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un LF strict. Le probléme de la paracompacité des espaces LI non
smetgigrzzsn:ug’e;&tre part qu’on aurait pu introduire une_ notic.@ de
paracompacité plus forte quele caractére paracompact: et qu,l a,u;}*mt été,
de fagon évidente, stable par quotients pour des relations d équlyalence
uniformément ouvertes, & savoir la suivante: pour tout ;'eﬂOllxvrement
ouvert R, il existe un écart uniformément continu et un recouvrement
ouvert pour cet écart qui soit plus fin que R. .Malhetlreugexnent, c’ett‘e
notion n’est pas stable par limites inductives gtrictes de suibes; en effet,
si M est un espace métrique non séparable (par exemple un ense;:nble
discret non dénombrable), la limite inductive de la suite (M x R") ne
vérifie pas la condition indiguée.
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Light fiber maps *

by
Gerald S. Ungar** (Baton Rouge, La.)

1. Introduction. Most of the literature which deals with fiber
maps assumes that the fibers have some nice connectivity properties.
These assumptions force the most interesting light fiber maps to be
overlooked. In this paper, light fiber maps are studied with two purposes
in mind. The first purpose is to obtain methods for handling more general
mappings. The second purpose is that the study of light fiber maps might
yield a method of attacking the following unsolved problems involving
light open mappings: )

L. Does there exist o light open mapping of a manifold onto a metric
space such that the inverse of some point is wncouniable?

II. Is there a light open mapping f which is mot a homeomorphism
of the m cube I" onto itself such that f is the identity on the boundary of
I"brdyI™) and ff(brdyI™) = brdyI™?

If the answer to I is no, then a p-adic group cannot act freely on
an n-manifold.

It is shown in Section 3 that there are no Serre fibrations with the
properties of I or IT. Hence, a method of attacking these problems might
be the following: Assume that such a mapping exists and prove that it
must be a fibration.

The main theorem of this paper is: If f is o light compact mapping
Jrom a space X onto a space ¥ such that paths could be lifted uniquely, given
the initial endpoint of the lifting then f has the absolute covering homotopy
property. This gives a partial answer to the following conjecture raised
by the author: If f is a light mappings from & space X onto a space ¥ such
that paths could be lifted given the initial endpoint of the lifting and such
that arcs could be lifted uniquely given the initial endpoint of the lifting
then f is a Serre fibration.

* The author wishes to express his gratitude to Professor Louis McAuley for
his unlimited help and patience.
** Research supported by the academic year Extension of the Research Partici-
pation Program for College Teachers.
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In Section 3 the relation Dbetween local section and fiber maps is
studied. In Section 4 sufficient conditions are given so that fiber maps
will be bundle maps. The main theorem is proved in Section 5. Related
papers are [1], [4], [9].

ALl spaces will be Hausdorff and the notation f: X—>¥ will mean
that f is a continuous function (map) of X onto Y.

2. Definitions. The following definitions will be needed. In all
of them p will be a continuous mapping of a topological space B onto
a topological space B.

(2.1) DermNivioN. The mapping p is a-light iff p=1(d) contains no
arc for every b in B.

(2.2) DzrinrrioN. The mapping p has weak local cross sections o
every point iff given any b in B and any y in p~*(b) there exists a meighbor-
hood U(y) of b and a mapping @uy of U(y) into B such that gyg(b) =y
and ppoy) is the identity on U(w).

(2.3) DmpmverioN. The mapping p has sirong local cross sections ai
every point iff, given any b in B, there exists a neighborhood U of b such
that if y is in p~Y(U) there exists a map ¢,: U—F such that pe, is the
identity on U and g,(p(y)) = v.

(2.4) DerpiniTION. Tf X is a class of topological spaces, then p is

said to have the X covering homotopy property (XCHP) if given any map f

of a space X ¢ X'into ¥ and a bomotopy H: X XI—B such that H(x, 0)
= pf(#), then there exists a homotopy K: X xI-H such that K(x, 0)
= f(z) and pK(x,t) = H(x,1).

The following notation will be used. If p has the XCHP and

a) X is the class of all topological spaces, then p has the ACHP
(absolute covering homotopy property, see Hu [5].)

b) 2 is the class consisting of the unit interval, then p has the
ICHP.

¢) X is the class of compact locally arcwise connected spaces, then, p
has the CLACHP.

d) X is the class of finite polyhedra, then p has the PCHP. (If p
has the PCHP, then (#, p, B) is called a fiber space in the sense of Serre.)

e) 2 is the class consisting of the sets p~'(b) for every b in B, then p
has the FCHP.

f) Z'is the class consisting of a one point space, then p has the 0CHP
(i.e., paths can be lifted).

g) X'is the class consisting of connected spaces, then p has the COHP.

(2.5) DErFINITION. If p has the FOHP and the homotopy K in (2.4)
is unique, then p has the u-ZCHP.
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(2.6) DEFINITION. p has the path lifting property (PLP) [5] if 7: o
~Z={(y,f) e ExB'|p(y) = f(0)} defined by r(g)= (¢(0), pg) admits
a cross section. If p has the PLP, (¥, P, B) is called a Hurewicz fiber
space.

(2.7) DEFINITION. p has the boundle property (BP) [5] if there exists
an open cover {U,} of B, a collection {g,} of homeomorphisms and a space F'
such that F is homeomorphic to p~—1(d) for all b in B and @,: U, xXF ->>
—>p~YT,) satisties pp.(u,f) = u.

(2.8) DEFINITION. p has the slicing structure property (SSP) [5] if
there exists an open cover {U,} of B and a collection of maps {p.} such
that . UaX p~(Ua) >0~ (Ud), ppalts, ) = v and gu(p(y),y) =y

3. a-light fiber maps. As in Section 2, p will be a continuous
map from a topological space E onto a topological space B. Conditions
will be placed on E, p or B as needed.

(8.1) TEEOREM. The following conditions are equivalent:

(A) If o is a loop in B which is homotopic to a constant and y € p~'a(0),
then there is a lifting v of o such that T(0)=y and any lifting of o is
a loop.

(B) If o is a loop in B which is homotopic to a constant, and y € p~1a(0),
then there exists a unique loop t which covers o such that T(0) =y,

(C) If  is a path in B and y € p~a(0), then there exisis a path B in B
which covers a such that §(0) = y. Also if a and y are homotopic paths in B
and B and 6 are liftings of a and y, respectively, such that (0) = 6(0), then
A1) = 4(1).

(D) Same as (C) ewcept for the fact that p is assumed to be umique.

(B) p is a-light and has the ICHP.

(F) p is a-light and has the PCHP.

It should be noted that the first condition of (C) is equivalent to
the 0CHP and the first' condition of (D) is equivalent to the u-0CHP.
This gives rise to the following conjecture which will be partially answered
in Sections 4 and 5.

(3.2) ConJECTURE. The mapping p has the w-0CHP iff p is a-light
and has the PCHP.

Proof of (3.1). The following chain of implications will be proved:
(B) = (A) = (C) = (D) = (F) = (B) = (D) = (B).

1) (F) = (E) is trivial.

2) (B) = (A). To prove this it will be shown that every loop which is
homotopic to a constant has exactly one lifting given the initial point
of the lifting. By the hypothesis this lifting must be a loop. Let o be & loop
in B and let 4 « p~10(0) and let = be the unique loop which covers o such

Fundamenta Mathematicae LXII 3
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that 7(0) = y. Assume that ¢ is another lifting of ¢ guch that #/(0) = v.
Tet 0 < s <1 and define o5y v and 7, as follows:
o{2st) 0<t <12,
alt) = {o(— 9si+2s), 12<t<1;
v(2s1) 0gt<1)2,
Ts(t)z{r(—2st+28), 12 <1<
, 7'(2st) 0<t<12,
wlt) = {r’(—28t+2s) , 1e<t<l.

Then 7, and 7, are loops which cover os. 73(0) = 75(0) = y and, oy
is homotopic to a constant map. Therefore, s = 75 bY hypoth‘esis. Hence
7(8) = Ts(1/2) = 7'(s) and since § Was arbitrary, v =1’ as desired. o

3) (B) = (D) is essentially Lemmas 15.1 and 15.2, Chapter 3 of [5].
Although stated quite differently the proofs still hold.

4) (A) = (0). Let « be apath in B and let y e p~ta(0). Let a* be a path
in B defined by a*(t) = a{l—1%). Then a*a is 2 loop in B at «(0) and o*a
is homotopie to the constant map at «(0). Therefore by condition (A)
there exists a lifting = of a*a such that 7(0)=1y. Define $: I->I by
B(1) = 7(1/2t). It is easily seen that g is a lifting of « such that B(0)=y.
To prove the second part of (C) let a and y be homotopic paths in B and f
and 6 liftings of « and y respectively such that A(0)= 8(0). Then "
is a covering of yo* and ya* is homotopic to a constant. Therefore df*
is a loop so that B(1) = 8p*(0) = 6p*{(1) = d(1).

5) (C) = (D). Let a be a path in B and let 8 and g’ be-paths in ¥
which cover a such that B(0)= £'(0). Let 0<s <1 and define as(t)
= a(st), Bs(t) = P(st) and Ba(t) = B'(s?). Bs and Bi are paths in B which
cover o, and Ps(0) = Bi(0). Since ay i8 homotopie to itself, condition (O)
implies that fy(1) = fs(1) and hence B(s) = Bs(1) = Bi(1) = p'(s). Since s
was arbitrary, = ' as desired.

8) (D) = (B). Let ¢ be a loop in B which is homotopic to a constant
and let y e p~ic(0). Define » and &: I->B as follows:

9(t) = o(1/2t), &{t)= o(—1/2t41) .

7 and & are homotopie paths in B and hence they have unique liftings 6 and ¢
respectively such that 6(0) = ¢(0) =y and 0(1) = p(1). Then it is easily
seen that ¢*f is the unique loop which eovers o and has base point y.

7)-(D) = (¥). By Theorem 3.1, Chapter 3 of [5] proving condition I
is equivalent to proving that p has the CHP for A" (the standard n-simplex)
n=0,1,.. and that p is a-light.

The mapping p is a-light since if not we could get two different
liftings with the same initial point of some constant path. p has the CHP
for A° by hypothesis. Hence let n >0, H: 4"XI->B and g: 4"~>H be

©
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such that H(wx, 0) = pg(z). For any @ in A" define Hi: I+B by H.t)
= H(z,t). Hy i3 a path in B and hence there exists a unique lifting
K, I such that K. (0) = g(#) and pKy; = H,. Finally define K: A" x
xI—+E by K(wz,1) = Ki).

The function K is well defined, K(z,0) = K(0)= g(x). pK(=,1)
= Hyt) = H(z,1). Therefore to complete the proof all that must be
ghown is that K is continnous. Toward this end let {(:, £;)}7~1 be a sequence
in A™xI which converges to (, ) in A" xI. Without loss of generality it
may be assumed that ¢, = 0. Let o; be a path from (2, %) t0 (i1, Fita).
Again it could be assumed without loss of generality that limoi(1) = (=, t).

1->00

Define o, a; and f¢: I->B as follows:
R .g i—1 i
o =‘Hoiw+a>s+(1~f»-)], <<,
H(z,1), s=1;

H|((1—28)m,+ 2524, 0)], 0<s<12,
H{(24, 2tss—15)] , 12 <8 <1

=1,2,.,

ai(8) = {

i1 )
Bi(s) = a(lb—i—s), 1=1,2,..

Note that a; and B; are homotopic (rel. end-points).

o can be lifted to a unique path v such that v(0) = g(z,). ¥ 7: I>F
is defined by 7i(s) = v ((i—1/i)s), then 7,(0)=7(0) = g(z;) and hence 7;
is the unique lifting of B; such that 7¢(0) = g(,). a; can also be lifted to
a unique path y; such that y:(0) = g(#,). By the construction it is easily
seen that vi(1) = K(wi,t) and by the hypothesis (1) = y:(1). Hence
we have that 7((i—1)/i) = K (s, t). In like manner t(1)= K («, f) and since 7
is continuous, {¢((i—1)/i)}e" converges to K (x, t) so that K is continuous
and this completes the proof.

If E and B are locally connected metric compacta and p is a light
open map, it is known that p has the OCHP ([3], Theorem 3). Combining
this with Theorem (3.1) we get the following corollary.

(3.3) CoroLLARY. The following conditions are equivalent if p is a light
open. map and B and B are locally connected metric compacta:

(A) If v is a lifting of & loop o where ¢ is homotopic 1o a constant map,
then 7 18 a loop.

(B) If B and & are liftings of homotopic paths « and y respectively
such that B(0) = 6(0), then f(1)= 6(1).

(C) p has the ICHP.

(D) p has the PCHP.

The following is a lemma which will have as an easy consequence
another corollary similar to (3.3).

3*
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(3.4) LEMMA. If p has strong local cross sections ot every point, then p
has the OCHP.

Proof. Let f be a pathin B and let y € p~2f(0). Since f(1) is compact,
there exists a finite collection of neighborhoods {Uy, ..., U} which cover
f(I) such that flifn, (i+1)/m]C Usyy, =0, ...,n—1, and there exists
a collection of maps ¢ Us—T such that pp, is the identity on U; and
pif(0)) =y and psaf(ifn) = @if(ifn). Now define g: I->E as follows:
9(t) = @uf (ifn) it (i—1)fn < <i/n. It is easily seen that g it the desired
function.

(8.5) ComoLrARY. If p is an a-light mapping with strong local cross
sections ot every point, then (A), (B), (C), and (D) of (3.3) are equivalent.

(3.6) ExampLE. A map p which has weak local cross sections wb
every point bub does not have the 0CHP. Let ¥ be the following subset
of the plane: = {(#,y)ly=0and 0 <oz <l ory=1and 0 <~ @ < 1/2}.
Let B be the unit interval and define p: BB by (2, y) = .

The following lemma can be found in [1].

(3.7) LEMMA. If p has the u-0CHP and f and g are maps of an arcwise
connected space X into B such that pf = pg and f(w,) = g(x,) for some m,
in X, then f=g.

The proof of the next theovem closely follows that of Theorem § [1).

(3.8) THEOREM. If p has weak local cross sections at every point and p
has the w-0CHP, then p has the CLACHP.

Proof. Let X be compact locally arcwise connected space and let
f: X>Fand g: X xI->B be such that g(2, 0) = pf(a): Define £ XX I—>F
by f'(#, 8) = o4(s) where o5 is the unigue lifting ‘of gle X I such that 0,(0)
= f(2). f’ is a well-efined- function from X x I into B, pf'(n, 1) = pog(t)
= ¢(®, 1), and f'(®, 0) = 04(0) = f(@). Therefore to complete the proof it
need only be shown that f’ is continuous.

Let K be the set of all ¢ in I such that f is continuous at (@, ) for
every » in X and % <t Let k be the supremum of K if X is non-
empty, or 0 if K is empty. Then f’ is continuous at (z, t) for every o in X
and ¢ < k. To complete the proof it ig sufficient to show that f' is continuous
in some neighborhood of (x,, k) for every x, in X. In that case, since X
i3 compact, X X k could be covered by a finite number of such neigh-
borhoods each of which may be taken as the product of open sets of X
and subintervals of I. Letting %, be the least of the upper bounds of the
subintervals of I involved in the definition of thege neighborhoods f*
will be continuous at (z, ) for all # in X and b < Ty IE % 5% 1, this would
be a contradiction since & < %,. If % ~ 1, it would follow that f* is con-
tinnous on X x1I.

Let f(wo, k) = yo; since p hag weak local crogs sections at every point,
there exists a neighborhood U of 2(¥,) and a homeomorphism gy: U T
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such that rpg(;p (yo)) =y, and pey is the identity on U. p(yo) = ¢(w, k)
and hence by the continuity of g there exists an open neighborhood N
of (z,, k) such that ¢(N) C U. It may be assumed that N =V x I, Yvhere 14
is an open arcwise connected neighborhood of @, and I, is an open interval
in I. Note that ppgy(g|N) = g|N.

It will now be shown that f'|¥ = gpg|N. Once this is done we shall
have that f is continuous on N .and hence, by the previous remarks, the
proof will be complete.

If k= 0, then we are assuming that N =V x[0,?) and we have
that f|V X0 = gyg|V x 0 by Lemma (3.7) since ¥ x 0 is arcwise connected
and pf|V x 0 = ppyg|V x0 = ¢g|[V X 0 and f'(z, 0) = f(@) = vy (@, 0). If
(v, 7) € N and r > 0, then f'(v, r) = pyg(v, r) orelse a and : I:—>E d'efl'ned
by a(s) = au(sr) = f'(v, sr) and B(s) = pug(v, sr) will be distinet liftings
with the same initial point (namely f'(v, 0)= lpu(g(‘l},())) which cover
y: I->B defined by y(s) = g(v, sr). Therefore if k = 0, then f'|N = gyg|NV
as desired.

It >0, let (@,8)e N, t<k and define a(s) = g(@, (t— k).s-{.— k).
Define f: I->T by B(s) = oxf(t—k)s+k]. Then g and gpe are liftings
of a such that B(0) = gya(0) = y,. Therefore, by hypothesis, f'|[Vx
%[0, k)]~ N = pug|[VX[0, k)]~ N since these are liftings of g][V_x
X [0, k)] ~ IV is arcwise connected. If (v, r) e N and r > k, choose a point
(v,5) e N with s < & and continue in a manner similar to that of the
last part of the last paragraph to get f'(v,7)= ¢uvg(v,r). Therefore
1V = @pg|N and the proof is complete.

(8.9) Remark. Theorem (3.8) could be reworded as follows: If p
is a-light and has weak local cross sections at every point, then p has the
OLACHP iff p has the u-0CHP.

The following example will show that the conclusion of Theorem (3.8)
cannot be strengthened without changing the hypothesis.

(3.10) Exampre. Let E be the following subset of the plane:

BE={xy)ly=0+1ln,n=1,2,., 0<e <1}

o {(@, 9y =0 and 0 <s <1}

i@, Yy =—1/2", n=1,2,.. and 12" <o <1}

u {(@, 9y = 2" e— (2" +1)2, n=1,2,..,0 <z <12 .

Let B be the unit interval and define p: E->B by Pz, y)= @. (See

Figure 1.) p has strong local cross sections at every point. The mapping p
has the ICHP and hence by (3.1) and (3.8) p has ‘the QLAG]IP. The
mapping p does not have the ACHP or SSP since it is easily seen that p

does not have the FOHP. It should also be noted that all fibres are homeo-
morphie.


GUEST


38 G, 8. Ungar

In most interesting ecases, if p is an a-light map with the PCHP,
then p admits strong local eross sections at every point.

(8.11) TumorEM. If p is a-light and
has the PCHP and B s first countable,
locally arcwise connecled and semi-locally
simply connected, then p has strong local
cross sections at every point.

Proof. Let beB and let U be a
neighborhood such that any loop in U is
homotopic in B to the constant map at b.
It may be assumed that U is arcwise

O

i connected and locally arcwise connected

i since B i3 locally arcwise connected. Let

ﬁ y e p~X(b) and define ¢y: U—T by ¢uy(w)
p

= 75(1) where v ig a lifting of a path in U
irom b to & such that 7,(0) = y. @y is well
defined by (3.1) and pey(r) = 2. Hence to
complete the proof it only has to be shown
that @y i3 continuous.

To prove that ¢y is continuous let
{w} be a sequence in U which converges
to # in U (it will be assumed that @, = b).
o Let o; be a path from x; to 244, Since U
is first countable and locally arewise connected, the o; _could be chosen
such that E)I;lm(l) = #. Define f: T +B as follows:

Fig. 1

911 2 -1

o2—2"+2) if ——z—ﬁ-l——gtg—?, i=1

10 =‘ T
: i if t=1.
B i.s a path in U from b to # and hence by Theorem (3.1) £ can be lifted
uniquely to a path y in T such that 7(0) = y. By the methods of Theo-
rem (3.1)
PO =pule) wnd ()= pofa

. . . 2'-1
and since y is continuous, y(T) converges to gy(w). Therefore gy is

continuous and the proof is complete.

(3.12) COBOLLA.RY. If p is as in (3.11) and B is assumed o be Jirst
countable, locally arcwise connected, arewise conneoted and simply connected,
then p has global oross sections at every point. ‘

@ © ‘
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Proof. By the hypothesis the neighborhood U in (3.11). can be
chosen to be all of B and the proof then follows in the same manner.

4, The FCHP and BP. In this section, some conditions for
a light mapping to have the BP will be given. Browder [1] has shown
the following: Let X and ¥ be Hausdorff spaces with ¥ connected, locally
pathwise connected and semi-locally simply connected. Suppose that f
is a local homeomorphism of X into ¥ and that f is a closed mapping of X
into ¥. Then X is a covering space of ¥ with f as a covering mapping.
Browder [1] has several other theorems along this line. Lelek and My-
cielski [8] also have some theorems along the same line. Although the
theorems of Lelek and Myecielski seem to follow from those of Browder,
they are concerned with a different class of topological spaces. All of the
theorems referred to above give conditions so that a local homeomorphism
is a bundle map. However, there are light bundle maps which are not
local homeomorphisms. An example is the natural projection of the
Cantor set crossed with the unit interval onto the unit interval. The
theorems given in this section will cover examples such as the above.
The following lemma, essentially from [9], will be needed.

(4.1) LEMMA. If p s a-light and has the PCHP and FCHP and B
is arcwise connected, then all of the fibers are homeomorphic.

(4.2) THEOREM. If p is an a-light map with strong local cross sections
at every point and p has the PCHP and FCHP and if B is an arcwise con-
nected, locally compact, uniformly locally arcwise commected metric space
and if p~1(b) is compact for all b in B, then p has the BP.

Proof. By Lemma (4.1), p~%(b) is homeomorphic to p—(h,) for all
by, b, in B. Let b, e B; then there exists a neighborhood U of b, such that U
is compact, connected and locally connected and there exists a collection
of maps {p,} such that if y e p~Y(by) p,: U—E, pe, i3 the identity on U
and g,(b,) = ¥. From the above conditions on U we know that U is a Peano
continuum and hence there exists a map f: I-— U, and it may be assumed
that f(0) = b,. Let g: p~(b)>>p~*b,) be the identity map and define
H: p~i(b) xI>U by H(y,t) = f(t). H{y, 0)=f(0) = b= pg(y). Hence
by the FCHP there exists a map K: p~(by) x I +p~U) such that pK (y, t)
=H(y,t) and K(y,0)=g(y)=y. By (3.1) and (3.7), K(¥,?) = @uf ()
and, by the construction in (4.1), it is seen that K maps p~*(b,) X I onto
p7HU).

Consider the following commutative diagram:

P1{be) XI5 p={by) X U

NI

p70)
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where Ly, 1) = (y,f(t) and L(y,u) = gy(u). b and K are continnous
and closed and it will be shown that L is a homeomorphism and
pL(y, u) = %. " o

pL(y, u) = ppy(u)=u so that the second condition is true. The
mapping L is continuous since, if O is cloged in p(T), 1311en1 7o)
= RE~Y(), which is closed. The mapping L is closed sinee p~ (b)) X U
is compact. The mapping L is onto since h and K ave. Finally, L is one-to-
one since if L(y,u) = L(y’, w) then p,(u) = L(y’, u') then @y(u) = py(u')
and u = po,(u) = pgy(w’) = u'. Then there exists 7 e I guch that f(1) = u
and hence K(y,?) = K(y',?) but this is a contradiction to the methods
of (4.1). Therefore L is a homeomorphism and, since b, was arbitrary,
p has the BP.

(4.3) TEEOREM. If p is a-light and has the FCHP and PCHP and B
is an arcwise connected, locally compact, uniformly locally arcwise conmected
and semi-locally simply connected metric space and if p~'(b) is compact
for all b in B, then p has the BP.

Proof. The proof follows easily from (3.11) and (4.2).

An easy corollary to (3.11) and (4.1) is the following theorem which
is the only one to put a condition on H.

(4.5) TesorEM. If B is locally arcwise connected and p is an a-light
map with the PCHP and FCHP and B is first countable, locally arcwise
connected and semi-locally simply conmectod, then p has the BP.

Proof. Let beB; then by (3.11) there exists a neighborhood U
(which may be assumed to be connected by the hypothesis) of b and
a collection g, of maps ¢,: U->F such that ¢,(b) = y and pe, is the iden-
tity on U. By the construction involved in (4.1) it is seen that {p,(U)}
is pairwise disjoint and the rest of the proof follows from the local arcwise
connectivity of p—YU).

5. Light compact mappings.

(5.1) DEFINITION. A mapping p: X+ Y is compact if, given any
compact set ¢ in ¥, f7(C) is compact.

(5.2) Remark. If f is a pseudo regular map [10] or a closed map
such that f~* (point) is compact, then f is compact.

(56.3) TEEOREM. If p is a light compact map from metric space B onto
a metric space B, then, given any ¢ > 0 and any b in B, there exists 6 > 0
such that if C is a compact continuum contained in Nb), then each com-
ponent of p=*(C) has diameter less than .

Proof. Assume that the theorem is false. Then there exists a positive
number ¢ and a point b in B and a sequence of compact continua {C:}
in B such that 0yC Ny(b) and p—%(C;) has a component of diameter
greater than or equal to & Let 4 = (|J 0y) v b. 4 is compact. Therefore
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plp~i(4) is a light map from the compact metric space p—1(4) to the
compact metric space 4 and it is known that p|p~(4) then has the
desired property, but this is a contradiction.

(5.4) THEOREM. Let p be a light compact mapping with the u-0CHP
from a wmetric space E onto o metric space B; then p has the PLP.

Proof. Let Z = {(y,f) EE'XBI| p() = f(0)}. Define p*: ' ~Z by
p*(9) = (g (0), pg). The mapping p* is one-to-one and onto by the u-0CHP
and hence it must be shown that p* is closed. This will involve several
lemmas in which the following notation will be used. Let C be a closed
set in B’ and let {(5:, g0)} be a sequence of points in p*(¢) which con-
verges to (¥, g) € Z. Let fie C be such that p*(fi) = (¥, g1). The object:
of the remainder of the proof is to show that (y, g) € p*(C).

(5.8) StEP 1. {g:} is equicontinuous (i.e., given any &>0, there
exists 6 > 0 such that if |»—y| < §, then d{gt(m), gi(y)) < ¢ for all 4).

Proof. Trivial.

(56.6) STEP 2. {fi} is equicontinuous.

Proof. Assume that the above is false. Then there exist ¢ >0
and points @, y; in I and maps f;, such that |ws— vyl < 1/ and d(fy,(z),
f“(y;)) > &. The points @, y; can be chosen such that {f;} is infinite
and {ji;} is a monotone increasing sequence, and limz;= limy; = .
By (5.3) there exists 4, > 0 such that if ¢ is a compact continuum in
Ns,((g(2)), then each component of p=(C) has diameter less than &, and
there exists d,> 0 such that if [I—t'] < d,, then d(g:{t), gi(t")) < 6,3
and d(g(t), g(¢)) < 6,/3, and there exists an integer N such that if » > N
then d{gn(t), g(1)) < 6,/3. There also exists 4> N such that @ and g
are in Ng(z) and |zs—yi| < J,. It will now be shown that y((wi,y,))
C Npg(x) and this will yield a contradiction. Let ¢ e[z, yi|. Then

Agu(®), g(@) < dlgs(®), g0)+ g (@), g@)) < 8:,/3+6,/3 < 8.

The contradiction comes from the fact that fi([®:, ¥4]) i3 a connected
set of diameter greater than or equal to £ which is contained in p—2g([@«, y4])
C p~'Nyg(x) contrary to the choice of 4.

(5.7) STEP 3. A subsequence of the sequence {fi} comverges pointwise
to a function f.

Proof. It could be assumed that fi(t) converges on a dense countable
subset {t:} of I, since for each t, {gi(t)} converges to g(z) and hence (| gi(2)) v
w g(t) is compact so p~[(U g:(¥)) v g(#)] is compact and contains fi),
and therefore there exists a convergent subsequence of {fi(f)}. Hence
using a standard diagonal process the above assumption can be obtained.
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Let ¢ > 0 be given and let ¢ ¢ I. By (5.6) there exists 6 >0 such that
if |g—1| < & then a(fdx), fi(t)) < /4 and there exists h.e {t;} such that
jti—1| < 6 and there exists an integer N such that if n > N, then
A{falts) , Yim Fou(te)) < &- Therefore, if n, m > N,

m

d(fn(f’) ’ fmu)) < d(fn(t) ’ f”(t'l))'l’d(fn(ti)y hI]:lfk(ti)) + d(lirknfk(ti): f’m(tﬁ))
< gfdtefd+aldtefb=¢.

Therefore, {fx(f)} is a- Cauchy sequence which is contained in the
compact metric space p‘l((U gnlt) v g(t)). Therefore, fa(f) converges to
some point, call it f(t). .

Define f(t) = lim fo(). From now it will be assumed that {fa} is

n
a pointwise convergent sequence. Note by the continuity of p, pf (1) = g(t)
and f(0) = v.

(5.8) Stmp 4. The map f is CONLINUOUS .

Proof. Let ¢ e I and let ¢ > 0. By (5.6) there exists § > 0 such that
it |g— 1] < 6, then d(fi(), fu(t)) < /3 and by (8.7) there exigts an integer Ny,
such that if n > Ny then

afule), f@) < ef3  and  d(fult), F)) < &f3 -
Let |z—t| < d; then .
a(f (@), £1) < Af(@), far ) + Q(frry @) g (0) -+ AU (1), f®)
< g[3+¢ef3+el3=c¢c.

Hence, f is continuous.

(5.9) Completion of the proof of (5.4). By Theorem 15, page 232
[7], {fs} converges uniformly to f. Therefore f ¢ 0 and p* = (¥, ¢) so that
(9, 9) ep*(C) and hence p* is a closed mapping.

(5.10) A restatement of (5.4) is: A light compact mapping from & metrio
space onto a metric space has the PLP iff it has the u-0CHP.

Proof. The proof follows from (5.4) and (3.1).

(5.11) DEFmNITION. A map p: X =Y will be called pseudo compact
if p restricted to every component of X is a compact map.

(5.12) ComorLARY. If p is a light pseudo compact mapping with the
u-00HP from a metric space B onto a metric space B, then p has the COHP,

Proof. The map p restricted to each component of B has the PLP
by (6.4) which is equivalent to the ACHP (Theorem 12. 1, page 82, [B]).
Hence p has the CCHP.

(5.13) DEFINITION. A map p: X Y is locally compact if given b ¢ B
there exists a neighborhood U of b such that p{p~*(U) is a compact map.
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(8.14) COROLLARY. If p is a light locally compact mapping with the
u-0CHP from a metric space B onto o metric space B, then p has the PLP or,
equivalently, p has the ACHP.

Proof. By (5.4), p has the local ACHP and by Theorem 4.8 [2],
p has the ACHP.

(5.15) DEFINITION. A map p: XY is pseudo locally compact if
given b ¢ B there exists a neighborhood U of b such that p restricted to
every component of p~(U) is a compact mapping.

(5.16) CorROLLARY. If p 48 a light pseudo locally compact map with
the w-0CHP from a metric space E onto a metric space B, then p has the PCHP.

Proof. By the hypothesis there exists a cover {U,} of B such that
plp~*U,) is a pseudo compact map. Hence p|p~*T,) has the COHP and
by Theorem 4.8 [2], p has the PCHP.

The reason for the new definitions is to find a condition (A) on the
map p such that the following theorem is obtained: p satisfies condition (A)
and has the u-0CHP iff p has the PCHP. The following example shows
that pseudo local compactness is not the condition.

(5.17) ExamprLE. A Serre fibration which is not pseudo locally compact.
Let E be the following subset of the plane:

1 1
EZ{(mJ y’)[?/:;,’: and 0 <m<;’:}\‘ (0,0).
Let B be the following subset of 3-space:

1 2 1
B:{(m,a,z)lzzﬁ, z2=20 &nd~ﬁ<y<ﬁ}

u{(m,g,z)[z:%, y=—= and Ogmg%}

1 1 2
u{(m,y,z)]z——-ﬁ, z== and—%<y<0}

1 1 1. 2mn
U{(w,y,z)k—;?-/, 0<z< and y =Hsm-m—}

v {(0,0,0)}.

Let p be the natural map from ¥ to B (see Figure 2 on p. 44). By (5.19), it
will be seen that p has the POHP but p is not pseudo locally compact.

(5.18) DEFINITION. A map p: X Y is called a componentwise pseudo
locally compact map if given any component ¢ of X, p|C is pseudo locally
compact.

(5.19) COROLLARY. If p is a light componentwise pseudo locally compact
map with the u-0CHP from a metric space E onto a metric space B, then p
has the PCHP.
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Proof. By (5.18) and (5.16), p restricted to each component of F
has the PCHP and hence p has the PCHP.

The author does not have an example of a light fiber map which is
uot componentwise pseudo locally compact.
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