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On some numerical constants associated with abstract

algebras II

by
K. Urbanik (Wroclaw)

1. Introduction. In this paper we wuse the terminology and
notation of [4]. E. Marczewski introduced in [2] the order of enlargeability
and the arity or the order of reducibility of abstract algebras. We recall
his definition of these concepts. Let A = (4; F) be an abstract algebra
and let G run over all families of operations in 4. Put

&(%) = min{n: /G\ ([A™(F) = A™(G)] = [A(F) D A(G)])}
and
o(W = min{n: A ([A™(F) = A™(G)] = [A(F) C A(G)])}

where the minimum of an empty set is assumed to be co. The constant
e(W) is called the order of enlargeability of the algebra UA. The constant
o(¥) (denoted in [2] by B(N)) is called the arity or the order of reducibility
of the algebra . In the sequel we shall sometimes write ¢ and g instead
of (%) and o(9A) respectively when no confusion will arise.

In [4] a relationship between the order of enlargeability and a sub-
stitute of the minimal number of generators was discussed. The aim of
the present paper is to give a description of all possible pairs (e, ¢) for
abstract algebras.

The p-enlargement E,(A) {(p > 1) of the algebra A was defined in [4],
Chapter 2. A relationship between the concepts of the order of enlargeahi-
lity and the p-enlargement is given by the following simple theorem
([4], Theorem 2.2):

(i) The inequality e(A) < p holds if and only if A= Eu(N).

If W= (4;F), then by Ry(A) (p > 1) we shall denote the p-reduet
(4; AP(F)) of . It is clear that

(ii) - The inequality o(N) < p holds if and only if A= Ry(A).

Many algebras usually treated in mathematies have small arity.
We say that an algebra U is rigid if the inequality (%) < ¢(%) holds.
As an example of rigid algebras we quote complete algebras over an at
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least two-element set, i.e. algebras for which every operation is algebraic.
In fact, for complete algebras we have the formulas e= 0 and p= 2

{see [3], [5]).

2. A class of rigid algebras with finite arity. In this

section we assume that p and ¢ are arbitrary positive integers satisfying
the inequality
(2.1) q=p+2.
Consider a 2(g+1)-element set 4, = {ay, @y, ...y dgt1, b1y Doy oovy bgta}. Put
By = {a,, a5, ..., 0p—1, iy Op1y <oy Gg1} (k= 1,2, ..., ¢+1). Further, for
every n-tuple o, %, ..,% (n=1,2,...) of elements of the set 4, we
define a set Dpy(vy, 03, ..., vn) 28 follows:

1. Dp(v1, Vsy ey Pn) = {04, Vs, ..., ¥} if one of the following cases holds

a. card{vy, vy, ..., va} < P,

b. card{vy, vsy ..., va} = p and {v,, v,, ..., v} ¢ By for every index k
(k=1,2,..,¢+1),

c. there exist two different indices k¥ and s (k,s=1,2,...,q41)
such that {v, v, ..., 7.} C By~ B;.

2. Dp(vy, Vay .y ¥n) = By if card (v, vy, «.., 0} = B, {01, Vs, .., 94} C By,
and {vy, vs, ..., s} ¢ B, for every index s #% (s=1,2, ..., g+1).

3. Dp(vy, Dy ..., ¥a) = A, in the remaining cases, ie. if
card{v;, %, ..., ta} >p and  {vy, vy, .., ¥} ¢ By
for every index k (k=1,2,..., ¢-+1).

It is easy to verify the following inclusions

(2.2)  Dpl, sy ey i) C D15 D35 vy Vn)
B {uy, U, wory Um} C {01, ¥y, oovy Vn},
(2.3) Dp(vy,y sy ooy ) C By, if {01, Vay ooy 0} C By

Hence we get the inclusion

(24)  Dp(ty, g,y evy um) C Dy(v1; Vay <.y Vn)

i {ug, sy ooy Un} C Dy, 0y, vy Up) .
) LEMZ\[A 2‘.1. If n>q and ueDylvy, vy, ..., vn), then there exists an
inder i (1 <4< n) such that u e Dip(V1y Vay eery Biyy Vit1y eeey Un)e

Proof. First consider the case Dp(v1, V24 vy Vn) = {0y, 0y, ..., Oz}

Then u = %, for some index s (1 < s< n). Taking 4 G
. 1<ig
have the formula sesm grrfsism e

U € {Dyy Doy iny Bi1, Diga,y eory Op} = Dp(0y, Doy evey Vimay Vigay oury )
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Now consider the case Dp(vy, v, ...,%)= By (k=1,2,..,¢-+1).
‘Then either by € {01, Vs, vy Tn}y {0y, Vo ...y 02} C By, and card {v;, Tay w., O}
=P O {y, Vs, ..., vu} = Bi\{bx}. Taking into account (2.1) and the
inequality #>¢, we infer that there exists an index i (1< i< n)
satisfying the condition v;  ¢; and card{v,, Ve, ...s Vi1, Viz1y ey Un} =P if
by € {01, 3, ..., 22} and the condition {v, v,y ...\ Vi1y Vigy ooy Un} = B\{bi}
otherwise. In both cases we have the equation Dpu(®,, Vs, ey Dimgs Vi1 eer s On)
cees i1y Vitiy oeey ’L'n).
Finally consider the case

(2.5) Dy, Vay ooy ¥n) = Aq.

.y On} < M, then there exist two different indices ¢ and j
(1 <4,j <mn) such that v; = v;. Hence it follows that Dy(v;, sy ..., Vi1,

“Vit1y -y Vn) = Ag and, consequently, u e Dy(s, Toy ooy Vimiy Pit1y eery On)e
Suppose now that
(2.6) card{v,, sy ., On} =N .

‘If there exists an index 4 (1 < 7 < n) such that {o,, Vay <oy Vic1y Vig1y ooy Un}

¢ B; for every index k (1 <k < ¢-1), then, by (2.1), (2.6) and the in-

-equality » > ¢, we have the formula Dy(vy, To, ooy Vi1, Vit1y ooy Vn) = Ag.

Thus % € Dp(vy,y gy vy Dio1y Vit1, --y Pu). 10 the opposite case, for every

‘index 4 (1 <4< n) there exists an index k; (1 < ki< ¢+1) such that

{4,y Vay eery Dicay Vit1y -y U} C By, We shall prove that k; # k; whenever

4 £ j. Indeed, the equation k; = k; would imply the relation

{01y Doy ooy Vn}

= {01,y Vay ooy Dim1y Vigy ooy Tn} U {0y Doy eevy Vi1, Vig1y oeey Vn} C By

:and, consequently, by (2.3), the inclusion Dy(vy, s, ..., ¥s) C By, Which

would contradict (2.5). Thus k; 5= k; if ¢ # j. Hence and from the inequality

-0 > ¢q it follows that

(2.7) n=q-+1.

"Moreover, by the inequality ¢ = p+2 > 3, for every index j (1 <j< n)

we have the relation

V5 Eﬂ {01, 02y vy Vicay Viga,

1#]

ooy Un} C_Q By, C{ay, Ggy ey Ggi1} -
i#

‘Thus, by (2.6) and (2.7), the n-tuple v, %, ..., 7, is a permutation of
By Oy ey Ggr1. I %= @5 OF %= by, then taking an index ¢ such that

v; # as and v; = a, respectively, we get the formula u € Dy(v;, vsy «.ry Vi1,

“Dgi1y ..., V) which completes the proof.

Let F, be the class of all operations f on A, such that f(v;, v, ...; Tn)

-€ Dp(y, Vs, ..., 0a) for all n-tuples of elements of 4,. The class Fp contains
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all trivial operations and, by (2.4), is closed under the composition. Put
Wpo = (dg; Fp) for any pair of positive integers p, g satisfying condi-
tion (2.1). Of course, A(p,q) = Fp.

LEMMA 2.2. For every (g-+1)-ary algebraic operation f in Ry_1(Wp.q)
the relation
(2.8)
holds.

Proof. The class of all (¢-+1)-ary algebraic operations in R,_.(Uy,q)
is the union G AP™ where the classes AY™

k=0

follows

Fays @yy ey Bgia) € {01, Gy, ey Bga)

are defined recursively as

(g+1; @+1) lg+1) (-1
AO )—_—'{el-r :eﬁ-r 7-“,844—"—1}9

AT = ATV O {g(fir foy oo fam1): 9 € ASD(Wng) , fr e ATV
i=1,2,.., q—1}

(see [1], p. 47). Let f be an operation from AL™. We shall prove the
lemma by induction with respect to k. If k = 0, then the operation f is
trivial and, consequently, relation (2.8) is obvious. Suppose that k> 1
and relation (2.8) holds for all operations from AZ'Y. Moreover, we may
assume that the operation f does not belong to AY*Y. Then it can be
written in the form

(2.9} fl@, @y -0 ) Tg1a)

= g(fl(“‘u Loy wney Tgi1)y fol 15 Tay wony Tgga)y eory foma(2y, 2o, ey wq+1)):

where g e AC(,,,) and f; e AT (j=1,2, ..., ¢—1). Consequently, by
the inductive assumption,

I8y, Gay ey Bg1a) € {0y, 05, vy lgal (J=1,2,..,q9-1).

Hence and from (2.9) it follows that

(2.10) (@, 8y, ...y ag41) = 9(@ss @iy <oy @iy )

?vhe.zre {1y 82y ey 11} C {1, 2, ..., g+1). Consequently, there exist two
md_l.ces 87#7r (1<8,r < g+1) which do not belong to the set {iy, 4y, ...
3 tg-1}. Thus we have the inclusion

{84, asy, ..., @;,,} C By~ B,

which implies the equation Dy(a;,, as,, ..., Gipy) = {04, @4y, ..., 0, }. Hence
and from (2.10) we get the relation flayy gy ...y ag11) € {ay, @y, .

- oy aq+1}
which completes the proof of the lemma.
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LeMmA 2.3. Let vy, ¥s, ..., Un be an arbitrary n-tuple of elements of A,.
Every operation f, satisfying the conditions

F(01y 0oy ooy ) € Dp(ty, Byy ey Dn)  and  f(Zy, Tay oy Tn) = o

for [@y, @ay ooy Tu] 7 [0y Vay ooy ), B8 algebraic in the algebra Ry(Wy,)-

Proof. We shall prove the lemma by induction with respect to n.
It is evident that each operation satisfying the condition of the lemma
is algebraic in the algebra Ap,,. Consequently, our statement is true for
n < g. Suppose that #» > ¢ and that the lemma is true for (n—1)-ary
operations. Put = f(v;, v, ..., vn). By Lemma 2.1 there exists an index 4
(1<i<n) such that ueDy(vy, Vo, .oy Vi1, Vit1y ..oy Un). First consider
the case ¢ >1. By the inductive assumption the operation g, defined
by the formula g(vy, Do, .ecy Uiz, Vizry ooy Tn) = % aNd G(By, Loy coey Tiv1,
ZLit1y ey Bn) = &, Otherwise, is algebraic in the algebra Ry(¥pq). Further,
the ternary operation h, defined as h(v,, v, %) = u and h(w, 2, ;) = 2,
otherwise, is algebraic in the algebra Ry, ,) because of the inequality
¢ = p-+2 > 3. Thus the composition fy(@,, Ts, -.., &n) = k(2y, Tty §(F1, Ty -..
vy Wiy, Tin1y oy ¥a)) I8 algebraic in Ry(Wp,). It is easy to verify that
JolV1y Yy ooy ) = u and fo(@y, ¥ay .oy 2n) = 4, otherwise. Thus f= f, and,
consequently, the operation f is algebraic in Ry(Wp,).

Now consider the case 4= 1. Of course, we may assume that all
elements v, v3, ..., vn are different, because in the opposite case as the
index 7 an integer greater than 1 can be taken. Since n >¢>p+2> 3,
there exists an index r (2 < r < n) such that v, # u. Setting gy(vs, Vs ...y 0n)
==, ho(ty, Vr, u) = w and @go(&y, T3y «ony Tn) = Lr, ho(Xy, 23, 25) = 2, other-
wise we get, by the inductive assumption, algebraic operations in
the algebra Ry(Wpq). Consequently, the composition fi(xy, %o, ..y Ta)
= ho(®y, €r, Gol@2; &gy --r, Tn)) is also algebraic in Ry (Wp,o). Since fi(v;, vs, ...
weytn) =u and fi(z,, @5, ..., ¥») = x; otherwise, we have the equation
f=17F,. Thus the operation f is algebraic in R,(¥,,), which completes
the proof.

LeEya 2.4, Let 9y, Dyy ..., 0n be an arbitrary u-tuple of elements of
the set Aq and let g be an arbitrary n-ary algebraic operation in the algebra
Ro(Wpq). Ewery operation f satisfying the condition

S0y Oag ey ©n) € D1, Vay ey Tn)  @nd F(y, Doy oney Tn) = G{By, oy ey Ln)
for [y, @ay wovy Tn) 7 [01, Toy ooy ] i algebraic in the algebra Ry(Wp,g).
Proof. Put % = f(2y, Uy ..., %) and 2= g(vy, vz, ..., ¥a). Of course,
% € Dp(v, Uy, Bay oy n, w). We define two auxiliary operations h and k, as
Tollows: (1, Uy euey Vn) = Bo(By Uyy Vay eoey Tny 4) = % a0 h(2y, &y, oF Tn)
= ho(ty, Xy veoy Xpyo) = &, otherwise. By Lemma 2.3 both operations h
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and R, are algebraic in the algebra Ry(WUpg). Consequently, the compo-
sition

Jol@ys @y ooy 2n) = ho(g(a’l’ Tyy weny Tn)y Lyy Loy oony Ty B(@yy Bay ooe sy ﬂ&'n))

is algebraic in Ry(Wy,e) too. From the equations

Fa(01y Doy evy ) = R0, 01, Vgy wevs Vny W) = U
and

Fol@yy Loy woey Tn) = Bolg (s, Tay vevy Tn)y Byy By ooy Tny Ty} = g(®y, Bay weny Tn)

for all n-tuples #;, Z,, ..., Zn different from the n-tuple v, vsy ..., vn We
get the formula f = f, which shows that the operation f is algebraic in the
algebra Ry(Up,e). The lemma is thus proved.

TaEorEM 2.1. For any pair p,q of positive integers satisfying the
inequality q = p-+2 the formula o(Wpq) = g holds.

Proof. The algebra %, is finite. Consequently, by consecutive
application of Lemma 2.4 we obtain that each algebraic operation in U,
is also algebraic in Ry(Wpe). In other words, Wy, = Ry(Wp,e) which, by
proposition (ii) in Section 1, implies the inequality o(p,) < ¢.

Put h(ay, @y, ..., Ggs1) = by and h(zy, 2y, ..., Tg41) = %, otherwise. Since
Dylay, agy ...y Ggr1) = Aq, the operation b is algebraic in 2,,. On the
other hand, by Lemma 2.2, it is not algebraic in Wy—1(Rp,q). Thus Wy,
% Ry-1(Wpg), whence, by proposition (ii) in Seetion 1 the inequality
2(Upg) > g follows.

THEOREM 2.2. For any pair p,q of positive integers satisfying the
inequality q = p-+2 the formula e(Wypq) = p holds.

Proof. Let # be an integer greater than p and f an arbitrary n-ary
algebraic operation in the p-enlargement €,(%p,). We shall prove that
the operation f is algebraic in the algebra Ay,,, i.e. for every n-tuple
Uy, Vs, ..., Un Of elements of 4, the relation

(2.11) Flvrs vy vy On) € D1, Dy ooy )

holds. If Dy(vy, va; -, ¥a) = A, then the above relation is obvious. Suppose
that card{v,, s, ..., 22} < p. Then we can choose a system 4, 4y, vy ip
of indices for which the equation

(2.12) {Diry Biny oy Vip} = {04, sy ooy Va}
holds. For any k. (1 <k < n), let ji denote the least index 4; for which
Op = Ti,. PUb fo(@s, Tiy, oo, 2) = fl25, #4yy ooy T4,). OF course, the oper-

ation. f, is algebraic in the algebra U, and

Flor, 9ay ooy 20) = Jo(Diys Uiy, ey Ui o

icm®
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Consequently, f(vy, s, ..., ¥n) € Dp(Vsy, ¥y, oovy ¥5) Which, by (2.2) and
(2.12), implies relation (2.11).

Tt remains the case {05, 9;, ..., va} C By for an index k& (1 < k < g+1)
and card {v,, vy, ..., ¥a} > P. Let &y, &, ..., k- be the system of all indices ks
for which the inclusion {vy, ¥, ..., ¥a} C By, holds. Of course,

(2.13) Dp(yy Vg ey V) =By, if r=1
and
-
(2.14)  Dy(Vyy Vay voey On) == {Vy, Vgy «ey Un} = ﬂl By, i r>1.
o=

Since ecard {v,, ve, ..., 9a} > p, We may assume without loss of geverality
that the elements v, ¥, ..., Up—1 are different and do not belong to the
set {by, by, ..y bg+1}. Consequently,

(2.15) Dy(yy Uay eevy Vpo1y b)) = B,  (s=1,2,...,7).
Setting gs,s(Vss Doy <oy Up—1, bis) = v; a0 5,5(%1, Ta, .., Bp) = @, Otherwise

(j=1,2,..,m; s=1,2,..,7), we get algebraic operations in Wpq-
Thus the compositions

Joly, @ay ooy Tp)
=‘-f(g1,s(0«"1, By ey Bp)y J2,s(@1y Tay ooey Tp) s oy Gs{@yy Loy oery "z’p))
(8=1,2,..,7)
are algebraic in 2, too. Consequently, by (2.3) and (2.15), we have the
relation fs(vy, Vay -y Vp-1, brs) € B, (8=1,2,...,7). Hence in view of
the equations f(v1, Vg, ..., Un) = fo(¥sy Doy very Vp—1, bis) (s =1,2,...,7) We
r
get: the relation f(vy, ¥y, ..., %) €[ ) Br, Which, by (2.13) and (2.14), implies
8=1
relation (2.11). Thus we have proved that each operation algebraic in

Ep(Wpg) is algebraic in Wy ,. Hence the equation Wy, = Ep(Up,e) follows.
Consequently, by proposition (i) in Section 1, we have the inequality

(2.16) e(Upg) <P -

From the definition of the sets Dp(vy, vy, ..., a) and algebraic opera-
tions in Ap 4 it follows that each subalgebra of %, generated by p elements
either is equal to By (k=1,2, ..., ¢+1) or consists of p elements. Thus
the minimal number of generators of Ay, is at least p-+1. Consequently,

7o(¥pg) > p-+1 and, by Theorem 6.1 in [4], &(Ung) > yo(Upg)—1>p
which together with (2.16) implies the assertion of the theorem.

8. A class of rigid algebras with infinite arity. In the
sequel we shall use the following analogue of Theorem 12.2 in [4].

TaEOREM 3.1. Suppose that the algebra W contains an algebraic cons-
tant ¢ such that
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() if fe AY) and f(z,¢,¢, ..., ¢) = =, then the operation f is trivial,

(il) for every system fi,fo, ..., fn € AD®) (n > 2) of non-trivial oper-
ations satisfying the condition fi(c) = fao(c) = ... = falc) there exists one and
only one operation h e A™(N) for which the equations

B(usgy togy coy tng) = fi(@)  (J=1,2,...,m)
hold, where ‘

(81) wy=2a ad wg=c¢c Y ix£] (5,j=1,2,..,m).

Then &(U) = y(W) if yo(W) > 2 and £(A) <2 if (W) <L

Proof. Since, by the assumption, each n-ary algebraic operation
in % is uniquely determined by its values on the n-tuples %, sj, ..., Uns
(j=1,2,..,n) defined by formula (3.1), we infer that the algebra %A
bas property (%) defined in [4], Chapter 7. Since both exceptional alge-
bras J; and J, defined in [4], Chapter 8 do not satisfy the conditions
of the theorem, we infer, by Theorem 9.2 in [4], that

(3.2) 2(A) = yo(A) .

XYow we shall prove that the algebra U has property (%) defined
in [4], Chapter 12. Let g be an n-ary operation (n > 3) such that for
all operations g, gs, ..., gn € A" (A) the composition g(gy, gay -y gn)
belongs to A"~ (). First, let us suppose that g(z, ¢, ¢, .., ¢) = a. Then,
by property (i) of the algebra %, we have the equation g(wy, oy, ..., @1,
Tjy Tizay ey @a) = @ for all indices ¢, satisfying the inequality 2 <3
< j(j #. Hence and from the inequality # > 3 it follows that (B, By euey Bn)
= €1 (1, &y, ..., Ts) Whenever the n-tuple w, 2,, ey Ty containg at most
two different elements.

Now it remains the case where all operations

{3.3) Ji(@) = g(tas, gy ooy Ung) (=1,2,.,%),

where u;; are defined by (3.1), are non-trivial. Of course, the operations
Jisfoseeesfu arg'algebraic in A and fi(e) = file) = ... = fu(c). Consequently,
by property (ii) of %, there exists an operation h eA(")(‘II) such that

(3.4) B (Usgy Uy oeey thng) =filz) (j=1,2, weey )
for n-tuples w7, Us), ..., Uny defined by (3.1). Given 1 < i < j < n, we put
”‘J‘(mﬁ 2'/) = g(z.l: Ry erey 2n) 1 wl':’("z"; :‘/) = h(zla Bay wey 2n) ?

where z; = z, 2; = y_and #p=cif k 5 1, §. Since n > 3, the operations Viz
and wy are algebraic. Moreover, by (3.3) and (3.4), vy(z, ¢) = we(w, ¢)
and vy(c, y) = wylc, y) which implies the equation

(3.5) y=wy (5,j=1,2,..,n; i<j).

e ©
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Further, setting
Gra(®ry Tay eaey Tn) = (L1, Toy cony Pro1y By Tty ooy Tn) 5
Trs(®yy Ty veey Tn) = Ry, Bay oy Tro1y Psy Trg1y ey Tn)
for each pair of indices » << s (r, s = 1, 2, ..., n) we get algebraic operations
satisfying the conditions
Gis(Uazy Usgy vry Unj) = g(C5 €, ouuy e),
Tiys(thasy Ungy oovy Ung) = B(Cy €y wvy €)
Gri(Uagy Unjy ovy Ung) = Vrj(E, 2) ,
Bri(tagy Usgy vory Ung) == Wes(2, X)
and for j 7, s the conditions

[]m(’lhj, Usjy ooy Ung) = g (U1j, Uzfy or ) ’
Tors(Ungy Usgy oeny Ung) = B{U1g, Uejy oony Ung)

where the n-tuples ty, Uy, ..., Uny are defined by (3.1). Hence and from
(3.3), (3.4) and (3.5) we get the equations
Grs(Ungy Usngy ooy Ung) == Tas(Uag, Usngy eey Ung)  (J, 7,8 =1,2,..,m5 7 <8).

Since both operations g.s and &, are algebraic and, consequently, uniquely
determined by their values on the 5-tuples s, tej, ..., Ung (=1, 2, ..., 1),
the last equation implies the identity grs= hys (r,8=1,2,...,m; 7 <$).
Hence it follows that g(@i, %y, ..., ) = b (%, oy ..., ) for all n-tuples
By, Ty, oy Tn cONbaining at most two different elements. Thus the algebra A
has property (3%%).

By Theorem 12.1 in[4], we have the equation &(U) = po(A) if yo(A) = 3
and the inequality () < 3 if y,(A) < 2. Consequently, by (3.2), it remains
to prove the inequality () < 2 for y4(A) < 2. To prove this inequality
it suffices, by the inequality £() < 3, to prove that each algebraic
ternary operation g in E,() is algebraic in A. Put
(3.6) fﬁm):g(m,c,c), fz(w)zg(07x7c)y fs(m)=g(0,c,aS)
and
(8.7) duy,2) =gle,y,?), dolm,2) = g(@, ¢,2) , dyl@,y) = g(x,9,0).

Of course, the operations f; and d; are algebraic in 2. Moreover,
(3.8) dy(e, ) = dofe, ) = fulz) ,  d(y, ¢) = da(c, y) = foly)
' dy(@, ¢) = dy(z, ¢) = fi() .

Now we shall prove that there exists a ternary algebraic operation &
in U such that

(3.9) g@,y,2)=h(z,y,2) i cefz,y,2.

Fundamenta Mathematicae LXII 14
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First, let us suppose that at least one operation f; is trivial. Without IOS‘S
of generality we may assume that fy(#) = «. Then, by (3.8) and condi-
tion (i), we have the equations do(z, 2) = dy{w, y) = & and dl(g), 2) = e.
Consequently, according to (3.7), the operation h(z,y,2) = €1 (%, ¥, ?)
satisties (3.9).

Suppose now that all the operations fi,f» and f; are non-trivial, Sin(,je
fi{e) = fule) = fulc), there exists, by condition (ii), a ternary algebraic
operation h such that

fl(.l‘):h(:l‘,c,(‘), f?(m):h(cyw;a)y

Moreover, by (3.8) and condition (ii), we have the equations

fa(m) = h(C, Cy x) .

dl(yaz):h(cyyrz)v dz(m,z)zh(x,c,z), da(my y):h(w,y,c)

which together with (3.7) imply (3.9).

Let b be an arbitrary algebraic constant in %M. Put vy(z, y) = ¢(z,y, b)
and w(x,y) = k{z,y,b). The operations v, and w,; are algebraic in A
and, by (3.9), u(c,) = wile,y);, v, ¢)=wi(z,c). Consequently, by
condition (ii), », = w,, i.e.

(3.10) gle,y,b) = h(z,y,b) i becAOA).

For any pair ¢;,¢. of unary algebraic operations in U we put vy(z, y)
= gle, (), @y)) and wyz,y) = h(z, (y), ¢:(y)). Both operations v,
and w, are algebraic in % and, by (3.9) and (3.10), e, y) = wale, ¥),
w(e, ) = wy(z, ¢). Consequently, by econdition (ii), ©,=w,, i.e.
g(z, (v), 6:(9) = k(z, @(y), ¢(y))- Hence we get the formula

(3.11)  glaula), B®), 6(2) = h(0(®), 6:(@), (@)  H @, oy G5 € AD)
Further, for any triple ¢;, ¢, and g of binary algebraic operations in A
we pub

7}3(,’1}, y) = g(gl(x) '.'/)1 gz(wi .1/), gg(ﬂf, ?/)) and

wa(m, y) = h(gl(mr :‘/)7 gz(w’ ?I): ga(my ’!])) .
PBoth operations v, and w, are algebraic in 9 and, by (3.11), v4(c, ¥)
= wmy(c, ¥), V32, ¢) = wy(x, ¢), which, by condition (ii), implies the identity
vy == Wy. Thus
(3.12)  gloulr, ¥), 9a(x, Y), g5le, V) = hga(@, 9), 9o(2, Y), gal@, 9))
for all ¢y, ¢, g € AD() .
Let a,, a5, a; be an arbitrary triple of elements of . Since y,(A) < 2,

there exist elements b,, b, e % and operations g,, g, ¢; ¢ AD(A) such that
a; = ¢j(by, by). Taking into account (3.12) we obtain the equation
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g(@y, @, a3) = h(ay, a,, a;) which implies the identity g= h. Thus the
operation ¢ is algebraic in U which completes the proof.

Let 4, be the set of all rationals and F, the family of all operations f
of the form

3
f(w17w2ﬂ-"7a’n)=207'mj+a' (n=1,2,..),
=1

where ¢, €y, ..., ¢z are non-negative even integers and a ¢ 4,. 'We denote
the algebra (4y;F;) by Wieo.
For any p satisfying the inequality 2 < p < oo we put 4, = {0, 1, ...
wy p+1}. Let F, be the family of all operations f, (n =>1) defined
n

as fn(ml,mg,...,mﬂ);zl‘,‘zw,- (mod4) if {zy, @, ..., 2,3 C {0, 1,2} and
i~

Sul®yy @y ooy @) = 0 otherwise. The algebra (A4,;F,) will be denoted
by Wp,eo.

THEOREM 3.2. For any p satisfying the inequality 1 < p < co the
formulas e(Wpeo) =P and o (Wp,c0) = co hold.

Proof. First consider the algebra ;. Since all its elements are
algebraic constants, we have the formula yy(i,) = 0. Moreover, the
algebra Uy o satisfies conditions of Theorem 3.1. Consequently, &(Wi,) < 2.
Obviously, Uy, is not the complete algebra over the set 4,. Therefore
we have the inequality &(i,.) = 1. Consequently, to prove the formula
£(MWy,0) = 1 it suffices to prove that each binary algebraic operation f
in €(W,) is algebraic in . For such operation f and for arbitrary
elements a and b from 4; we have the formulas

fla,y) =cy+du, flw,b)=erntg,

where either ¢4, ¢, are non-negative even integers and dg, g5 € 4; or ¢, =1,
do=0 or ¢,=1, g, = 0. Hence we get the equation

cb+do=epatgy (a,bed;).
Consequently,

doa=eatgo, Go=cb+d+dy, ebt+di=eatg, aatg=~cotd,.

Thus e = (¢,— 6y)b+ ey and ¢, = (¢;— ey)a+ ¢, for all rationals ¢ and b.
But this is possible only if ¢, = ¢,, ¢, = ¢,. Hence we obtain the equation.
fla,y) = ea+cy-+d, for all e A, and the equation f(z,bd)= ew-+
4 ¢b+dy for all b e A,. Moreover, the equation ¢, = 1 implies the equation
6b+dy=10 for all be A, and, consequently, the equation c,= d, = 0.
In the same way we prove that the equation ¢, = 1 implies the equation
ey = dy = 0. Thus either f is a trivial operation or ¢, and ¢, are non-negative
even integers and f(z, y) = €@+ ¢y +d,. In both cases the operation f
is algebraic in Ay, which completes the proof of the formula &(Wy,e) = 1.

14*
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It is clear that the operation ) 2x; is algebraic in U e and is not
j=1

algebraic in Ry 1(We) (n=2,3,...). Hence and from proposition (ii)
in Section 1 we get the formula (W) = oo.

Now consider the algebras U, . for p > 2. It is evident that each
non-trivial n-ary algebraic operation f in %, is either identically equal
to 0 or of the form

Fley, xay ooy i) = Filnyy @y, o0y 24)

where 1 <k <n and 1 <4, < iy < ... < i < n. Henee it follows that the
set A,\{0,2} is the only set of generators of the algebra .. Thus
¥o(Wp,) = p. Moreover, the algebra 9, satisfies conditions of Theorem 3.1
which implies the equation &(¥p) = p. Further, it is easy to verify that
for all non-trivial algebraic operations f and g in U, the equation

f(g(-”u Loy eeey &)y Yoy veey '.’/111) = f(0, Yay ory Ym)

is true. Hence it follows that the fundamental operation Ju (92 2) is not
algebraic I Ru—1(UYp). Consequently, by proposition (ii) in Section 1,
0(¥p,0) = oo which completes the proof of the Theorem.

4. Algebras whose order of enlargeability is 0. The purpose
of this section is to compute the arity of algebras whose order of enlarge-
ability is 0. First we shall prove some lemmas.

Leywa 4.1, If e(A) = 0, then AOA) 5= Q.

Prooi. Contrary to this suppose that ()= 0 and A0 = @,
Hence, in particular, it follows that the algebra in question contains
ab least two elements. Let a, b be a pair of elements of 9. We define two
operations f and g as follows: f(a) = b, f(b) = @, g(b, b) = b and f(z) = =,
9{(#, ¥) = a otherwise. Denoting the carrier of A by 4 we pub Wy = (45 {f})
and %, = (4; {g}). Since AOI) = AOY,) =@, we infer that both
algebras 9, and 9, are reducts of the algebra 9. Consequently," both oper-
ations f and ¢ are algebraic in 9. But the composition g (w, f(#)) is a constant
operation identically equal to & which contradicts the equation AOA) = @.
The lemma is thus proved.

LevyA 4.2. Let B,, B,,..., B, be disjoint subsets of the carrier of an
algebra A with ¢(AYy = 0. Then the (k+2)-ary operation hp,p, .. 5, defined
by the condition BBy By, B®1, By oy Bpops) = 5 if aIZHz €By(j=1,2,..,k)
and by, .. 52, T, very Bog2) = Tpgy Of Tpysd \J B; is algebraic in the
reduet Ry(3). =

Proof, We shall prove the lemma by induetion with respect to .

First consider the case % = 1. By Lemma 4.1 there exists an algebraic
constant, say ¢, in . Put Gt y)=a it yeB,, glz,y)=c if Yy ¢ By,
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g, y)=1c it yeB,, golw,y)=a if y¢B, galw, )= gslc, ) =2 and
¢:(z, y) = ¢ otherwise. The operations g,, g, and g, preserve the algebraic
constants in U and, consequently, are algebraic in % because of the formula
&(A) = 0. Moreover, being binary operations they are also algebraic in
Ro(A). Further, it is easy to verify the equation

hupy (215 gy 73) = g;(gl(‘l"l: T3) , Go( s, ”'a))

which shows that the operation hp, is algebraic in Ry(20).
Now suppose that k> 2 and the (k+1)-ary operation hp, g, .. Bes
is algebraic in Ry(A). Since

h'Bth,...,I};.-(ir'l, Ty eeny Tppa) = hB(hB‘thnusB}d~1(m17 Loy veey Xy mk+g), Erp1y sz) ,

13
where B = |JB;, we infer that the operation hg g, ..z, is algebraic
j=1

in Ry(A) which completes the proof.

It is evident that ¢ = ¢ = 0 for one-element algebras only. Moreover,
it is well known that the arity of the complete algebra over an at least
two-element set is 2 (see [3] and [5]). Now we shall prove a sharpening
of this theorem. We note that for infinite algebras the proof is bhased on
the axiom of choice.

THEOREM 4.1. If A is an algebra over an at least two-element set and
(W)= 0, then o(A) = 2.

Proof. Let A be the earrier of the algebra % and @ % B = A. Then
the ternary operation hy defined in Lemma 4.2 is algebraic in %A and,
of course, depends on every variable. Thus % cannot be a unary algebra
and consequently, ¢(2) > 2. To prove the converse inequality it suffices,
by proposition (ii) in Section 1, to prove that each n-ary algebrac oper-
ation in 4 is algebraic in R,(A). We shall prove this statement by induction
with respeet to n. For n < 2 it is obvious. Suppose that » > 2 and that
the statement is true for (n—1)-ary operations. Let f be an arbitrary
n-ary algebraic operation in 9. We shall consider three cases.

Case 1: card4d <n,. The set AO) of algebraic constants in 90
will be briefly denoted by A©. Further, we introduce the notation A©®
= {61, €a; oo, &} DA ANAO = {dy, dy, ..., do}. Pub By = {er} (k= 1,2, ..., #)
and ’

Gi{®yy oy ooy 20) = hBIsz.-.-gBr(f(mli Ly weey Bj=15 C1y Lig1y ooy Tn)y
Fyy Bay oy @pety Coy Bigay wony n),y o
s S8y oy ooy By, Oy Bj1y ooy Tn)y @ny ) (5=1,2,.0,m) -

By Lemma 4.2 and the inductive assumption, the operations gy, gs, ..., gu
are algebraic in Ry(%). Moreover, gy(@, o, ..., Bn) = f(&y, %y, ... @) if
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@3¢ AD. Now we define operations h,, h,, ..., b, recursively as follows

hy(yy Bay ey Bn) = Go(1y Tay oony Tn)

Riesa(®yy @y oy Bn) = hB(gk—H(mu By eey L)y Gu(Bry Doy oey Tu), mn)
(k=1,2,..,n-1),

where B = A® and the operation hp is defined in Lemma 4.2. Obviously,
the operations hy, ks, ..., ks arve algebraic in Ry(N). Moreover, it is easy
to verify that ke, 2, ..., Ta) = f(@1, By, .o, Tn) if @€ A® for some
undex ¢ satisfying the inequality 1 < ¢ < k. In particular, we have the
equation

(£1) hn(@y, X2y ooy Tn) = f(2y, 0oy ooy 2a)  if

From this equations it follows that the operation f is algebraic in Ro(A)
it A= A®. Suppose now that A # A® and put (@, &y, ..., Lus)
= [y, Bpy ooy Tu1, dp)  all @y, @y, ooy @y ¢ AO and pj(@, Fay vy Tn-1) = €
otherwise (j=1,2,...,s). The operations p; preserve all algebraic con-
stants in % and, consequently, are algrebaic in . By the inductive assump-
tion they are also algebraic in Ry(2). Thus the composition

{1, Toy ooy T} N A® £ @,

D@y, Tyy ooy n)
= hp,,p,,... n.,(px(f(’“ Doy veey Tn1)y Dol Ty, Loy voy Tpmy)y oo
woy Doy Bay vovy Tny) @y, mn) )

where D; = {d;} (j=1,2,...,5) and the operation hp,,p,,..., D, 18 defined
in Lemma 4.2, is algebraic in Ry(9). Moreover,

(42) p(@, @,y oy ma) = fl@y, @y, ooy m)  if @, @y s} N AO =@,

Now we define auxiliary operations ¢,, ¢, s ... Tecursively as follows
Gl#1y B2y 5) = hip(ay, @5 @) ,

Gi11(ys By wory Bjyg) = !lj(“’/'u (T, Ty, Diys), s, ey """7’+2)

where B = A® and the operation % is defined in Lemma 4.2. Of course,
all these operations are algebraic in Ro(A). Moreover, ¢y(y, Ly, ..., £515) = 2,
if #; € A® for some index 4 satisfying the inequality 3 <i < j+2 and
41{(®yy T3, ..., Bjys) = @, otherwise. The composition

Sol2yy @, ..., Ta) = Qﬂ(hn(mu Tayeuey Zn)y (@1, Toy ovy ), Lyy Ly ey a'ﬂ)
is algebraic in Ry¥) too. If {#1, %2y ..y @} A A® 3 &, then, by (4.1),

Jolzy, 2o, ooy &) = Ra(y, T, ..., Tn) = f(@1, Tay o.v, @)

(j=1)2:--~)7 :
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Further, if {m, @, ..., &} ~n AQ = @, then, by (4.2),
Jol@ys @ay ooy ) = p(2y, 2, wey @n) == f(®y, Zay oo, @)

Thus f= f, and, econsequently, the operation f is algebraic in Ry(A) which
completes the proof of Case 1. ‘

Case 2: card A® < n, and card 4 > . Denoting by B* the Cartesian
product of & copies of the set B we have the equation card (. "‘1\(A(°))"”1)
= card(4A\A®). Let g, be a one-to-one mapping from A" \(A”)*~* onto
ANA®. We note that, by Lemma 4.1, the set A is non-void. Let
A® = {e1; €y ..oy &}, We define an auxiliary operation ¢ as follows:
g(‘rla Loy ooy mﬂ~l) = gﬂ(mll Loy eery xn—l) i (031, By eoey 'T’n—l) Elin‘]\(A(O))n—1 and
9@y Tay ooy By1) = ¢, otherwise. The operation g preserves algebraic
constants in 4 and, consequently, is algebraic in A. Moreover, by the
inductive assumption, it is also algebraic in Rao(A). Further, we define
a binary operation on A4 as follows: M@, y) = fly, Bay ooy Tnoq, y) if
2 e ANA®, 2= gy(1y, @y, ..., 2y) and h(z,y)= ¢, otherwise. Since
preserves algebraic constants in 9, we infer that it is algebraic in 4 and,
consequently, in Ry(A). Put By = {e)) (j =1, 2,...,7) and

Jul@ry @ay oey n) = thB:;---,Br(f(cl: Dy ey Tn)y f(Co5 Tay ey Bn)y oo
ey Jlery #ay ooy ), h(g(mla Lyy ey Bp), ”’n), ml) )

where the operation kg, p,..p, is defined by Lemma 4.2. Of course, the
operation f, is algebraic in R,(%). Moreover, it is easy to verify that
(j=1,2,..

fo(Cj,.’l?:_.,...,.’l?ﬂ)=f((7j,.’b'2, weey @n) s 7)

and
Joltr, @y ooy ) = 7’/(9(”01; Ty eeny Tn1)y %} = h{go(®y, 23y ..., Tn-1), n)
=@, @y oy mn)  H @ ¢ A0,

Thus f = f, and, consequently, the operation f is algebraic in R,(9) which
completes the proof of Case 2.

Case 3: card A™ > §,. We define an auxiliary (n—1)-ary operation
as follows. If card A = card A®, then ¢ is defined to be a one-to-one
mapping from 4" onto A®. If card A > card A®, then ag the operation g
we take a one-to-one mapping from 4"* onto 4 which transforms (A®)"
onto A®. The operation g preserves algebraic constants in 9 and, con-
sequently, is algebraic in 9. Moreover, by the inductive assumption,
it is algebraic in Ry(A).

Let ¢ be an algebraic constant in 9. For any index j (1<j < n)
we put dyx, y) = f(a,, 2, ooy Bie1y Yy Bigay ey Bn) Iy ¢ A® or
and

B =By, By erey Bjoty Tit1y ove, Bn) Dyy Loy eeey gty Big1y eeey O € AO
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Purther, djix,y)=¢ in the opposite case. The operations d;, do, ..., dy
are algebraic in Ry(Y), because they preserve algebraic constants in 9L
Moreover, for the compositions

81{Iyy Tyy ooy Tn) = di(g('xu Ly weey Tjmry Titty oovs ),y mi) (1=1,2,..,m)
we have the formula
81(yy Ty ey Tn) = fTy, Doy vy ¥)

if either @y, &y, ..., Tn € A® or ir; ¢ A®

(4.3)
(1=1,2,..,0).

Setting B = A© we define operations fi, fa, ..., fa vesursively as follows

Ful#eyy oy ceny Tn) = 82(F1, Ty oory @) 5

Siral®yy Zoy ooy Ba) = hB(ff(“'l; Tyy eony @n) 5 Sj42(Bry Loy oovy L), “’H—l)
(1=1,2,..,0—1),

where the operation hyp is defined in Lemma 4.2. Of course, all operations
fuyfas -, fu are algebraic in Ry(A). Moreover, taking into account (4.3), we
can easily prove by induetion with respect to j the formula fy(#,, @, ..., 2n)
= f(y, Lgy oy Ta) if either 2, @y, ..., n € AD or 2; ¢ A® for some index
i satisfying the inequality 1 <i<j. Thus f=/fs and, consequently,
the operation f is algebraic in R(A) which completes the proof of the
theorem.

5. Some reducts of Boolean algebras. Let 9% be a Boolean
algebra with a denumerable set of generators, 0 as the neutral element
and 1= 0. Let us introduce the notation

)=o), sz y)=cvy, s@,y)=2ny,

n

ta)= )7 (n=3,4,..).

Un(Tyy Tay ooy
i—1i#7j

G, y,2) =2 v (yn2),
Moreover, by 0 and 1 we shall denote the constant operations equal to 0
and 1 respectively. Denoting the carrier of % by 4 we put

W=(4;{0,1})), W=(4;{0,%), W=(4;{0,1,8,8%)),
U= (4;{gs, %)) (¢=3,4,..).

For any p satisfying the inequality max(2,¢—1) <p < oo by Uy Wwe
shall denote a subalgebra of %, with y4(2,,,) = p containing both elements 0
and 1. Moreover, we put %, = ({0, 1}; {0, 1, 51, 85})-

THEOREM 5.1. For any p and g satisfying the condition q= 0,1, ...
and max(2, ¢—1) < p < oo the formulas £(Wye) = p and p(Wpg) = ¢ hold.
Moreover, e(Wyp) =1 and. o(A.) = 2.
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Proof. It is clear that the elements 0 and 1 form a two-element
subalgebra of %, which will be denoted by B,. The algebra B, is a sub-
algebra of A, for all indices p satisfying the ineqﬁaﬂjty max (2, g—1)
< p < oo. Moreover,

(5.1) Wpo=By.

Each algebraic operation in 20, , is uniquely determined by its restriction
to B,. Consequently,
(5.2)

and, by Theorem 4.1 in [4],

0(Wp.g) = £(By)

(3.3) &(WUpg) < max (3(%1_1) ’ ?’0(%1;.11)) = max (e(i‘q)y]’) (p=2).

Further, the algebras %y, have property (%) defined in [4], Chapter 7
and are not isomorphic to the exceptional algebras J, and T, defined
in [4], Chapter 8. Thus, by Theorem 9.2 in [4],

(5.4) eWpg) = 1 Wpg) =2 (p=2).

Now consider the subalgebras LB, (¢= 0,1,...). From the results
presented in [4], Chapter 8 we get the formulas

SB025317 58,_=532, %2=®7 523«1:9{;’,(171

(We note that in the definition of R, in [4], p. 273 wu,.; instead of w,
should be written.) Hence and from the table in [4], p. 274 we get the
following formulas

e(By) =e(B) =2, &B)=1, &B)=¢—1 (¢=3),
o(B)=¢ (g=0,1,..).

Now the assertion of the theorem is a direct consequence of formulas (5.1),
(5.2), (5.3) and (5.4).

{4=3).

6. A class of unary algebras. An algebra is said to be unary
if all its algebraic operations essentially depend on at most one variable.
It was proved in [4] (Theorem 13.1) that for unary algebras with y4() > 3
the equation ()= y(A) holds. In this section we shall study unary
algebras whose all elements are algebraic constants.

THEOREM 6.1. For wunary algebras with p() =0 the inequality
e(A) < 2 holds.

Proof. By Theorems 3.1 and 13.1 in [4], we have the inequality
e(A) < 3. Consequently, by proposition (i) in Section 1, to prove the
theorem it suffices to prove that each ternary algebraic operation f in
€,(%) is algebraic in A. Of course, without loss of generality we may assume
that the operation f depends on the first variable. Consequently, there
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exist elements g, and b, and a non-constant unary operation g algebraic
in U such that

(6.1) T(@, a0, b} = g(2) -

Further, the binary operation f(z, @y, 2) is algbraic in % and, consequently,
depends on at most one variable. By (6.1) it depends on the variable x
which implies the formula

(6.2) flz,a0,2)=g(e).

Let ¢ be an arbitrary element of the algebra . The binary operation
flxz,y,¢) is also algebraic in U and, consequently, depends on at most
one variable. Taking into account (6.2) we infer that it depends on the
variable & and, consequently, f(z,y,¢) = g(z) for all elements ¢. Thus
the operation f is algebraic in % which completes the proof.

‘We note that if all unary operations are algebraic in an at least two-
element algebra A, then 4,(A) =0 and &(A) = 2.

THEOREM 6.2. Suppose that the unary algebra W with yo(A) = 0 satisfies
the condition

(6.3) min{cardg(d): g e AUANAOA)} > card (AVANAO)) 41,

where A is the carrier of W. Then (W) = 1.

Proof. Since U is not the complete algebra over the set A, we have
the inequality (%) > 1. Moreover, by Theorem 6.1, ¢() < 2. Thus, to
prove the Theorem it suffices to prove that each binary algebraic operation f
in €(%U) is algebraic in A. Without loss of generality we may assume
that f depends on the first variable. Consequently, there exist an element
in 4 and a non-constant operation h e AW(Q) such that

(6.4) flz, a)) = hiz).
Put
B = {b: h(b) # g(ay) for all g e AOANACA)}.
From inequality (6.3) it follows that
(6.5) cardh(B) = 2.

For every b e B the unary operation f(b, «) is algebraic in U and does
not depend on the variable z. Indeed, the equation f(b, x) = g4(x), where
9o € ADINAOY), would imply, by (6.4), the equation h(b) = golay)
and, consequently, the relation b ¢ B. Thus for every b e B the operation
f(b, ) is constant. Hence and from (6.4) we get the formula

(6.6) f,z)="h(d) (beB).

e ©
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Let ¢ be an arbitrary element of A. Suppose that the operation f(x, ¢)
is constant, say f(z, ¢) = ¢. From (6.5) it follows that there exists an
element b, € B such that h(by) 7 ¢,. Further, by (6.6), k(b)) = f(b,, ¢) = ¢
which gives the contradiction. Thus for every element ¢ e .4 the oper-
ation f(x, ¢) depends on the variable z. In other words, for every ce 4
there exists an operation g. e AM(ANAOYA) such that

(6.7) fla, o) =gdla) (2, 0e4).

Suppose now that the operation f depends on both variables. Then there
exist an element e, ¢ A and an operation %, e AOUNA®(YA) such that
Sfleoy ¥) = ho(y) (y € A). Hence and from (6.7) we get the inclusion

ho(4) = {geleo): c e A} {g(ey): g € AO(UANAOQL)} .
Consequently,
card hy(A) < card (ADAINAO(A))

which contradicts condition (6.3). Thus the operation f depends on one
variable and, consequently, is algebraic in A which completes the proof
of the theorem.

Let 4,={0,1, ..., m} where m > 3. By F, we shall denote the family
of all constant operations on 4, and by k the unary operation defined
by the conditions h(0) =1 and h(x) == for > 1. Put W= (dg; F,)
and Ay, = (dy; Fy o {h}). The formulas

(6.8) e(Wo)=0 and (W, =1

are obvious. Moreover, y,(U,.) = 7,(WUy,) = 0. Further, non-constant
algebraic operations in ,, are trivial and the operation % is the only
non-constant and non-trivial unary operation in 9,,. Thus for the al-
gebra Ay, the left-hand side and the right-hand side of (6.3) are equal
to m+1 and 2 respectively. The same quantities for the algebra 9, are
equal to m and 3 respectively. Thus, the both algebras satisfy the condition
of theorem 6.2 and, consequently,

(6.9) e(Upp) = e(Wpy) = 1.

7. Description of all pairs (e, 0). The algebras .
(p=1,2,...,00;¢=10,1,..., c0) defined in the preceding sections
satisfy the conditions &(pq)=p and o(Wp,) = q (see Theorems 2.1,
2.2, 3.2 and 5.1 and formulas (6.8) and (6.9)). Moreover, for a one-element
algebra we have the formula ¢ = p = 0 and for complete algebras over
an at least two-element set the formulas e= 0 and ¢ = 2. On the other
hand, by Theorem 4.1, for algebras with ¢= 0 we have either =0 or
¢ = 2. Thus we have proved the following theorem.
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TEEOREM 7.1. The set of all possible pairs (¢, ¢) for abstract algebras
is the set of all pairs (p,q), where either p=1,2,..., 00, ¢=0,1, ..,
or p=10 and q=10,2.
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