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f= Pg as in Theorem 1 with |g{z)—@| < 1/2 length of 4 for all  ¢[a, b].

- -1 — - -1
iC f(;) =g 1P(;). Since P(,lz) ig finite, then i C g () for some #, ¢ [a, b].
Therefore there exists an 2, e such that |g(w,)— | > 1/2 length of 4.
A contradiction has been reached and so the converse of Theorem 1 is
proved.

We can now state Theorem 1 together with its converse and do so
in glightly more general terms.

TeEorEM 2. If T is @ mapping of an arc onto o non-degenerate are,
then T is light if and only if T is topologically equivalent to a mapping f
of [0,1] onto [0, 1] such that if & >0, lhere ewists a factorization f== Py
where P is o polynomial of [0, 1] onto [0,1] and g is a mapping of [0,1]
onto [0, 1] such that

lg@)—x| <e for all we[0,1].
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Multiple complementation in the lattice of topologies*

by
Paul S. Schnare ** (New Orleans, Louisiana)

1. Introduction. Hartmanis [4] showed that in the lattice of
all topologies on a finite set with at least three elements every proper
(i.e., neither discrete nor trivial) topology has at least two complements.
In the light of Steiner’s result [7] that the lattice of topologies on an
arbitrary set is complemented, the question of Berri [1] in this journal
may be rephrased as follows. Does every proper topology on an infinite
set have at least two complements? This paper answers the question
affirmatively. Further evidence of the pathological nature of the lattice
of topologies is the result that a non-discrete T, topology never possesses
a maximal complement (or a maximal prineipal complement). The result
of Hartmanis above is sharpened. It is shown that every proper topology
on a finite set with n > 2 elements has at least #—1 complements. Finally,
utilizing these results it is shown that every proper topology on an infinite
set actnally has infinitely many principal complements.

2. Basic facts. The paper of Steiner [7] provides an ideal reference
on the background material for this paper. It is possible to quickly outline
the basic facts needed here. If (X, f) is a topological space on the set X,
then the topology f consists of the open sets. (Note: Hartmanis [4] con-
siders the closed sets.) If ¢, and ¢, are topologies on X and #, is a subset
of ¢,, then ¢, <%, and under this partial order the set of all topologies,
Z, on a fixed set X is a complete lattice with greatest element 1, the
discrete topology, and least element 0, the trivial topology. If ¢,? e X
and: tvt’ = 1 while tAt' = 0, then ¢’ i3 a complement for 1.

A maximal proper topology is an ultraspace. Given a filter § on X
and a fixed point # ¢ X one can define a topology S(z,F)={4CX:
zed=>A4 eF). Afilter U on X with the property that A v B e U implies
A €U or BeW is an ultrafilter. An ultrafilter of the form U = {UC X:
p e U} is principal and denoted U(p). An ultrafilber on X is principal

* This paper is part of a doctoral dissertation written under the direction of
Professor M. P. Berri of Tulane University of Louisiana.
** The author holds an NSF Science Faculty Fellowship.
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iff it containg a finite subset of X as a member, otherwise, it is non-prin-
cipal. Frohlich [2] showed that the ultraspaces are precisely those spaces
of the form ¢t = §(z, W) where 2 and U are uniquely determined and U
is an ultrafilter with W % W(z). An ultraspace S(z, W) is principal or
not accordingly as A is principal or not. It can be shown that every
proper topology is contained in an ultraspace. (In fact, the author [5]
has shown, in the absence of the axiom of choice, that this is equivalent
to the Boolean prime ideal theorem.) Every topology is the infimum
of the collection of all ultraspaces which contain it. A topology is T,
iff it is contained in no principal ultraspace. Steiner [7] calls a topology
principal iff it is the infimum of a collection of prineipal ultraspaces.
The set of principal topologies forms a sublattice, II, of X which is complete
and complemented [7]. If X is finite, IT = Z. Steiner showed that every
topology ¢ e 2 has a principal complement ¢’ e I7. She also characterized
a topology as principal iff each point has a minimum open neighborhood
containing it.

Gaifman [3] noted that by the axiom of choice it may be shown
that every topological space (X,?) has a maximal (with respect to in-
clusion) T, subspace (Y,?|Y) with ¥ CX and #|Y = the relativization
of ¢ to ¥. This fact is used in the proof of Theorem 5.

3. Results. Taking advantage of the facts and definitions of the
previous section one may easily prove:

TuroreM 1. If |X| > 3, then X (resp., II) has an element with at
least two principal complements.

Proof. Let #,y,2¢X be distinet and let ¢ = S(w, Us(y)). Then,
' =1{0, {z}, X} and "' = {@, {a}, {w, 2}, X} are distinct principal com-
plements for ¢.

Although Theorem 1 is known, this extremely simple proof establishes

simultaneously results of Hartmanis (finite case) and Berri (infinite case)
and, moreover, has as an immediate:

COoROLLARY (Steiner). If |X|> 3, then X (resp. II) is not modular.

The next, somewhat surprising theorem reduces Berri’s question to
the non-T) case and is of independent interest.

TEEOREM 2. A non-discrete T, topology has no mawimal (principal)
complement.

Proof. It will be shown that, given a complement (resp., prineipal
complement) ¢’ for i, there exists another complement (resp., principal
complement) ¢ for ¢ properly containing ¢'.

First consider the case in which X has no i-igolated points. Let
Vo et be a fixed proper subset of X. There exists a point x, e X\V, such
that Voo {2} ¢ . (Otherwise, pick any point y, e X\V, and note that

e ©
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Nyt = U{Vov y}: y e X\V, and y 9o} belongs to ¢'. This is impos-
sible, since ¢ is a T, topology, so that X\{y,} is a member of #, and A%
=1tnt =0.) Let t' =1'v{@, {#}, X} and note that ¢’ is principal, if ¢’
is principal (being the join of two elements of I7). Furthermore, since
Vo u {®} et’\t', then ¢ properly contains . Clearly, vt = 1. It remains
to show that A1’ = 0. Now {%,} et’\! since ¢ hag no isolated points.
Algo, if Vet with V £ 0 and Vv {m} # X, then V v {m} ¢t. To see
this note that ¢ being a T, topology is the infimum of non-principal ultra-
spaces. Since V € #'\#, there exists a non-principal ultraspace §(z, W)= ¢
with o€V ¢ W. Since {w,} ¢ W, then V u {x,} ¢ U and therefore, V v
w {@o} ¢ t. Thus, tAt = 0.

Suppose then that the set of ¢-isolated points, denoted by I, is non-
empty. Let ¥ = X\I and let (P) denote the following proposition.

P: There exist elements Viet', i = 1,2 such that Vyu (Vo X) e\

If P is true, then V;u {y,} ¢t’ for some %, Y (actually, some
Yo Vo X). Thus, i’ = ¢'v{0, {y,}, X} properly contains ¢ and is prin-
cipal, if ¢ is prineipal. Vi’ = 1. To show that A% = 0 one notes that
yo € Y, 50 that {y,} ¢ and proceeds as in the first case.

If P is false, then ¢'v{@, ¥, X} is a complement for ¢ and is principal
if ¢ is principal. (The falsity of P implies that tA(#'v{0, ¥, X})=0.)
Hence, if ¥ ¢, then t' is properly contained in ¢’ =1v{@8, ¥, X}. If
Y et’, then Y v {,} ¢t' for some =@, eI. (Otherwise, ' would have to
contain the complement of an isolated point.) Thus, #"' =1'Vv{@, ¥ v
u {&,}, X} properly contains ¢’ and is principal, if ¢’ is principal. tv¢"”’ = 1.
If Uet'\¢, then U=V u {%), where @V % X and V et'. This is
easily verified using the facts that the join of two topologies has their
union for a-subbase and every non-empty element of ¢’ intersects Y.
As in the earlier cases, it follows that U ¢t. Hence, tAt"' = 0.

One has an immediate:

CoROLLARY. A mnon-discrete T, topology has infinitely many principal
complements. In particular, a non-principal ultraspace has infinitely many
principal complements.

It is now possible to give a new characterization of principal ultra-
spaces.

TrEOREM 3. Let t be an uliraspace. Then these are equivalent state-
ments.

(i) t is principal;
(ii) t has a greatest complement;

(iii) ¢ has a greatest principal complement;

(iv) t has & maximal complement;

(v) © has a maximal principal complement.
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Proof. If ¢ is non-principal, then by Theorem 2, ¢ has no maximal
(prineipal) complement. To complete the proof it suffices to assume
that ¢ is principal and to exhibit the greatest complement for ¢ which
is in addition, principal. If t= S(z, U(y)) with & # y, then t' = {V C X:
# eV C X\{y}} v {@, X} is the desired topology.

The next theorem improves the result of Hartmanis [4] cited. The
inductive proof shows that the construction of at least n—1 complements
for a proper topology on a set with » elements is amenable to being
programmed for a digital computer.

THEOREM 4. If |[X|=n 2> 2 and t is o proper topology on X, then t
has at least n—1 complements.

Proof. For n =2 the result is trivial and for » =3 it is already
known. Suppose inductively that # > 4 and that the theorem holds for
all j with 2 <j < n = |X|. Through the proof suppose that ¢ has a non-
empty element W with % points, but no non-empty element with fewer
points. Let V= X\W and m=[V|.

Case 1. 1 <k <n—2. There are three subcases to consider.

(1) #|V is proper. Since |V| = m > 2, then #|V has at least m—1 com-
plements, say s/, j =1, ..., m—1. Since #|V is proper, there exist distinct
points v eV, 4=1,2 with v e Cl({v,}) (where Cl= closure in (X, 1)).
For weW, i=1,2 and j=1,..,m—1 define complements for ¢ as
follows. If V ¢ ¢, let t(w, 4, ) = Slw, W) A{CCX: O~ Vesl) TV et
let ¢'(w,,j) = S(w, ‘Ib(w))/\t(w,i,j). Clearly, these are topologies. It
will be shown that in either case they provide us with 2k(m—1) > n—1
complements for 1.

Suppose that ¥ ¢1. Fix w e W, i and j. For each w' ¢ W, {w'} = W ~
A ({w}vV)etvt(w,i,]). Foreach v eV, {0} = (T A V) A B, where Uet
and Bes’. But, BCV and Bet(w,4,]); thus {t} = U~ Be tvi(w,,§).
Consequently, tvt(w,4,4)=1. Let O etArt(w,q,§). If ¢ A W = @, then
O e(tlV)Asl. Binee V ¢t, C=@. If ( ~ W + @, then W C C. Thus, v; € ¢ A
NVe@V)As! and 0 AV =7, ie. ¢ = X. Hence, trt(w, 2,§)=0. If
w #w', then {w'}et(w, i, j\t(w', i, §’). Suppose w = w'. For any j,
{0}={(U~V)~BwithBesand U ¢t. Since v, ¢ Cl({vg}), then v, e U NV
and, the‘.:fefore, %2 ¢ B. Thus, for any j' ome has {w}uBe tw, 1, H\
\é(w, 2, j'). Suppose w = w’, i = ' and j # j'. Then there exists B ¢ s\s"
say. But, then B et(w, i, j)\t(w, 4, ). ’

Suppose that Vet. Fix we W, i and j. For each '« W\ {w}, {w'}
=Wo w}Civi(w,i,j) and {w)= W~ ({w} v V)etvt(w,s,j). If
v eV, then {v} = U~ B, where U CV, Uet and Bes'. It v ¢ B, then
{v}/= l"fr'\ Betvi'(w,i,j); i ov;e¢B, then {0} = U~ ({w}v B) ¢ty
VI, 4, ). Thus, tvi'(w, i, j)=1. Let 0 etAt'(w,4,§). I O~ W=0,
then CCV\{vi}. Bince Ce(YV)As/, then C=@. If ¢~ W = @, then
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W o {03 CC. Since C~Ve(t]V)As!, then C AV =7V. Hence, 0= X.
Thus, tAt(w,{,§)= 0. If w = w’, then {w} oV et'(w,, \'(w',i,5).
Suppose w = w’. For any j, there exists B ¢ ¢ with v, ¢ BC V\{v,}. Hence,
{w} v Bet'(w,1,j\t'(w,2,j’) for any j'. Suppose w=w’, i=14', and
j #4’. Then there exists B ¢ s/\s?, say. But, then B ¢ t'(w, i, j)\¢'(w, %, ")
if v; ¢ B; and {w} v B et'(w, 1,)\t'(w, 1,j') if v;¢eB.
(ii) #|V 4s trivial. For each we W and v eV there is a complement
for ¢ defined by
S{w, U(v)), if ¥V is not open;

8w, W(@)AS (v, W(w)), if ¥ is open.

In all, this yields %m > n—1 complements as is easily verified.
(iif) #|V s discrete. Note that V is not open in this case. (Otherwise
is discrete.) One obtains % complements for # of the form:

tiwy={4dwB: ACW,B=0 or B=V and (wed=>B="TV)}.
Since V is not open, there exists v, e V with {v,} ¢ t. Thus, there exist
m—1 ¢'s in V with {v,, v} ¢ ¢t where the possibility that v = v, is allowed.
Each such v yields & more complements for 2, viz. t(w) V{8, {v}, {, v}, X}.
Thus, there are at least km > n—1 complements for ¢ in all as is easily
verified.

Case 2. k= n—1, Then t= {0, W, X}.

All of the following n—1 ultragpaces are complements for #: § (w, Cl.la('v)),
where w e W and veV.

Thus, in either case ¢ has at least n—1 complements and the theorem
is eastablished.

Remark. This estimate is the best possible. If |X|=n >3, then
the proper topology {ﬁ, {w}, X\{w}, X}, where w ¢ X, has exactly n—1
complements.

To establish the last theorem and an affirmative answer to Berri’s
question, the following lemma is extremely useful. The case n=1 is
essentially Steiner’s Theorem 7.1 [7] (pp. 392-393).

LeMMA. Let X = X, v X, with X, n X, = @. Suppose that 1 i given
such that (with t,=1|X;, i=1,2) t, has n > 1 principal complements.
Then t has at least n principal complements.

Proof. Steiner [7] has proved the lemma for the case n = 1. Suppose
that » > 2 and assume without loss of generality fhat X, + @. Let
{tl: j ¢J and |J} = n} be a set of n distinet prineipal complements for #;
let t, be a prineipal ecomplement for ?,. Such exists by Steiner’s Theo-
rem ([7], p. 397). Define n distinet prineipal complements for #: i jed
as follows. First let 8 xt= {U wV: Uet] and V ety}. Next fix a1 ¢ X;,
i=1,2.

t(w,v)=
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Case 1. Xyt for i=1,2 Let ¢ =4} .

Case 2. X, et and X, ¢1.

Let tj (t1 * tz) /\S(wn (wZ))

Case 3. X, ¢t and X, et.

Tet = (1) A8y, W(my).

Case 4. Xyet for i=1,2.

Let = (= t3) A Sy, W (o)) AS{g, W(wy)) -

Clearly ' is a principal topology for each j eJ. The straightforward
verification that i is a complement for ¢ is omitted. (The interested reader
will find a proof of this fact in Steiner [7], pp. 392-393. Note that she
only considered the case where n = 1. The formulae above somewhat sim-
plify the description of the topologies involved in the various cases.)

The map which assigns to each jeJ the principal complement i
is one-to-one. For suppose that ¢,j eJ with 4 # j so that # 52 1. Then
there exists a set U with, say, Uetl\tl In Cages 1 and 3, U st\t’ In
Cases 2 and 4, if «, ¢ U, then U et\¢; if », ¢ U, then U U X, et\t’ Hence,
1 - "

Remark. It is clear from the proof that the lemma remains valid
even if n is an infinite cardinal.

Theorems 2 and 4 enable one to concentrate on non-T, topologies
on infinite sets. The idea of the proof of Theorem J is to show that in
a proper non-T, infinite space there always exists an arbitrarily large
finite proper subspace X, (proper with the relative topology) and then
to apply the previous lemma.

THEOREM 5. If X s infinite, then every proper topology on X has
infinitely many principal complements.

Proof. By the corollary to Theorem 2 it may be assumed that
the given topology ¢ is not 7.

Suppose that X has a maximal T, subspace M with at least two
points. Let n ¢ X\M. Since M v {n} is not T, there exists m ¢ M such
that either (i) meCl({n}) or (ii) neOl({m})). In either cage, let
X, = {m,m’, n}, where m' ¢ M\{m}. Then, t, = {|X, is a proper topology
on X;. (In case (i) {m, n} is contained in CL({n}) ~ X, s0 ¥, is not discrete;
and since m’ ¢ Cl({m}) ~ X, then ¥ is not trivial. In case (ii) CL({m}) ~
N X, = {m, n}, 50 1, is neither trivial nor discrete.)

On the other hand, if every maximal T, subspace of X is a singleton,
let Wet with & = W = X. Let X, consist of three distinct points such
that X; ~ W # O # X \W. Then t, = t|X, is proper. (X, ~ W is a proper
t,-open subset of X;, so #, is not trivial; ¢, is not T, hence not discrete.)

Now given k> 2 any subset of X consisting of k-+1 points and
containing X; as a subset forms & proper subspace in the relative topology.
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Designating this set again by X, and applying the previous lemma it
follows that ¢ has at least k¥ complements. Since % is arbitrary, the theorem
is proved.

Added in proof: The author has solved the problem of determining the cardi-
nality of the set of complements (resp., principal complements) for a proper topology on
an infinite set X. The solution will appear in a forthcoming paper.
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