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Compactifications as closures of graphs

by

A. K. Steiner and E. F. Steiner* (Ames, lowa)

In this paper we will discuss a procedure for the construction of
compactifications of locally compact spaces. By a compactification of X
we will mean a compact Hausdorff space in which X can be densely
embedded. Thus, all spaces considered will be Hausdorff. If X is a com-
pactification of X, we will call X—X the remainder of X in x.

Methods for providing compactifications with given remainders for
certain classes of spaces are given in the works of Magill [3] and Aarts
and Van Emde Boas [1]. We wish to show that their results are special
cases of a general theorem which can be abstracted from [1] and also
has other applications.

Let X be a locally compact non-compact space and X' = X u {w}
denote its one-point compactification. By N(w) we will mean a neigh-
borhood of o in X*

THEOREM. Let X be locally compact and non-compact a/mZ K be compact.
If there is a continuous map f of X into K such that f[N (w) ~ X] is dense
in K for all N (), then X has a compactification X with X as remainder.
Indeed, such an X is the closure of the graph of f in X*x K.

Proof. It is easy to see that the mapping k() = (x, f(#)) is a homeo-
morphism of X onto the graph G of f in X*x K Since K is Hausdorff
and f is continuous, it follows that no point of the form (z, k), k # f(x)
is in @, the closure of @. That all points of the form (w, k) a,re in @ is
a result of the density condition on f. Thus @ is the desired compactification
with remainder homeomorphic to K.

A simple example which may be easily visualized is the following.
Let X be the half open interval (0,1] and K be the compact interval
[—1,1). The desired mapping is f(z) = sin(1/z).

CoroLLARY 1 (Magill). Let X be a locally compact normal space which
contains am infinite discrete closed subset, D. Then for any Peano space K,
there exists a compactification with remainder K.
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Proof. Let F' be a countably infinite subset of D and f a map of 7
onto the rationals in the interval [0,1]. Now F is closed in X and f is
continuous. Thus by the Tietze Extension Theorem, f may be extended
to 2 map f' on X. Now, let g be a continuous mapping of [0, 1] onto K.
The mapping gof’ is the desired mapping of X into X since every N (w)
must contain all but a finite number of the elements of F.

It i3 a curious fact that Magill used exactly these kinds of mappings
t0o map fX—X onto K in his proof.

COROLLARY 2 (Aarts and Van Emde Boas). If X is a locally compact,
non-compact separable metric space, then cach separadble metric continuum K
is a remainder of X in some compactification.

Proof. In [1] Aarts and Van Emde Boas give an easy construction
of a continnous map from X into K which maps a sequence of points
in X converging to » in X* onto a dense subset of K. The theorem can
now be applied to this mapping. )

CoRrOLLARY 3. Let X be an infinite discrete space and K be a compact
space with a dense subset of cardinality less than or equal to that of X. Then X
has a compactification with K as remainder.

Proof. Let » be the cardinality of X. Now express X as the union
of disjoint subsets X, i=1, 2, ..., of cardinality 5. Let D be a dense
subset of K with cardinality less than or equal to . We can construct
a mapping f of X into K which maps each X onto D. Since every N (w)
is cofinite in X and every mapping on X is continuous, the theorem may
be applied. i

‘We should point out that not all compactifications of a locally compact
space may be obtained by this procedure. For example, let ¥ be a countable
discrete space. Then SN —XN contains uncountably many disjoint open
sets ([2], p. 97), and cannot have a countable dense subset.

Also, the theorem will not allow disconnected remainders to be
attached to connected spaces. A small extension may be obtained in
the following way. Our method essentially replaces a remainder of one
point by another compact remainder. Suppose that X is a locally compact
space allowing an #-point compactification (i.e. a finite remainder con-
sisting of # points). We may now replace each of the n points by eompact
sets. Tt follows from a theorem of Magill [4] that X may be written as

- & "
a union of disjoint sets X = U u ‘U 8i, where U is open and has a compact
=1

clo‘sure in X and each §; is closed and non-compact. Now, if the one-
point remainder in §f may be replaced by a compact set K, it is not

bard to see that X has a compactification with remainder CJK:.
dwl
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