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Metric dimension and equivalent metrics *
by

J. H. Roberts and F. G. Slaughter, Jr. (Duwham, N.C))

Given a metric space (X, g), the metric dimension of (X, o), indicated,
wdim (X, o), is the smallest integer m such that for all s > 0 there exists
an open cover U, of X such that (i) ¢-mesh U, < ¢ and (i) ord W, < m-+1.
It is trivial that pdim(X, ¢) < dim X, where dim is covering dimension.
In the other direction, Kat&tov [2] has shown that 2udim (X, ) > dim X.
In [3], examples are given (for all n > 1) of spaces (Xn, ¢) with dim X, = n
and udim (X, ¢) = [(n-+1)/2] (the biggest integer in (n--1)/2).

The purpose of the present paper is to prove the following theorem,
which answers a question raised in [3]. Readers are referred to [3] for
an extensive bibliography.

THEOREM. Let (X, o) be a metric space with udim(X, g) = m and
dim X = n. Then for any integer k suchthat m < k < n, there exists a metric oy
for X such that (i) gx is topologically equivalent to ¢ and (i) pdim (X, oz) = k.

To facilitate the proof of the theorem, we introduce and prove three
lemmas.

LeMMA 1. Let (X, g) be a metric space, r a positive integer, and let Us
be a locally finite open cover of X such that ord U < 7-+1. Then there exists

r
an open cover VU of X, refining W, such that U = | V;, where each VU; is
=0

a disjoint open collection of subsets of X. Thus ord U < r+1.

Proof. Let U be indexed by a set 4, so W= {U,: aed}. For
each ae.4 define the real funetion g,: X [0, 1] by the formula

1 X — Q(waX_Uu) .
(1) 9a() ;——————é oo, X— T,

Since W is a cover, for fixed # there iy at least one § such that z e Uz so
the denominator is not zero. Also, since U is locally finite, there exists

* The results of this paper are contained in the Ph, D. dissertation of the second
author (Duke University, 1966). The authors acknowledge support from the National
Science Foundation (USA), Grant GF-2065.
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an open neighborhood W, of which intersects only a finite number of
elements of W. Since oy, X— Us) is a continuous function of y, for all g,
it then follows that g, is continuous, for all e A. We list the following
properties for reference later on.

(i) gulw) > 0 if and only if @€ U,
2 @@ 0<g®<1,
(i) for fixed s, ZA golw) =1.

We define the collections Uy, Uy, ..., U, by use of the functions g.
as follows. V,= {Va: ac A}, where V,= {&: gu(z) > gslw) if B a}.
For 0 < i< 7, let B be a set of i-+1 distinct elements of 4 and define

Va= {u: mig{ga(w)} > ga(w), for all g ¢ B}.

Let U; be the set of all Vi, where B is a set of i4-1 distinet elements
r

of 4, and let VU= |J U;.
i=0

1. Proof that U is an open colleciion. Take V ¢V, y eV, and let B
be the finite subset of A such that ¥ = Vg in the definition above. Let ¢
be the continuous real function defined as follows: g(x) = mig {ga()}.

. ae€

Then V= {#: g(x) >g(z), for all ¢ B} Since yeV, ¢g(y) >0, so,
defining W, as the set of all # such that g(z) > 0, it follows that y e Wy,
and W, is an open set.

Let W, be an open neighborhood of y which hits only a finite number
of elements of U (U is locally finite). Let € C' A be the set of all « such
that Wy ~ U, # @. Then C ig finite, ¢ D B, and we may write 0 =B v

U {0, Gy, -, as}. For each i (1 <4< s),let W, be the open set consisting
8

of all @ such that ¢(®) > go(@). Finally, set W= Wy (ﬂo W;). Then
yeW, W is open, and WCV. Thus ¥ is open.

2. Uy is o disjoint collection. Fix ¢ and suppose that B; and B, are
different (£-+1)-subsets of 4. Then there exist §, « B, and f, ¢ B, such
that f ¢ B, and f, ¢ B;. Suppose #eVp,. Then migl {9(2)} > gs,(@), 80

a€ly

gp,(®) > gp(@). I @ is also in Vg, then gy (@) > gs(), a contradiction.

8. U is a cover of X. Let @ ¢ X be given, and let ay; a5, ..., a; be the
set of all (at most r-+1) elements g of A such that # ¢ Uy (i.e. gs(z) > 0),
the integer subscripts being assigned so that g, (%) > ¢ (2) > ... = o).
Determine ¢ (0 <4 <j) as the greatest integer such that g.(®)= ga(®),
and let B = {dy, ..., a;}. Then we have g, (®) = §u,() = ... = go;(¥) > gp()
if f¢B, 50 weVpeV;. This completes .the proof of Lemma 1.
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LemmA 2. Suppose that v is a positive integer and &> 0. Then there
ewist r+1 finite open covers of [0, 1], W,, Wy, ..., W, such that

(i) mesh W; < &,

(i) ord W; < 2,

(iii) for » €{0,1] and fized 4, if ord,
ordg W; = 1.

Proof. Let g, be an odd prime integer such that 1/g, < &/2; and let
¢ < g < ... < gr be the next » primes. Let 8 be the minimum of the finite
set of positive numbers

i=2, then for all j 1,

{mjgi—njgsl: 5% §; m=1,2, .., ;—1; n=1,2, .., ¢—1;

i,j=0,1,..,7}.
Let W; be the set of g; open intervals

{(dla:i—6/2, (j+1)/g:+0/2): §=0,1, ..., g:—1}.
The covers Wy, Wy, ..., W, have the desired properties.

LeMMA 3. Suppose that (X, o) is a metric space with pdim (X, )
=r<n=dmX, f: X->[0,1] is conlinuous, and o(m,y)= (2, y)+
+If@)—f @)

Then o is a metric on X, topologically equivalent to o, and r < pdim (X, o)
<r+41.

Proof. It is well known (see [1], p. 199) that ¢ is a metric for X
and is topologically equivalent to p. Furthermore, o(z,y) > o(2, ),
which implies that pdim(X, o) > pdim(X, p). We will prove that
pdim(X, o) < r41.

Let ¢ > 0 be given. Since pdim(X, ¢) = r, it follows by definition
that there exists an open cover $ of X such that (i) o-mesh® < ¢/2,
and (i) ord® <r+1. We may index $ by an ordinal z, so that
B = {B,: o< n}. Now every metric space is paracompact [4] so there
is a locally finite open cover C which refines $. Let U be the open cover
of X obtained by amalgamating C relative to B. That is, W= {U,: a < 4}
where U, is the union of all elements of ¢ which are subsets of B,, but
are not subsets of any Bg for any g < a. Thus

U,=J{C: CeC, OCB,, C ¢ Bsif f<a}.
Then (i) W is a locally finite cover of X, (ii) ord W < #-+41, and (iii)
g-mesh U < /2.
Applying Lemma 1, let VU = Lrj U; be an open cover of X refining W,
=0

such that each U; is a disjoint collection. Let W,, W, ..., W, be the col-
lection of r+1 open covers of [0,1] given by Lemma 2, except that
g-mesh W; < £/2. For fixed ¢ (0 <4< 7), let Wi be the set of all intersections
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»

V A W), where V eV; and WeW,;, and set W* = [ Wf. We show

i=0
that o-mesh U* < ¢ and ord U* < r+2, from which it follows that
pdim(X, o) <r41.

1. o-mesh U* < e. Suppose U e U*, so there exists 4, Ve U; and
WeW; such that U=V ~f (W). Since VeV and U refines U,
o-diameter (V) < &/2. Also for » and y in f (W) we have |f(z)—f(y)|
< ¢/2. Thus for » and y in U we have o(%,y) < o(@, ¥)+ |f(@)—f(y)| < =

2. ord W* < r+2. Take # e X. There may be an ¢ (at most one)
such that f(2) is in two elements of W;. There is at most one V e V; such
that z eV, so 2 can be in at most two elements of U¥. For all j such
that f(«) is in only one element of W; it follows that « is in at most one

r
element of W}, Since U* = [ J Wf, it follows that ord W* < -+ 2. This
i=0
completes the proof of Lemma 3.

Proof of the theorem. Let 8= {¢4, &, ..., Gi} be a finite open
cover of X such that every open cover J refining U has ord¥ = n-+1.
(Such a cover exists since dimX > n.) There exists a closed cover
F = {F, Fyy ..., Fy} with F;C @y, i=1,2,..,1 (This is true even for
all normal spaces.) For each ¢ (1 < ¢ < 1), let fi: X [0, 1] be continuous,
and such that f;() = 1for » € F';, fi(z) = 0if v ¢ X— @; (Urysohn’s Lemma).
For 1 <1<t define ¢;: X XX —+Real Numbers by the formula

oz, y) = o(@, y)+ 2 If(@)—Fiw)] -

We prove that pdim(X, ¢;) > n. For if W is any open cover of X
with o;-mesh U < 1, then AU refines §, hence order U > n+1. To prove
this, take U ¢ U and # ¢ U. Since & is a cover of X, there exists ¢ such
that ® ¢ F;. Then

oz, X—G;) = lf,(m)——fl(X— Gi)l =1-0=1, 50

Setting oo(z, ¥) = o(w, y),'note that

UCa;.

Gira(®, ¥) = (@, Y)+ |fora(@)—Firal¥)]
80 by Lemma 3,
pAim (X, o)) < pdim (X, 0441) < pdim (X, 05)+1,
and
pdim (X, o) > n .
Thus, starting with udim(X, o)) = m, the metric dimension goes up at
most one when o; is replaced by o041, and udim(X, o;) > n. Thus all
values % (m <k < n) are assumed, and the theorem is proved.
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