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Note on metrization
by
P. R. Andenzs (Oslo)

1. Introduction. In [1] Alexandroff has proved the following
theorem:

A T,-space is metrizable if and only if it is paracompact and has
a uniform base.

A Dbase $ for a topological space X is called uniform if for each » ¢ X
and each neighbourhood U of # at most finitely many members of &
contain @ and intersect X\ U. The theorem quoted above contrasts other
metrization theorems in the fact that it requires neither a decomposition
of the base into countably many subfamilies nor the existence of a sequence
of open covers with ‘“nice” properties; cf. the theorems of Bing, Nagata-
Smirnov ([5], p.127), Arhangel’skil, Morita, Stone ([4], P. 196), and
Alexandroff-Urysohn ([2]). On the other hand, it invokes the explicit
requirement of paracompactness. In Section 3 of the present paper we
shall prove that a T,-space is metrizable if and only if it has o base which
is locally finite outside closed sets. (The necessary definitions are given
in Section 2). Bases that are locally finite outside closed sets generalize
in a natural way the concept of a uniform base, and, as we shall see, no
decomposition into countably many subfamilies is required in their
definition.

Section 2 contains the necessary lemmas for the proof of the metriza-
tion theorem in Section 3. As corollaries we obtain new characterizations
of metacompact and paracompact spaces. In Section 3 we also briefly
discuss how the classical metrization theorems of Urysohn ([5], p. 125,
[7], [8]) can be deduced from our theorem.

For notation not explained here the reader is referred to Kelley [5].
We recall that a topological space is called metacompact (or pointwise
paracompact) if each open cover has a point-finite open refinement. Finally,
if {#;}ses is a finite collection of covers of a space X, then A{;|7el}
is the cover consisting of all non-empty sets of the form (1) {4i] ¢ eI},
A,; € a‘ei.
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2. Loeal finiteness outside closed sets. Let X be a topologi-
cal space. If # is a cover of X and B a subset of X, we put

As—{A| Aek, AnB£0}.

A cover & of X is called point-finile outside closed sets if for each
closed subset F of X a point # ¢ X\F is contained in ab most finitely
many members of #p. Similarly, 4 is called locally finite outside closed
sets if the following condition holds for each closed subset ¥ of X:

Tor each z e X\F there exists a neighbourhood V of # intersecting
at most finitely many members of #z.

Clearly, if a cover # of X is locally finite outside closed sets, then
it is also point-finite outside closed sets. Furthermore, we observe that
a base for a topological space is uniform if and only if it is point-finite outside
closed sets.

Our first result is a generalization of theorem II in [1]:

Lemma 1. Let £ be an open cover of a topological space X. If # is
point-finite outside closed sels, then £ has a point-finite subcover.

Proof. Let 4 be an open cover of X which is point-finite outside
closed sets. Let 4 be well-ordered by <, let 4, be the first member of
war.t. < and pubt B(4,) = 4,. By transfinite induction we construct
a family {B(4)] 4 € #} such that for each A e #:

1) B{4) e 4w {@},
() U B(4)D \J 4,
A'<A Al<A
B(AN U B4Y#06 it |J BA)#ZX,
3) Ar<4 A’<Ad
( B(4)= @ i  |BA)=X.
A'<4
(1), (2) and (3) are evidently satisfied for A = A4,. Now, suppose
that B(4) has been chosen for each 4 < 4. If
UBd)=2X,
A<dy
we put B(4,)= 0, and (1), (2) and (3) are trivially satisfied. If
UB(4)+X,
A<d;

let B(A4;) be the first member of 4 w.r.t. < such that

=

B4\ U B(4)#0.

‘We must verify that (2) is satisfied. ((1) and (3) are trivial.) If
4,C |J B(4),

A<dy

e ©
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there is nothing to prove. On the other hand, if
AN U B(4)#0,
A<dy

we necessarily have B(4,) = 4,, and (2) follows. (The assumptions
B(A4,) > 4, and B(4,) < A; both contradict the choice of B(4,).) We
now put B = {B(4)| 4 e £\{@}. From (1) and (2) it follows that $ is
a subcover of £. Let © ¢ X be arbitrary, and let 4, be the first member
of # w.ar.t. < such that z e B(4,). If e B(4), A # 4;, then we have
Ay < A, and from (3) it follows that B(AN\B(4Z) # @, i.e.

B(4) € Bx\Ban C Ax\B(4s) -

Since #4 is point-finite outside closed sets, it follows that there are
at most finitely many B(A)eB such that ® ¢ B(4), and the proof is
complete.

Though it will not be needed in the sequel, we include the following

PROPOSITION. A topological space X is metacompact if and only if
each open cover has an open refinement which is point-finite outside closed
sets.

Proof. To prove necessity it is sufficient to observe that a point-
finite cover of X is trivially point-finite outside closed sets. Sufficiency
follows from lemma 1.

LevmA 2. Let £ be an open cover of a topological space X. If £ is
locally finite outside closed sets, then £ has a locally finite subcover.

Proof. Let £ be an open cover of X which is locally finite outside
closed sets. Then £ is also point-finite outside closed sets, so, by lemma 1,
# has a point-finite subcover B. Then % has an irreducible subcover C,
i.e. no proper subfamily of C covers X (cf. [4], p. 160). Let # ¢ X be arbi-
trary and select Cy e C such that @ € (5. Cis a subcover of +£ and is therefore
locally finite outside closed sets, i.e. there exists a neighbourhood V of %
intersecting at most finitely many members of Cx\c,. Since C is irreducible,
no € eC can be properly contained in Oy, hence €= Cx\¢, v {Cs}, and
we conclude that V intersects only finitely many members of C. This
completes the proof.

THEOREM 1. A regular space X is paracompact if and only if each
open cover has an open refinement which is locally finite outside closed sets.

Proof. Since a locally finite cover is locally finite outside closed
sets, necessity is obvious. Sufficiency follows from lemma 2.

3. Metrization. Now we prove

TueorREM 2. A T,-space X is metrizable if and only if it has a base
which is locally finite outside closed sets.
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Proof. Let X be metrizable with metric d. Let %, be a locally finite
open refinement of the cover consisting of all open spheres with d-radius

1fn. B = {_ Bnis a base for X; we claim that it is also locally finite outside
n=1 N

closed sets. Liet ' be a closed subset of X (@ = F # X), and let 2 be a point
in X\F. For some n, we have St(x, $,) ~ St(F, Bn) = @ for all n > n,.
On the other hand, there exists for each » a neighbourhood V, of z in-
tersecting only finitely many members of $,. Then

g
Vo=[1T
. i=1
intersects only finitely many members of B, B, v ... v By, hence
V="V, 8t(x, Bu+1) intersects at most finitely many members of By.

To prove sufficiency, let B be a base for X which is locally finite
outside closed sets. We first prove that X is regular. Let 2 ¢ X be arbitrary
and let U be an open neighbourhood of #. There exists a neighbourhood ¥
of z, ¥ C U, intersecting at most finitely many B e Bxy. If ye T\,
then y cannot be an isolated point in X, hence, since X is T, there are
infinitely many B e $ containing y. Thus the assumption y ¢ X\U im-
mediately leads to a contradiction. Therefore ¥ C U, and X is regular.
If W is an open cover of X, we can refine U by members of B, hence U
has an open refinement which is locally finite outside closed sets. From
theorem 1 it follows that X is paracompact. B, being locally finite outside
closed sets, is evidently a uniform base. The metrizability of X now follows
from the theorem of Alexandroff quoted in the introduction. (A simplified
proof of Alexandroff’s theorem can be found in [3].)

Remark. We shall give another proof of the sufficiency part in the
preceding theorem; this proof is based on a technique used by Alexan-
droff in [1]. Let & be a base for X which is locally finite outside elosed
sets. We put

3= {{#}|» is an isolated point in X}

and & = B\J. Then o4, U J is also locally finite outside closed gets. Using
lemma 2 of Section 2 we can find a loecally finite subcover B, of A v 3.
Let & = A\B,, then 4, U J is a cover of X which is locally finite outside
closed sets. (It is easy to see that 4, w J covers X: if {:1;} ¢ J, infinitely
Fuany.members of 4 must contain « since X is T,, on the other hand 3;1
is point-finite.) Proceeding by induction we obtain sequences {t;}
and {B.} such that B, is a locally finite subcover of +, w3 and dbpt1
= #,\By for each n. Let @ ¢ X be arbitrary and select, for each n, By € Bn
such that z ¢ B,. If, for some 2,, By, €3, then {B,} is evidently ’a neigh-
bourhood base at #; if each By e #,, then {By.} is a sequence of distinct
members of B, and, since % is a uniform base, {B,} must still be a neigh-

icm®

201

Note on metrization

bourhood base at z. Thus, | By is a o-locally finite base. 'We have already
n=1

seen that X is regular, and metrizability follows from the Nagata-Smirnov

theorem.
¥

One of the merits of the Nagata-Smirnov theorem is that the following
metrization theorems of Urysohn are easily deducible as corollaries:

(1) A regulor T -space with a countable base is metrizable ([5], p. 125,
and [7]).

(2) A compact Hausdorff space is metrizable if and only if it has o count-
able base ([6]).

Tt is also easy to deduce these theorems from theorem 2 of the present
paper. Let X be a metrizable compact Hausdorff space and let 3 be a base
for X which is loeally finite outside closed sets. Instead of using lemma 2
of Section 2 we now use compactness to select a finite subcover B, of
s, w 1 for each # in the remark following theorem 2. U1 Bp is then a count-

n=
able base for X.

Tt remains to prove that if X is regular and has a countable base £,

then X also hag a base % which is locally finite outside closed sets. We

first note that the family of covers
Ao =V, X\, U,Vesk, vcv,

is countable. Let n (U, V) be the number of #wy, in an enumeration-
of {#uv,r} and put

By = N\ {Awmnn(T,V) < n}.

Then $ = COJ B, is a base for X which is locally finite outside closed
n=1

sets. To see this, let F' be a closed subset of X and let » be an arbitrary
peint in X\F. Using regularity we can choose U,V, W e+ such that
2eUCTCVCTCWCX\F. For nz max(n(U, V), n(V, W)) Wwe then
have St(U, Ba) ~ St(F, Bp) = @, and therefore (since PBny1 refines By
and B, is a finite cover for each n) at most finitely many B ¢ $ can in-
tersect both U and F.
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On distributive n-lattices and z-quasilattices

by
J. Plonka (Wroctaw)

0. In this paper we give a representation theorem for a class of
abstract algebras (which we shall call distributive n - guasilattices), having n
binary fundamental operations oy, ..., 0,, which are idempotent, com-
mutative, associative and distributive with respect to each other. A dis-
tributive = - quasilattice will be called a distributive n-lattice, if it satisties
moreover formula (5) below, which generalizes the familiar absorption
law for lattices.

We shall show that every distributive n-lattice can be treated as
a subalgebra of an algebra defined in a natural way in a product of distri-
butive lattices, and every distributive n-quasilattice can be represented
as a sum of a direct system (see [2]) of distributive n-lattices.

1. We shall call a distributive n-quasilaitice every abstract algebra
Q = (X; 04y ..., 04) Where n == 2 and oy, ..., 0, are binary operations which
satisfy the following four conditions:

) so;w=uw,

2 X0 Y =yoi%,

(3) (@0:y)0s2=10:(y0:2),
4) (wosy)osz=(v0;2)04(y0;2)
(i,7=1,2,..,n)

A distributive #-quasilattice we shall call a distributive n-lattice
if it satisfies moreover the following equality:

(8)

0, (as 02 (. ® 0p—1 (2 05 ) )) = .

It is easy to see that in the case n = 2 a distributive n-lattice is

a distributive lattice, and equation (5) coincides with the law of absorption.

Similarly, a distributive n-quasilattice in the case n = 2 is a distributive
quasilattice, as defined in [1].

Exavpres. 1. Let X = {a,, a5, ..., @4, 0} and let us define for

i1=1,2, .., n the operations o;as follows: z0; # = @, £0; a7 = 4;0; ¥ = a,
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