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The topology of a partially well ordered set*

by
E. S. Wolk (Storrs, Conn.)

1. Introduction. If (X, <) is a partially ordered set, there are
many known ways of using the order properties of X to define certain
natural or “intrinsic” topologies on X. In particular, we may define the
well-known interval topology 3 on X by taking all sets of the form
{teX: s <<a} or {weX: x>0} as a sub-base for the closed sets. We
also define another topology D on X, which we call its Dedekind iopology,
as follows. A subset 4 of X is said to be up-directed (down-directed) if and
only if for all # ¢ 4 and y e 4 there exists z e A with x <2, y <2 (z> 2,
y = 2). A subset containing a greatest element is trivially up-directed,
and dually. Following McShane [8], we call a subset K of X Dedekind-
dlosed if and only if whenever 4 is an up-directed subset of K and y = L.u.b. 4,
or A is a down-directed subset of K and y = glb.4, we also have
y e K. We then define D as the topology whose closed sets are precisely
the Dedekind-closed subsets of X. It is clear that 3 C D for all partially
ordered sets X. In [12], we called an arbitrarys.topology B on X order-
compatible if and only if ICECD.

Let us say that a subset A of X is fotally unordered if and only if »
and y are incomparable (with respect to the order <) for all z,y e A
with # £ y. Naito [9] showed that if every totally unordered subset of X
is finite, then X possesses a unigue order-compatible topology (i.e., the
topologies 3 and D coincide).

A partially ordered set X is called partially well ordered (pwo) if and
only if all totally unordered subsets of X are finite and all chaing in X
are well ordered. The purpose of this paper is to study some of the prop-
erties of the unique order-compatible topology of a pwo-set X. We call
this topology on X its intrinsic topology. Among our results, we characterize
the convergent nets and the closure operation in this topology in “order-
theoretic” terms. We show that the intrinsic topology is completely
regular for any pwo-set X, and may be obtained from a certain natural
proximity relation definable in terms of the ordering in X. The normal
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completion of X plays a key role in this connection. We also consider
continuous functions on a pwo-set X to a pwo-set X', and show that
every function on X to X’ is the pointwise limit of a net of continuous
funetions.

Since the concept of a partially well ordered set is a natural generali-
zation of the notion of an ordinal number, some of this work can be con-
sidered as an extension of the classical theory of transfinite sequences
of ordinals and of the theory of continuous ordinal-valued functions of
an ordinal variable ([1], § 5). It may also be noted that since many of
the standard counter-examples of general topology (such as the ‘“Tychonoff
plank’’) are products of spaces of ordinal numbers, they possess a natural
structure as pwo-sets; and, furthermore, for such spaces the product
topology coincides with the intrinsic topology. Our results can therefore
be applied to these specific spaces and might provide further insight into
their structure.

2. Preliminaries. In this section we collect some definitions and
preliminary theorems which will be required later.

Let (X, <) be a partially ordered set and @ C X. A subset M of @
is a minimal subset of @ if and only if

(i) each m e M is a minimal element of @,

and

(ii) for all = ¢ @, there exists m ¢ M with m < x. Then X is pwo if
and only if every non-empty subset of X contains a finite minimal subset.
Further charaeterizatiolgs of pwo-sets and references to their literature
are given in [13]. A mapping f of a partially ordered set (X, <) into
a partially ordered set (X', <') is order-preserving if and only if #,y e X
and o<y imply f(z) <’'f(y). The image of a pwo-set under an order-
preserving mapping is pwo. A 1 : 1 mapping of X onto X’ is an {somorphism
if and only if both f and ™ are order-preserving.

A partially ordered set X is Dedekind-complete if and only if

(i) every up-directed subset of X has a Lub. in X

and

(ii) every down-directed subset of X has a g.lb. in X.

If X is pwo, then every down-directed subset contains a least element,
and hence X is Dedekind-complete if and only if condition (i) holds.
An important theorem due to P. M. Cohn ([3], p. 33) states that if every
chain in a partially ordered set X has a Lub. in X, then every up-directed
subset of X has a lub. in X. From this it follows that & pwo-set X is
Dedekind-complete if and only if every chain in X has a Luw.b. in X. (It
should be noted that we are not assuming that the partially ordered
sets under discussion possess greatest or least elements.)
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The following notation will be useful. If A C X, we write

A*={weX: z>=a for all a e 4},

A+t ={weX: < afor all aed},
[a,b]={zeX: a<2<0},

Jo={zeX: z<a}.

We shall write A*+ for (A*)*+. The set J, will be called the principal ideal
generated by a. The empty set will be denoted by @.

TeEOREM 1. If a partially ordered set X is compact in its interval
topology 3, then X is Dedekind-complete.

Proof. Let A be a down-directed subset of X. The family of I-closed
sets {Ju: @ e A} has the finite intersection property, and hence
At = {Jo: a e A} = @. Now consider the family F= {[z,y]: v e A+,
y e A}. This family also consists of J-closed sets and has the finite in-
tersection property. If m ¢( | F, then clearly m = glb.A. The obvious
dual argnment may be applied to the up-directed subsets of X to complete
the proof.

The converse of Theorem 1 does not hold in general ([4] [6]).

‘We shall follow the notation of Kelley [5] in regard to nets and
subnets. Let {Ss, 7 « D, <} be a net on a directed set (D, <) whose values
lie in a partially ordered set (X, <). (Note that we are using the same
symbol “<*” for the order in both D and X.) We say that {S,} is monotone
inereasing (decreasing) if and only if whenever m,neD and m < m,
then Spn < 8u (8m = 8n). A net is monotone if and only if it is either monotone
increasing or monotone decreasing. R. W. Hansell [4] has recently proved
the following theorem, which is fundamental for many of our results.

THEOREM 2 (Hansell). If X is a partially ordered set in which every
totally unordered subset is finite, then every net in X has a monotone subnet.

In a pwo-set any monotone decreasing net is eventually constant:
hence we have the following

COoROLLARY. Every mel in a pwo-set has a monotone increasing subnet.

The following theorem contains simple results concerning the con-
vergence of nets with respect to the interval topology J.

TeEOREM 3. Let X be o partially ordered set and {Sn, n e D} a net in X.

() If {8z} J-converges to y e X, and Sp, <y for allneD, then y=
Lu.b. (range Sy).

(i) If {8n} is monotone increasing and y = lu.b. (range 8n), then {Sn}
d=converges to y.

Proof of (i). Let 4 = rangeS,. Suppose that y # Lu.b. 4. Then
there exists 2z e A* with y ¢J,. But then X—J, is an J-open set con-
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taining y; and so {8} is eventually in X—J,. This contradicts z e A*,
The proof of (ii) may be left to the reader.

We now have

TaeorEM 4. If X is a Dedekind-complete pwo-set, then X is 3-compact,

Proof. If § = {84} is any net in X, then S has a monotone increasing
subnet T, by the corollary of Theorem 2. But T’ 3-converges to the Lu.b.
of its Tange, by Theorem 3 (ii). Hence every net S in X has an - convergent
subnet.

Let {X,: ael} be any family of partially ordered sets, and let the
partial order on X, be denoted by Rs. If P = IT{Xs: a< I} denotes the
cartesian product of this family, then for f, g P, we may define f<yg
if and only if f(a)Rag(a) for all aeI. The partially ordered set (P, <)
is called the cardinal product of the partially ordered sets (Xi, Ra). It
is a well-known result that the cardinal product of finitely many pwo-sets
is pwo [10].

3. Basic properties of the intrinsic topology. The intrinsic
topology of a pwo-set X will be denoted by J. It is known that the to-
pology J is Hausdortf on any pwo-set ([12], Lemma 2). Since for a pwo-set
we have J= D, in some of our proofs the reader will note that we use
the fact that the closed sets of 3 are precisely the Dedekind-closed subsets
of X, while at other times we regard J as the usual interval topology.

THEOREM 5. If {Su,n eD,<} is a net in a pwo-set X which I-con-
verges 1o y « X, then there ewists m e D such that y = Lu.b. {Sa: m < n}

Proof. If Jy = X, then Theorem 5 follows at once from Theorem 3 (i).
If X—J, # @, then it contains a finite minimal subset M such that X—dJy
= {weX: ®>b for some b e M}. Henece X—Jy is J-closed, and s0 Jy is
3-open. But {8} I-converges to y implies that S, is eventually in Jy.
The theorem now follows from Theorem 3(i).

The following theorem now characterizes the J-convergence of nets.

TEEOREM 6. Let § = {Sp,n ¢ D, <} be a net in a pwo-set X. Then S
I-converges to y e X if and only if for every cofinal subnet T of 8, there
ewists an up-directed subset B of range T with y = Lu.b. E.

Proof. Suppose that S I-converges to y, and let 7 be a cofinal
subnet of S. By the corollary to Theorem 2, T has a monotone increasing
subnet R. Since T J-converges to y, so does R. If F = range R, then
E Crange T, F is up-directed, and y = l.u.b. E by Theorem 5. To prove
the converse, suppose that S does not J-converge to y. Then § is fre-
quently in some J-closed set which does not contain y. Hence there is
some member B of the closed base for the J topology, with y ¢ B, and
such that B contains the range of some cofinal subnet R of 8. But is the
union of a finite number of members of the closed sub-base for 3. Bach
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of these sub-base members is a principal ideal or dual principal ideal
in X. Furthermore R is frequently in one of them, say J., for some a ¢ X.
This means-there is a cofinal subnet 7 of R (and T is also a subnet of §)
whose range is in J,. But since y ¢ J,, there is no up-directed subset F
of range T with lLu.b. B =y.

THEOREM 7. If P is the cardinal product of the pwo-sets X and Y,
then the intrinsic topology of P is identical with the product of the intrinsic
topologies of X and Y.

Proof. Let J denote the intrinsic topology of P and B the product
of the intrinsic topologies of X and Y. We shall first prove that CJ
by showing that every J-convergent net in P is BG-convergent. Let
8 = {8, n ¢ D} be an J-convergent net in P, where S, = (#a, ¥u), and
2y € X, yn ¢ Y for all n e D; and suppose that § I-converges to (a, b) e P,
Let C be any cofinal subset of D, and consider the cofinal subnet {@,, n ¢ C}
of the net {xx, n ¢ D}. Since § J-converges to (a, b), the range of its cofinal
subnet {Su,n ¢ C} must contain an up-directed subset @ with Lu.b. @
= {a,b), by Theorem 6. Let Pry(Q) denote the projection of @ on the
set X. From the definition of the cardinal product order it follows that
Pr,(Q) is an up-directed subset of the range of {z,, n € C}, and furthermore
Lu.b. Pr, (@) = a. Thus we have shown that the range of every cofinal
subnet of {x.,n ¢ D} contains an up-directed subset whose lLu.b. is a.
By Theorem 6, {x,, n ¢ D} converges to a ¢ X with respect to the intrinsic
topology of X. The same argument shows that the net {y., n e D} con-
verges to b ¢ Y in the intrinsic topology of ¥. By definition of the product
topology of P, the net {S,,n ¢ D} B-converges to (a,b).

We now complete the proof by showing that the reverse inclusion
J C B holds for the product P of arbitrary partially ordered sets X and ¥
(where G is the product of the interval topologies). Let K be a typical
member of the closed sub-base for the interval topology J of P: for exmaple,
suppose that K = {(#,y) e P: # < a,y < b}. Then the projéctions of K
on X and Y are Pry(K) =J, C X, Pry(K) = Jp C Y. Since the projection
mappings are continuous with respect to G, and since the sets J, and Jp
are closed, it follows that K = Pri ' (Ja) ~ Prs'(J5) is G-closed. Hence
every J-closed set is B-closed.

Remarks. (i). For arbitrary partially ordered sets X and ¥, it
is not true in general that the interval (or Dedekind) topology of their
product is the product of their interval (or Dedekind) topologies. The
complex plane, considered as the cardinal product of the real number
system with itself, provides an obvious counter-example.

(ii). Let £, be the set of all ordinal numbers less than the first un-
countable ordinal 2, and let Q' = Q, U {Q}. Then the product topology
of Qyx€', which is one of the familiar counter-examples of general
Fundamenta Mathematicae LXII 18
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topology, is identical with its intrinsic topology. Theorems .5 a‘nd' 6
therefore characterize convergence of nets in this space and in similar
products of spaces of ordinals. This example also shows that the intrinsie
topology of a pwo-set may fail to be normal ([5], p. 131)..

It 4 C X, we shall use A to denote the closure of A with respect to
the intrinsic topology of X.

TaporEM 8. f X is a pwo-seland A C X, then A= {y e X: y=lub. E
for some up-directed B C A} )

Proof. Let us for the moment denote the set {y e X: y = lub. E
for some up-directed B C A} by 4", Trivially, 4 CA™.Now if ye A:,
and B is any J-closed subset of X containing 4, then y « B. Hence A~ C 4-
Thus the theorem will be proved if we show that A~ is J- closed (or, equiv-
alently, D-closed).

Tet D be an up-directed subset of 4" possessing a Lu.b.y in X. We
shall show that y ¢« A”. By definition of 4", for each m e D there is an
up-directed set BmC A with Lub. Em = m. For each fized m, consider
the net 8= {8(m,n),n ¢ En} defined by S(m,n)= n. Then we have

lim [ lim 8(m,n)l=19.

meD neEm
Now we may apply Kelley’s theorem on iterated limits ([5], p. 69). Con-
gider the set F = DX II{En: m e D}, with the cardinal product order.
For (m,f)eF, let R(m,f)= (m,f(m)) e DX En. Then the set SR
defined on F by 8 (R (m, f)) = f(m) converges to y. Furthermore,

range (S o R) C | {Bm: meD}C 4.

From the corollary to Theorem 2, we may now infer that § - Ehas a mon-
otone increasing subnet 7. Then T also converges to ¥, and range T'
is an updirected subset of A. By Theorem 3(i), ¥ = Lu.b. (range T). So y
is the L.u.b. of an up-directed subset of 4, and hence y ¢ 4”. Thus 4" is
3-closed, and so 4™ = A.

If X is an arbitrary partially ordered set and A C X, then the D-closure
of A (and thus also its J-closure) might be a larger set than {y e X:
y = lu.b. E for some up-directed B C A}. The reader can easily construct
examples. Tt § is the relativization of the interval topology of X to the
subset A, then simple examples also show (even for X pwo or linearly
ordered) that § need not coincide with the interval topology of 4. However,
for pwo-sets we have the following theorem.

THEOREM 9. Let I be the intrinsic topology of a pwo-set X, and § the
relativization of J to the subset A C X. If G is the inirinsic topology of A,
then B CS. .

Proof. Let B be a B-closed subset of 4, and let B denote the
J-closure of B in X. To show that B is §-closed, we shall prove that
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B—= B~ A. So suppose that y ¢ B ~ A. Then by Theorem 8 there exists
an up-directed subset E of B with y = Lw.b. E. But y « A and B is B-closed
in A. Hence y eB. This establishes that B~ 4 C B, and the reverse
inclusion is- trivial.

Following [2], we shall say that a subset 4 of a partially ordered
set X is a normal ideal of X if and only if A*+ = 4. The set of all normal
ideals of X will be denoted by N (X). With respect to the usual ordering
by set inclusion, N(X) is a complete lattice (with least and greatest
elements @ and X respectively), which we call the normal completion
of X. We denote the set of all principal ideals of X by J(X). Then, for
# e X, the mapping «—J; is an isomorphism of X onto the subset J (X)
of N(X).

We wish to show next that J(X) provides a homeomorphic image
of X in N (X). For this purpose we first need a lemma, whose proof may
be found in [10], Lemma 2.

Lemwma. Let X be any pwo-set and F (X) the set of all totally unordered
subsets of X. For, A, B e F(X), define A <B if and only if for all x < A,
there exists y € B with x < y. Then (F(X), <) is a pwo-set.

‘We now have

TEROREM 10. If X 4s a pwo-set, then the lattice N (X) is pwo.

Proof. A partially ordered set (P, <) is pwo if, for any infinite
sequence {zn} in P, there exist 4, j with ¢ < j and = < @. So let {K,} be
any infinite sequence in N (X). For each n = 1,2,..,let M, be the
minimal subset of Kj. Then M, e F(X) for all . Since (¥(X),<) is
pwo, there exist 4, j with ¢ < j and M; < M;. Thus for all 2 ¢ M, there
exists y ¢ M; with # < y. This implies that M7 C M7 . But by definition
of normal ideal, we have K,= M, for all n. So K;C Ky, completing
the proof.

TeeoREM 11. Let X be any pwo-set and 3 its intrinsic topology. Let <Us
be the imirinsic topology of N(X). Then the mapping s->Jx is a homeo-
morphism of (X, 3) onto the subspace J(X) of (N (X), ).

Proof. Let 8§ be the relativization of U to J(X), and let G be the

intrinsic topology of J'(X). Since (X, J) and (X, ‘G’) are homeomorphie,
it suffices to show that § =6. This will follow from Theorem 9 if we
show that 8§ C 6. So let B be an §-closed subset of J(X). Then we have
B= B ~J(X), where B denotes the U.,-closure of B in N(X). Suppose
that D is an up-directed subset of B with a Lu.b. Jy in J(X). But then
Jy is the smallest normal ideal which contains each membre J, e D, and
80 Jy is also thel.u.b. of D considered as a subse of N (X). Hence Jy ¢ B ~ J(X)
= B, and so B is BG-closed. Thus § C 6.

THEOREM 12. The imtrinsic topology of any pwo-set X is completely
regular.

18%
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Proof. N(X) is a complete lattice and hence compact in its intrinsie
topology. Its subspace J(X) is therefore completely regular, and the re-
sult follows by Theorem 11.

Tt J(X) denotes the closure of J(X) in N (X}, then the subspace J(X)
is a compactification of X. It is not necessarily true that J(X) = N (X),
but we do have the following characterization of J(X).

TeEoREM 13. If X i8 any pwo-set, then J(X) is the set of all up-directed
normal ideals of X. Furthermore, J(X) is Dedokind-complete.

Proof. By definition of the closure operation in N (X), J(X) consists
of all those normal ideals of X which are unions of up-directed (with
respect to set inclusion) families of principal ideals. So let K e J(X),
where K is the union of some up-directed family & of principal ideals
of X. Let @,y ¢ K. Then there exist Jq,d» ¢ F such that @ eJa, y eJdy.
Also there exists Jse F with Jo Cde, J» CoJe. So ce K, z < a <o, and
y <b<e Thus K is an up-directed subset of X. Conversely, any up-
directed normal ideal trivially isa union of an up-directed family of prin-
cipal ideals, and hence is a member of J(X). The second assertion of the
theorem follows from Theorem 1.

‘We show next that the intrinsic topology of a pwo-set may be obtained
as the topology of.a certain natural proximity relation (for definitions
and references on proximity spaces see [7]): If X is a pwo-set and A4, B
are subsets of X, let us define A6B if and only if there exist up-directed
sets D, E with D C 4, B C B, and D*+ = F*+,

TrEOREM 14. If X 4is any pwo-set, then the relation 6 on 2% is a prox-
imity relation whose topology is the intrinsic topology of X.

Proof. Since J(X) is a compact Hausdorff space, its topology is
obtained from a unique proximity relation 8’ which is defined as follows.
For any subsets Ty, F, C J(X), define F,5'F, if and only if the closures
of F, and F, have a non-empty intersection in J(X). More explicitly,
F,0'F, if and only if there exist up-directed sets B, C F,, B, C F, with
Lub. B, = Lu.b. B, in J(X). Now let us identify X with its image J(X)
in J(X). Then, for 4, B C J(X), it is clear that A4 B if and only if 4§'B.
Thus (J(X), ) is a proximity space which is a subspace of (J(X), &)
The proximity topology of (J (X), 6) is the relative topology which it
inherits from (J(X), '), and this is identical with its intrinsic topology
by Theorem 11.

The reader will note that the above proof also shows that the proximity
space (J(X), ') is the Smirnov compactification [7] of the proximity
space (X, 6).

4. Continuous™ functions. In this section X and X' denote
pwo-sets with their associated intrinsic topologies.
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LemMA. Let f be a function on X into X'. Then f is continuous on X
if and only if whenever D is an up-directed subset of X with Lub.D =y e X,
the set f[D] contains an up-direcied subset E whose lu.b. exists in X’
and = f(y).

Proof. Suppose that f is continuous, D is up-directed in X, and
lu.b.D = y. Define a net 8§ by S = » for all # ¢ D. By continuity of f,
the net {f(Sa), n e D} converges to f(y). By Theorem 6, the range of the
net {f(S»n), n ¢ D} containg an up-directed subset £ with Lu.b. ¥ = f(y).

To prove the converse, assume that the given condition holds for
the function f. Let B be a closed subset of X'. We show that 4 = f~ B]
is closed in X. So let D be an up-directed subset of 4 with Lu.b.D = y.
By hypothesis, f[D] contains an up-directed subset F with Lu.b. B = f(y).
Since B is closed, we have f(y) ¢ B, and hence y ¢ 4.

The following theorem generalizes a result of Sierpinski [11].

THEOREM 15. If f is any function on X into X', then f is the pointwise
limit of a met of continuous functions on X into X'.

Proof. Let A4 be the set of all finite subsets of X, and let G € 4.
If zeX and a « ¢, we shall say that a is & G-cover of  if and only if

(i) z=a

or

(ii) # ¢ G, ¢ < a, and there exists no b ¢ G with z < b < a.

We consider A4 as up-directed by set inclusion. We define a net of
functions on 4 as follows. Select an arbitrary element of X’ and denote
it by 2. For each G ¢ 4, define f¢ on X into X’ Dby

(i) fe(w) = # if « has no @-cover,

(ii) fe(#) = # if « has more than one G-cover,

(iif) if # has precisely one @-cover a, then fg(z) = f(a).

‘We first note that for each x, ¢ X, we have lim {fe(x,), G € 4} = f(a,).
For let Gy be any member of 4 with x, € &,. Then for all @D G,, we have
Fol@,) = f(m,) by (ili) above.

Now we must show that each fe¢ is continuous on X. We shall use
the preceding lemma. Let G € 4, and D any up-directed subset of X with
lub.D=yeX. By a residual subset of D we shall mean any subset
of the form {z e D: @ > n} for some fixed n ¢ D.

Case 1. Suppose that y has no G-cover. Let H = {z e D: 2 has at
least one G-cover}. We claim that H is not cofinal in D. For suppose
it is. Then, since G is finite, for some a ¢ G the set H, = {z e H: 2 < a}
is cofinal in H, and hence in D. But then y = Lu.b. Ha, and hence y < a.
Since ¥ has no ¢-cover, this is a contradiction. Hence D— H contains
a residual subset B of D; and, by definition of fe, for all # ¢ B we have
fol@) = foly) = =.
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Case 2. Suppose that y has more than one G-cover. Then each
# eD has at least one G-cover. Let K = {x ¢ D:  has precisely one
G-cover}. We assert that K is not cofinal in D. For if K is cofinal, then
for some a € G the set Ko = {x e K: ¢ is a G-cover of x} is cofinal in K
and hence in D. But then y = Lu.b. K,, so that a is a G-cover of y. If b
is another G-cover of y, then b is incomparable with a. But b > z for
all © € Ky, so that b is another G-cover for each z ¢ K,: contradiction.
Hence D— K contains a residual subset E of D; and, as in Case 1, for
all w e B we have fo(2) = fo(y) = 2.

Case 3. Suppose that y has precisely one @-cover a. If R = {x ¢ D:
a i3 the only G-cover of z}, then a simple argument (similar to the cases
above) shows that B contains a residual subset F of D. Also, for all z ¢ E
we have fo(z) = fely) = f(a), by definition of fe.

Thus in each of the above three cases we have a residual (and hence
cofinal) subset B of D such that fe(y) = Luw.b. fe[E]. The continuity
of fe now follows by the lemma.

Sierpiriski has shown in [11] that Theorem 15 does not remain valid,
even when X and X' are well ordered, if “net” is replaced by “transfinite
sequence’.
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On the hyperspace of subcontinua of a finite graph, I

by
R. Duda (Wroctaw)

§ 1. Introduction. Let X be s compact metric continuum with
a metric p. Throughout the paper C(X) will denote the hyperspace of
all non-empty subcontinua of X metrized by the Hausdorff metric o*
(shortly, the hyperspace for X):

o4, B) = maX[sg ¢(a, B), sup p(4,8)].

It has been known for a long time that C(X) with the metric o' is
also a compact metric continuum, and some other properties of C(X)
have also been proved (cf. for instance Wojdystawski [10], Kelley [4],
Duda [1], and Segal [6]). However, no characterization of spaces C(X)
has as yet appeared. Even what C(X) is like is so far known for only
a few and very simple continua X (after all, mainly in folk-lore).

The aim of the present paper is to inquire into the structure of
spaces C(X) in the case which seems to be natural to start with, that
is in the case of spaces ¢(X) which are locally connected and have finite
dimension. The results obtained here uncover some features of their
polyhedral structure and may eventually lead to their topological charac-
terization (ef. remark following corollary 9.2).

As Vietoris [8] and Wazewski [9] have proved, continuum C(X)
is locally connected if and only if continuum X is locally connected, and
it is fairly easy to show (cf. Kelley [4]) that the dimension of a locally
connected continuum € (X) is finite if and only if continuum X is a finite
eonnected graph. Hence

1.1. Continuum O(X) is locally connected and of finite dimension if
and only if continuum X is a finite connected graph.

To gain our aims we shall proceed as follows. We start with a finite
connected graph X dividing its hyperspace C(X) into finitely many
closed subsets M, which turn to be topological balls. Moreover, the de-
composition of ¢(X) into these balls {cells) is a good one (for X acyclic,
cellular), and so in this way we come first to theorem 6.4 stating that C'(X)
is a polyhedron if and only if X is a finite graph. This polyhedron is then
subjected to an analysis resulting in formulas for its dimension (theo-


GUEST




