

Compactifications as closures of graphs

by

A. K. Steiner and E. F. Steiner* (Ames, Iowa)

In this paper we will discuss a procedure for the construction of compactifications of locally compact spaces. By a compactification of X we will mean a compact Hausdorff space in which \hat{X} can be densely embedded. Thus, all spaces considered will be Hausdorff. If \hat{X} is a compactification of X, we will call $\hat{X}-X$ the remainder of X in \hat{X} .

Methods for providing compactifications with given remainders for certain classes of spaces are given in the works of Magill [3] and Aarts and Van Emde Boas [1]. We wish to show that their results are special cases of a general theorem which can be abstracted from [1] and also has other applications.

Let X be a locally compact non-compact space and $X^* = X \cup \{\omega\}$ denote its one-point compactification. By $N(\omega)$ we will mean a neighborhood of ω in X^*

THEOREM. Let X be locally compact and non-compact and K be compact. If there is a continuous map f of X into K such that $f[N(\omega) \cap X]$ is dense in K for all $N(\omega)$, then X has a compactification \hat{X} with K as remainder. Indeed, such an \hat{X} is the closure of the graph of f in $X^* \times K$.

Proof. It is easy to see that the mapping h(x) = (x, f(x)) is a homeomorphism of X onto the graph G of f in $X^* \times K$. Since K is Hausdorff and f is continuous, it follows that no point of the form (x, k), $k \neq f(x)$ is in \overline{G} , the closure of G. That all points of the form (ω, k) are in \overline{G} is a result of the density condition on f. Thus \overline{G} is the desired compactification with remainder homeomorphic to K.

A simple example which may be easily visualized is the following. Let X be the half open interval (0,1] and K be the compact interval [-1,1]. The desired mapping is $f(x) = \sin(1/x)$.

COROLLARY 1 (Magill). Let X be a locally compact normal space which contains an infinite discrete closed subset, D. Then for any Peano space K, there exists a compactification with remainder K.

^{*} Research supported by the National Science Foundation, Grant GP 6529.

Proof. Let F be a countably infinite subset of D and f a map of F onto the rationals in the interval [0,1]. Now F is closed in X and f is continuous. Thus by the Tietze Extension Theorem, f may be extended to a map f' on X. Now, let g be a continuous mapping of [0,1] onto K. The mapping $g \circ f'$ is the desired mapping of X into K since every $N(\omega)$ must contain all but a finite number of the elements of F.

It is a curious fact that Magill used exactly these kinds of mappings to map $\beta X - X$ onto K in his proof.

COROLLARY 2 (Aarts and Van Emde Boas). If X is a locally compact, non-compact separable metric space, then each separable metric continuum K is a remainder of X in some compactification.

Proof. In [1] Aarts and Van Emde Boas give an easy construction of a continuous map from X into K which maps a sequence of points in X converging to ω in X^* onto a dense subset of K. The theorem can now be applied to this mapping.

COROLLARY 3. Let X be an infinite discrete space and K be a compact space with a dense subset of cardinality less than or equal to that of X. Then X has a compactification with K as remainder.

Proof. Let n be the cardinality of X. Now express X as the union of disjoint subsets X_t , i=1,2,..., of cardinality n. Let D be a dense subset of K with cardinality less than or equal to n. We can construct a mapping f of X into K which maps each X_t onto D. Since every $N(\omega)$ is cofinite in X and every mapping on X is continuous, the theorem may be applied.

We should point out that not all compactifications of a locally compact space may be obtained by this procedure. For example, let N be a countable discrete space. Then $\beta N-N$ contains uncountably many disjoint open sets ([2], p. 97), and cannot have a countable dense subset.

Also, the theorem will not allow disconnected remainders to be attached to connected spaces. A small extension may be obtained in the following way. Our method essentially replaces a remainder of one point by another compact remainder. Suppose that X is a locally compact space allowing an n-point compactification (i.e. a finite remainder consisting of n points). We may now replace each of the n points by compact sets. It follows from a theorem of Magill [4] that X may be written as a union of disjoint sets $X = U \cup \bigcup_{i=1}^{n} S_i$, where U is open and has a compact closure in X and each S_i is closed and non-compact. Now, if the one-point remainder in S_i^* may be replaced by a compact set K_i , it is not hard to see that X has a compactification with remainder $\bigcup_{i=1}^{n} K_i$.

References

- [1] J. M. Aarts and P. Van Emde Boas, Continua as remainders in compact extensions, Nieuw Archief voor Wiskunde 15 (1967), pp. 34-37.
- [2] L. Gillman and M. Jerison, Rings of continuous functions, D. van Nostrand, New York 1960.
- [3] K. D. Magill, Jr., A note on compactifications, Math. Zeitschr. 94 (1966), pp. 322-325.
 - [4] N-point compactifications, Amer. Math. Monthly 72 (1965), pp. 1075-1081.

UNIVERSITY OF NEW MEXICO Albuquerque, New Mexico and IOWA STATE UNIVERSITY Ames. Iowa

Reçu par la Rédaction le 5. 10. 1967

FUNDAMENTA MATHEMATICAE LXIII (1968)

ERRATA

Page, ligne	Au lieu de	Lire
20117	O_z , $ ext{qto } g^{-1}Oz \subseteq Oz$.	Oz , что $g^{-1}Oz \subseteq O_z$.
204	3' = 3	$3' \Rightarrow 3$