_1)$.

Proof. Clearly, $\pi\varkappa$ is a sum of two squares. There exist $\beta_1,\,\beta_2,\,\varkappa_1,\,\varkappa_2$ in G such that

$$\xi = \beta_1 \varkappa_1 + \beta_2 \varkappa_2, \quad \eta = \beta_1 \varkappa_2 - \beta_2 \varkappa_1$$

where $\pi = \beta_1^2 + \beta_2^2$ and $\kappa = \kappa_1^2 + \kappa_2^2$. Taking $\alpha_1 = \beta_1$ and $\alpha_2 = -\beta_2$,

$$\pi^2 \varkappa = (\xi \beta_1 - \eta \beta_2)^2 + (\eta \beta_1 + \xi \beta_2)^2 = (\beta_1^2 \varkappa_1 + \beta_2^2 \varkappa_2)^2 + (\beta_1^2 \varkappa_2 + \beta_2^2 \varkappa_2)^2.$$

THEOREM 1. Let $f = \alpha x^2 + 2 \eta xy + \beta y^2$ be a binary quadratic form with coefficients in G and $\alpha\beta \neq 0$. Necessary and sufficient conditions that f be expressible as a sum of squares of two linear forms with coefficients in G

$$f = (a_1x + \beta_1y)^2 + (a_2x + \beta_2y)^2$$

are that $\Delta = \alpha \beta - \eta^2$ be a perfect square and that α, β , and $\delta = (\alpha, 2\eta, \beta)$ be sums of two squares of elements in G.

Proof. Suppose $f = \alpha x^2 + 2\eta xy + \beta y^2 = (\alpha_1 x + \beta_1 y)^2 + (\alpha_2 x + \beta_2 y)^2$ for some a_1 , a_2 , β_1 , β_2 in G. Now $a = a_1^2 + a_2^2$, $\beta = \beta_1^2 + \beta_2^2$ and $\eta = a_1\beta_1 + a_2\beta_2$. Then $\Delta = \alpha\beta - \eta^2 = (\alpha_2\beta_1 - \alpha_1\beta_2)^2$. If α or β is odd, then $\delta = (\alpha, 2\eta, \beta)$ is odd and δ can be expressed as a sum of two squares. Suppose α and β are both even. Clearly $(1+i)+\delta$. Assume $(1+i)^3\|\delta$. Then $(1+i)^3\|2\eta$ and $(1+i)\|\eta$ which is impossible. Therefore, δ can be expressed as a sum of two squares.

Now assume $\Delta = \alpha\beta - \eta^2$ is a square, say Δ_0^2 , and δ , α , and β are each sums of two squares. Without loss of generality, we can assume $\delta = 1$. By Lemma 2, there exist α_1 , α_2 in G such that

$$\begin{aligned} \alpha^2\beta &= (\varDelta_0 a_1 + \eta a_2)^2 + (\varDelta_0 a_2 - \eta a_1)^2, \quad \alpha = a_1^2 + a_2^2, \\ \alpha|(\varDelta_0 a_1 + \eta a_2), \quad \text{and} \quad \alpha|(\varDelta_0 a_2 - \eta a_1). \end{aligned}$$

By Lemma 1, there exist β_1 , β_2 in G such that the transformation whose matrix is $\begin{bmatrix} a_1 & \beta_1 \\ a_2 & \beta_2 \end{bmatrix}$ carries [1,0,1] into $[a,2\eta,\beta]$. Hence, f can be expressed as a sum of squares of two linear forms with coefficients in G.

We might note here that $f = \alpha x^2 + 2\eta xy + \beta y^2$ may be a sum of squares of two linear forms without (α, η, β) being a sum of two squares of Gaussian integers. For example,

$$\begin{aligned} 4ix^2 + 2(-6+2i)xy + (-4+8i)y^2 \\ &= \{(1+i)x + 2iy\}^2 + \{(1+i)x + (-2+2i)y\}^2 \end{aligned}$$

but

$$(4i, -6+2i, -4+8i) = (1+i)^3 = -2+2i$$

which is not a sum of two squares.

THEOREM 2. Let $f = ax^2 + 2\eta xy + \beta y^2$ be a binary quadratic form with coefficients in G such that $\beta = 0$, $a \neq 0$. Necessary and sufficient conditions that f be expressible as a sum of squares of two linear forms with coefficients in G are that $\delta = (a, 2\eta)$, a are each sums of two squares and η is divisible by $a_1 + ia_2$ or $a_1 - ia_2$ where $a = a_1^2 + a_2^2$ for some a_1 , a_2 in G.

Proof. Assume f can be expressed as a sum of squares of two linear forms, say

$$f = (a_1x + \beta_1y)^2 + (a_2x + \beta_2y)^2$$

with a_1 , a_2 , β_1 , β_2 in G. Then $\alpha = a_1^2 + a_2^2$, $0 = \beta = \beta_1^2 + \beta_2^2$, $\eta = a_1\beta_1 + a_2\beta_2$. Since $\beta_1 = \pm i\beta_2$, $\eta = (a_1 - ia_2)\beta_1$ or $\eta = (a_1 + ia_2)\beta_1$. An argument similar to that in Theorem 1 shows $\delta = (\alpha, 2\eta)$ is a sum of two squares.

Now, suppose α , δ are each sums of two squares and η is divisible by $\alpha_1+i\alpha_2$ where $\alpha=\alpha_1^2+\alpha_2^2$. Now $\alpha\beta-\eta^2=-\eta^2=(\eta i)^2$. Since η is divisible by $\alpha_1+i\alpha_2$, $\alpha|(\eta\alpha_1i+\eta\alpha_2)$ and $\alpha|(-\eta\alpha_1+\eta i\alpha_2)$. Thus, by Lemma 1, there exists a transformation of determinant ηi which carries [1,0,1] into $[\alpha,2\eta,0]$. Hence, f can be expressed as a sum of squares of two linear forms with coefficients in G. If η is divisible by $\alpha_1-i\alpha_2$, there is a transformation of determinant $-\eta i$ which carries [1,0,1] into $[\alpha,2\eta,0]$.

THEOREM 3. Let $f = \alpha x^2 + 2\eta xy + \beta y^2$ be a binary quadratic form with coefficients in G such that $\alpha, \beta = 0$. A necessary and sufficient condition

that f be a sum of squares of two linear forms with coefficients in G is that η be divisible by 2.

Proof. The theorem is trivial if $\eta = 0$. Assume $\eta \neq 0$ and f can be expressed as a sum of squares of two linear forms, say

$$f = (a_1x + \beta_1y)^2 + (a_2x + \beta_2y)^2$$

with $a_1, a_2, \beta_1, \beta_2$ in G. Now $0 = \alpha = a_1^2 + a_2^2, 0 = \beta = \beta_1^2 + \beta_2^2$, and $\eta = a_1\beta_1 + a_2\beta_2$. If $a_1 = ia_2, \beta_1 = i\beta_2$ or if $a_1 = -ia_2, \beta_1 = -i\beta_2$, then $\eta = 0$. If $a_1 = -ia_2$ or $\beta_1 = -i\beta_2$, say $\beta_1 = -i\beta_2$, then $\eta = 2a_2\beta_2$.

Now, assume that $\eta \neq 0$ is divisible by 2. If we put $\eta = 2a_1\beta_1$ for some a_1, β_1 in G, f can be expressed as

$$(a_1x + \beta_1y)^2 + (ia_1x - i\beta_1y)^2$$
.

We note here that if η is divisible by 2 ($\alpha = \beta = 0$), then 2η is a sum of squares of two Gaussian integers.

3. In this section we attempt to determine the number of ways a binary quadratic form with coefficients in G can be represented as a sum of squares of two linear forms. The procedure followed here is essentially the same as that in [4].

Let $f = \alpha x^2 + 2\eta xy + \beta y^2$ be a binary quadratic form with $\alpha\beta \neq 0$ which can be expressed as a sum of squares of two linear forms, namely

(1)
$$f = (a_1x + \beta_1y)^2 + (a_2x + \beta_2y)^2.$$

We can express this using matrix notation as

(2)
$$T'T = B \quad \text{where} \quad B = \begin{bmatrix} \alpha & \eta \\ \eta & \beta \end{bmatrix}, \quad T = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix}.$$

The determinant of the matrix B must be a square, say $|B| = \mu^2$. In case $\mu = 0$, f is a perfect square,

$$f = \delta_1(\alpha'x + \beta'y)^2, \quad (\alpha', \beta') = 1.$$

Each of $\alpha_1 x + \beta_1 y$ must be proportional to $\alpha' x + \beta' y$. If $\alpha_1 x + \beta_1 y = \varepsilon_1(\alpha' x + \beta' y)$ and $\alpha_2 x + \beta_2 y = \varepsilon_2(\alpha' x + \beta' y)$, then $\delta_1 = \varepsilon_1^2 + \varepsilon_2^2$. If $\delta_1 = (\alpha, 2\eta, \beta)$, and |B| = 0, the number of solutions of (1) is equal to $r_2(\delta_1)$, the number of representations of δ_1 as a sum of squares of two Gaussian integers.

If $|B| = \mu^2 \neq 0$, $|T| = \mu$ or $-\mu$. The number of solutions with $|T| = -\mu$ is equal to the number with $|T| = \mu$. Suppose $\mu = (1+i)^k \mu'$ where μ' is an odd integer of the form 2a + bi. The form $f' = [-a, 2i\eta, \beta]$ can also be expressed as a sum of squares of two linear forms. In fact, the number of representations of f' as a sum of two squares is the same as f. The determinant of f' is $-\alpha\beta + \eta^2 = -\mu^2 = (\mu i)^2$ and

 $\mu i = (1+i)^k (-b+2ai)$. Thus, we shall assume that if μ^2 is the determinant of f, then $\mu = (1+i)^k \mu'$, where μ' is an odd integer of the form a+2bi. A matrix with entries from G of the type

(3)
$$H = \begin{bmatrix} \mu_1 & \lambda \\ 0 & \mu_2 \end{bmatrix}, \quad 0 \leqslant N(\lambda) < N(\mu_2), \quad \mu_1 \mu_2 = \mu,$$

 $\mu_1 = (1+i)^u \mu_1', \ \mu_2 = (1+i)^v \mu_2'$ where μ_1' and μ_2' are odd integers of the form a+2bi, will be called an *Hermite-matrix* of determinant μ .

Two matrices S and T with entries from G are called *left-equivalent* if there exists a unimodular matrix V (i.e., a matrix with entries from G of determinant +1) such that S=UT.

LEMMA 3. An integral matrix (of order 2) with determinant $\mu = (1 + i)^k \mu'$, where μ' is an odd integer of the form a+2bi, is left-equivalent to one and only one Hermite-matrix of determinant μ .

LEMMA 4. Write $\mu = \pi_1^{r_1}\pi_2^{r_2}\dots\pi_s^{r_s}$ as a product of powers of distinct primes π_i , $i=1,\ldots,s$, where the odd primes are of the form a+2bi. If T is a given matrix of determinant μ , then, for each i, there exists a unique Hermite-matrix right-divisor of T of determinant π_i .

LEMMA 5. Any given system H_1, \ldots, H_s of Hermite-matrices of respective determinants $\pi_1^{r_1}, \ldots, \pi_s^{r_s}$ determine as right-divisors a unique Hermite-matrix H of determinant μ , and hence are the right-divisors of an integral matrix T of determinant μ which is determined up to a left unimodular factor.

The method of proof for the three preceding lemmas is the same for the corresponding ones in [4].

Given a matrix B such that B = T'T for some T, we wish to count the number of such matrices T. It is sufficient to construct the matrices $H'^{-1}BH^{-1}$ with H ranging over all the Hermite-matrices of determinant μ such that $H'^{-1}BH^{-1}$ is equivalent to the identity matrix. In view of the preceding lemmas, we need only apply the matrices H_i whose determinant is a power of a prime. $H'^{-1}BH^{-1}$ is integral and of determinant prime to μ , if and only if for each of the divisors H_i of determinant $\pi_i^{r_i}$, $H_i^{r_i}BH_i^{r_i}$ is integral and of determinant prime to π_i .

In applying these conditions for a given prime π , we can replace B by any equivalent matrix. Before proceeding, we state the following two lemmas.

Lemma 6. For any odd prime π and integer t (> 0), if $\delta_1=(\alpha,2\eta,\beta)$, f is equivalent to a form with the residue

(4)
$$\pi^{u}(\alpha' x^{2} + \pi^{v} \beta y^{2}) \pmod{\pi^{t}}$$

where $\pi^u \| \delta_1$, $(\alpha' \beta', \pi) = 1$.

Acta Arithmetica XV. 1

LEMMA 7. For the prime 1+i, f is equivalent to a form with residue

$$(1+i)^u (a'x^2+(1+i)^v \beta' y^2) \pmod{(1+i)^t}$$

where $(1+i)^u \| \delta_1$, α' and β' are odd, or

$$(1+i)^{u}(jx^{2}+xy+jy^{2}) \pmod{(1+i)^{t}}$$

where j = 0 or 1.

The proofs of the above are similar to those for forms with coefficients in \mathbb{Z} .

The second possibility in Lemma 7 is excluded here since it cannot be transformed into a sum of two squares. Since |B| is a square, v is even, $(a'\beta'|\pi) = 1$ if π is odd, and $a' \equiv \beta' \pmod{(1+i)^5}$ if $\pi = 1+i$.

We apply to f, assumed to have the residue (4), the inverse of transformation (3) with $\mu_1 = \pi^r$, $\mu_2 = \pi^s$, $0 \le N(\lambda) < N(\pi^s)$ and obtain a form congruent to a sufficiently high power of π to

$$f_1 = \alpha_1 x^2 + 2\eta_1 xy + \beta_1 y^2,$$

where

82

$$a_1 = \pi^{u-2r} a', \quad \eta_1 = -\pi^{u-2r-s} \lambda a', \quad \beta_1 = a' \lambda \pi^{u-2r-2s} + \beta' \pi^{u+v-2s}.$$

We wish to count the number of systems r, s, and λ for which $\alpha_1\beta_1 - \eta_1^2$ is prime to π and f_1 is integral and transformable into $x^2 + y^2$.

If $\lambda = 0$, then $\eta_1 = 0$, and α_1 and β_1 must be integers prime to π . This means that u = 2r and u + v = 2s. Clearly, $[\alpha_1, 0, \beta_1]$ can be transformed into [1, 0, 1]. Since v is even, the number of systems r, s, and λ in this case is $\frac{1}{2}(1+(-1)^u)$.

We now consider $0 < N(\lambda) < N(\pi^s)$. Set $\lambda = \pi^e \mu$, with μ prime to π and $e = 0, 1, \ldots, s-1$.

If u=2r, $\eta_1=\pi^{e-s}\mu\alpha'$ is not an integer. Hence, u>2r and η_1 must be prime to π in order that $\alpha_1\beta_1-\eta_1^2$ shall be prime to π . Hence,

$$u+e=2r+s$$
, $\beta_1=(\alpha'\mu^2+\pi^{2r+v-2e}\beta')/\pi^{s-e}$;

hence, $e=r+\frac{1}{2}v$. Also, $\alpha_1\beta_1-\eta_1^2$ is a square mod π for π an odd prime and $\pi=1+i$. Using Lemmas 1 and 2, we can show that $[\alpha_1,2\eta_1,\beta_1]$ can be transformed into [1,0,1].

Let π be an odd prime. Then $\alpha'\mu^2+\beta\equiv 0\,(\mathrm{mod}\,\pi^{s-e})$ has two solutions $\mu(\mathrm{mod}\,\pi^{s-e})$, and hence $\lambda=\pi^e\mu$ has two values $\mathrm{mod}\,\pi^s$. Now r can be given any of the values $0,1,\ldots, [\frac{1}{2}(u-1)]$; and for each value of r,s is uniquely determined by $e=r+\frac{1}{2}v,2r+(s-e)=u$. The number of systems r,s,λ is thus $2\left[\frac{1}{2}(u+1)\right]$. Including the case $\lambda=0$, the number of systems is

$$\frac{1}{2}(1+(-1)^u)+2\left[\frac{1}{2}(u+1)\right]=u+1.$$

Now consider $\pi=1+i$. Since x^2+y^2 cannot represent primitively an odd multiple of $(1+i)^k$ for $k\leqslant 4$, the same must be true of f_1 . Therefore, $u-2r\geqslant 5$ and $s-e\geqslant 5$ Also, $\alpha'\mu^2+\beta\equiv 0\,(\mathrm{mod}\,(1+i)^{s-e})$ has two solutions $\mu\,(\mathrm{mod}\,(1+i)^{s-e})$ and $\lambda=(1+i)^e\mu$ has two values $\mathrm{mod}\,(1+i)^e$. Again, r can be given any of the values $0,1,\ldots, [\frac{1}{2}(u-5)];$ and for each value of r,s is uniquely determined by $e=r+\frac{1}{2}v,2r+(s-e)=u$. The number of systems r,s,λ is thus $2\,[\frac{1}{2}(u-3)].$ Including the case $\lambda=0$, the number of systems is

$$\frac{1}{2}(1+(-1)^u)+2\left[\frac{1}{2}(u-3)\right]=u-3.$$

A glance at Theorem 2 in [4] shows that if π is an odd prime (of the form a+2bi), the number of representations of π^u as a sum of two squares is 4(1+u). Also, the number of representations of $(1+i)^u$ as a sum of two squares is $4\varepsilon_a$ where $\varepsilon_0 = 1$ and $\varepsilon_u = |u-3|$ if $u \ge 2$.

We may now summarize the preceeding results in the following theorem.

THEOREM 4. Let $f = ax^2 + 2\eta xy + \beta y^2$ be a binary quadratic form with coefficients in G and $a\beta \neq 0$ which can be expressed as a sum of squares of two linear forms with coefficients in G. Also, let $f = \delta_1 f_1$ where f_1 is primitive and of square determinant μ^2 . If $\mu^2 \neq 0$, the number of representations of f as a sum of squares of two linear forms is $2r_2(\delta_1)$; if $\mu^2 = 0$, the number is $r_2(\delta_1)$. Here, $r_2(\delta_1)$ denotes the number of representations of δ_1 as a sum of squares of two Gaussian integers.

We finish the section by proving two theorems which correspond to Theorems 2 and 3.

THEOREM 5. Let $f = ax^2 + 2\eta xy + \beta y^2$ be a binary quadratic form with coefficients in G such that $\alpha \neq 0$, $\beta = 0$ which is expressible as a sum of squares of two linear forms. Also, let $f = \delta_1 f_1$ where f is primitive and of square determinant μ^2 . If $\mu^2 \neq 0$, the number of representations of f as a sum of squares of two linear forms is $2r_2(\delta_1)$; if $\mu^2 = 0$, the number is $r_2(\delta_1)$.

Proof. If $\mu^2=0$, then $\eta=0$ and $\delta_1=a$. In this case, $f=ax^2$ and the number of representations of f as a sum of two squares is clearly $r_2(\alpha)$ or $r_2(\delta_1)$.

If $\mu^2 \neq 0$, then $\eta \neq 0$. For each a_1, a_2 in G such that $\alpha = a_1^2 + a_2^2$ and η is divisible by $\alpha_1 + ia_2$ or $\alpha_1 - ia_2$, we have $\eta = (a_1 + ia_2)\beta_1$ or $(a_1 - ia_2)\beta_1$. Thus, β_1 is determined as is β_2 such that $0 = \beta_1^2 + \beta_2^2$. The number of representations of f as a sum of two squares is twice the number of representations of α as $\alpha_1^2 + \alpha_2^2$ such that η is divisible by $\alpha_1 + i\alpha_2$ or $\alpha_1 - ia_2$. This is just the number of representations of δ_1 as a sum of two squares.

THEOREM 6. Let $f=ax^2+2\eta xy+\beta y^2$ be a binary quadratic form with coefficients in G such that $a=\beta=0$ which can be expressed as a sum

J. Hardy

84

of squares of two linear forms. The number of representations of f as a sum of two squares is $r_2(2\eta)$.

Proof. If $\eta=0$, $r_2(2\eta)=r_2(0)$ is infinite as is the number of representations of f as a sum of two squares. Suppose $\eta\neq 0$. From Theorem 3 we see that η must be even, and with every factorization $\eta=2a_1\beta_1$ there is associated a representation of f as a sum of squares of two linear forms. We have only to count the number of factors a_1 , β_1 . We may write $2\eta=i^r(1+i)^s\pi_1^{k_1}\pi_2^{k_2}\dots\pi_n^{k_n}$ where the π_i are odd primary primes, r=0,1,2,0 or 1,1,2,0 or 1,1,2,0 or 1,1,2,0 which is just 1,2,2,2,1.

References

- [1] G. L. Dirichlet, Recherches sur les formes quadratiques à coefficients et à indéterminées complexes. Journ. Math. 24 (1842), pp. 291-371.
- [2] Ivan Niven, Integers of quadratic fields as sums of squares, Trans. Amer. Math. Soc. 48 (1940), pp. 405-417.
- [3] A note on the number theory of quaternions, Duke Math. Journ. 13 (1946), pp. 397-400.
- [4] Gordon Pall, Sums of two squares in a quadratic field, Duke Math. Journ. 18 (1951), pp. 399-409.
- [5] Representation by quadratic forms, Canad. Journ. Math. 1 (1949), pp. 344-364.
- [6] L. W. Reid, The Elements of the Theory of Algebraic Numbers, New York 1910.

THE UNIVERSITY OF GEORGIA Athens, Georgia

Recu par la Rédaction le 23, 1, 1968

ACTA ARITHMETICA XV (1968)

On a problem of P. Erdös and S. Stein

by

P. Erdős and E. Szemerédi (Budapest)

The system of congruences

$$a_i(\bmod n_i), \quad n_1 < \ldots < n_i$$

is called a covering system if every integer satisfies at least one of the congruences (1). An old conjecture of P. Erdös states that for every integer c there is a covering system with $n_1=c$. Selfridge and others settled this question for $c \leq 8$. The general case is still unsettled and seems difficult.

A system (1) is called *disjoint* if every integer satisfies at most one of the congruences (1). It is trivial that in a disjoint system we must have

$$(n_i,\,n_j)>1 \quad ext{ and } \quad \sum_{i=1}^k 1/n_i\leqslant 1\,.$$

It is known that a disjoint system can never be covering [2] and that for a disjoint system we have [3]

(2)
$$\sum_{i=1}^{k} \frac{1}{n_i} \le 1 - \frac{1}{2^k}.$$

(2) is easily seen to be best possible.

Denote by f(x) the largest value of k for which there exists a disjoint system (1) satisfying $n_k \leq x$. P. Erdős and S. Stein conjectured that f(x) = o(x).

The main purpose of this paper will be to prove this conjecture. In fact, we prove the following

Theorem 1. For every $\varepsilon>0$ if $x>x_0(\varepsilon)$ we have $(c_1,\,c_2,\,\dots$ denote suitable positive constants)

$$\frac{x}{\exp\left((\log x)^{1/2+\epsilon}\right)} < f(x) < \frac{x}{(\log x)^{c_1}}.$$