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Post algebras as semantic bases of some
many-valued logics

by
V. G. Kirin (Zagreb)

1. Introduction. The subject of the present paper are the many-
valued functional calculi of the first order of Turquette-Rosser (without
equality) and the role of Post algebras therein which is fully analogous
in many respects to that played by Boolean algebras in the classical two-
valued case.

The main results are obtained by means of a certain formalism of
Gentzen and the diagram of formulas due to H. Rasiowa and R. Sikorski
introduced by them in [6].

The author desires to express his profound indebtendness to Pro-
fessor H. Rasiowa for the problem itself and for the kindly advice as well.

2. Post algebras. A distributive lattice with zero (e,) and unit
{én-1), which contains an »-element chain e,, e, ey €nog, bny (With n > 2)
and is such that for each » there are n y’s with the property that

&= (6VYo) AELVYIIA eee A{ro1 VY1)
if
r#s and

YrVYs= oy for Yoh - AYpy = &,

is called a Post algebra of order m (*). Together with the additional con-
ditions: for every »
ZVeiy=e; implies x=e¢ (i=1,..,0—1)
and
#he = ¢ implies z=¢,,
Post algebras are fully characterized. (Cf. [1] and, for another axiomatiza-
tion, [7].)
Since the uniqueness of those y’s has been proved in [1], we write
henceforth
Yi=kix) for i=0,..,0—1.

(*) One obtains Boolean algebras, for n = 2, by putting y, = and y, = ] »
(the complement of ).
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The elements €y, ..., éz—1 are also unique and different, i.e. e,y < e; for
i=1, .., n—1, as shown in [1]. In addition to these unary lattice opera-
tions we also introduce their duals

z=ji@) [for i=10,..,0-1().

Now we rewrite some identities from [1], adjust the proofs of some
others or deduce those concerned with the mutual dependence of ji's
and ks (as is done in [4]).

AP

& = Tol@) A e V(@) A oA (6075 V Tn_s(®))

(2.1) J— .
@ = (G AJ(@) VeV (ena A JAES(2)) Vinal®) .
(2.2)  E@)VEo(®) = €n-1, @) AJs(®) = €
ifr#sand r,s=0,..,n—1
(2.3) E(@)A o A Ener(@) = €55 Fol@) V. Vin-1(®) = €n1 .
(24) k@) Vi@) = -1,  G@)AT(®) =6, r=0,..,n—1.
€ if r=s, . _ fen if r=s,
(2.5)  Frles) = {e,H if  r £ Jrles) = {60 if rs#£s.
In (2.5) 7,8 =0, ..,n—1.
ke(z) £ r=0, Is() if r=0,
kelfal@)) = [j,(m) it r=n—-1, jlis®)=1_0hx ¥ r=n-1,
€,—1 Otherwise . & otherwige.
(2.8)
Jolw) i r=0, js(y i r=0,
Be(jo(®)) = { k() i r=n—1, jrls(@))=1{ke(a) i r=n—1,
én—1 Otherwise. € otherwise .

In (2.6) s=0,..,n—1.
We cite only that group of identities for the least upper bound which
is connected with % operators.

A t/e\T o) = tﬁr’ ko(w:) ,

2.7) kr(te/}' @) = t&‘ Tr(z) v :\;/: (tlélji(w;)) for 1<r<n—2,
Eaal A @) = V Ena(m) .
el ieT

(*) More precisely, ki(z) and js-i-1(») stand in mutual duality. So do e and en—i-1.
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r—1

Take herein T = {1, 2} and write #; = #, 3, = y. On account of \/ i)
i=0

n—1

= A ki(x), we can put the identities for kJzAy) into a more convenient
i=r

form (3):

ko(wny) = k@) Ako(y) ,

(2.8) Erlong) = (bla)v A Faly)) Akl v N W), l<r<n—2,

i=r i=r

En—y(@AY) = kn—o(2) Va—s(y) .

3. Syntax. Our intenfion is to interpret a first order langnage A
in (complete) Post algebras. Its syntax is therefore built up in accordance
with lattice operations of Post algebras.

We assume

X = {xz}, for any natural %, as the set of free individual variables,
Y = {yx} as the set of bound individual variables,
C = {ex} as the set of individual constants,

D= {@Z{}, for any natural ¢ and %, as the set of funetors (% being
the number of free places for terms in some (Iﬁf and ¢ the proper
index),

A= {AF} as the set of elementary propositional functions (with the
same meaning of ¢ and %),

X={Jy, ey In_1;y Koy ooy Kn—1, v, ~} as the set of unary and binary
propositional functors,

E = {B,, ..., Bn_1} as the set of propositional constants,

2=1{(, ),-,”} as the set of auxiliary sings (the brackets and the
down-bounding, resp. up-bounding, guantifier).

The set of terms B of the language A is the least set that contains
each x; e X and each ¢; € 0, and for every k-tuple of its elements #y,, ..., i
and each ®F it contains also GX(t...t).

The set of formulas & of the language A is the least set that confains.
each B; ¢ E and for every k-tuple of terms t;,, ..., ¥; it contains A;‘(til, weey Tig)
for every A;‘ e £. Such formulas are called elementary.

Ki(¥F) and Jy(F) are formulas if F is a formula. So are F v @& and
F~@Gif F and @ are formulas.

(%) For infinite 7', however, there is no such useful way. Sections 3, 4 and 5 of
the present paper are strongly influenced by this fact. See particularly the property
denoted there by (Syn).
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If there is an occurrence of a certain z; in a formula F and there is

1o oceurrence of y; in it, then F(y;/r;) denotes the result of the replacement
of each occurrence of #; in F by y;. Under such conditions v, F (ysfz;)
and y:F(yifw;) arve formulas if F is a formula of the previous kind.
The outermost brackets in a formula will be omitted as usual.
The order of a formula ¥ is the natural number ¢(F) defined ag
follows :

(0 if Fis of the form T, Ti(Ag(tsy i)
| or .K{(Ag(tﬁ...tik)) ,
) = {1 if 7 i§ of the form AX(ti...15),
14+y(@) it F is of the form Ky(@), J«(@), 4:G
| ofy;G,
l1+max{y(G), y(H)} it F is of the form GuU H
or G~ H.

The proposed operators are functionally complete. Suppose we are
given some function f: IT ~I,, where m is a natural number and
In={0,...,n—1}. Every such f(z,, oy ¥m) i expressible in terms of
the following funetions: the constants 0, ..., n—1, max (21, @), min (z,, z,)
and kiw,) (=0, ..., n—1) when defined on I, according to (2.5), ta,kir,lgzs
instead of e;, by means of a rule of substitution (of funections or variables
for variables) or in terms of the previous ones and Jji(m) instead of ki(z)
Namely, the perfect normal forms of F(®@1y ..y ®m) are: e

ﬁ,fl;ﬁln(max (kil(wl)a reey kim(mm),f(il, . ’Lm))' y

ﬁg?mx%(min(j,-l(ml), rees Jin(@m); f (i1, ey ) .

4, Semantics._ Let Z be a non-empty set and P a complete Post
a,‘]gehra, of order . Given & certain v ¢ 2% (v: X2 may be called a nomina-
tion), each extension of that upon G v F with values in Z w P will be

called an interpretation w of the language A it the followi iti
catisfiod (ot . Guag ollowing conditions are

(o) = m(v), the ith coordinate of v e Z% ,
{4¢.1) W(C1) == Zuy(ey,
k
w(Pg (b, ... 1)) = grlw(ts), ..., w(ts)) ,

k -
where ¢ is thought of as a k-ary operation in Z for every q and k, i.e.

an element of 2", Our w, restri. i i
. X cted to B and with i
of as the realization of terms of A. TR 2, is thamght

* ©
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For formulas we put:

w(Bry) = ¢, where el denotes the rth element of the ascending
chain e, ..., ¢,_; in the algebra P,

(42)  w(Afts .. t)) = ag(w(ts), ..., w(ty) , where af, for every g
and %, is thought of as a k-ary me.ny-va.lued re-
lation in Z, i.e. and element of P¥,

w{EAF)) = krlow () ,
w(JA(F)) = jrlw(F
(4.3) ( r( )) Jr( ( )) y
wF v @) =wF) v,
wW(EF A Q)= wF)Aw(G).

Let W(w,j) denote the set of all interpretations w’ which coincide
with w on X in all coordinates but at most the jth, i.e.

(4.4) W, i) = {w': w)(X—{a;}) = w/(X— o))}
Then let
(4.5) ' o(g:Ply) = it {w'(F )

for an arbitrary z;e X which does not occur in the formula y:F(ys),

sup  {w'(F(a;fys)}

(4.6) w(yiF (yi)) = w W7

under the same conditions on ;.
Given Z, P and w, the element w(F)e P is often called the value

of the formula F of A for that w. The value of a non-empty sequence of
formulas £ is defined as follows

(4.7) w(€) = sup {w(Fy), ..., w(Fr)}

if ¢ consists of formulas Fi, ..., Fg. .
A formula F is said to be s-satisfiable (1 < s < n—1) if there is a cer-
tain w defined upon a cerfain Z and a certain P, of order n, such that
w(F) = ek . , .
A formula F is said to be s-tautologous if w(F) = e, for every w defined

. upon every Z and the Post algebra PO (4.

A formula F is said to be s-walid if w(F)> éf for every w defined
npon every Z and every P of order n.

() Tts support consists of a single n-element chain €05 +..5 €n-1, 80 that P° plays
the role of the two-element Boolean algebra in the two-valued case.
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The diagram of formulas. Our aim is to define for every given
formula F of 4 exactly one set of sequences of formulas, called the diagram
of F and denoted by D(F), obtained by a systematic decomposition of F.
Therefore we need a complete list of the rules of decompos1t10n of the
following general form:

L, L

1y @1y ey Oy B2 s B, G

In (4.8) £, is always an indecomposable sequence of formulas (possibly
empty), £, is an arbitrary sequence, F is the formula to be decomposed
and G; are formulas explicitly given (¢ and 6} vary with F and » as well).
The sequence £, Gl, . G,‘, £, is called the ¢-th premise of the con-
clusion £,, 7, £,.
Each rule of decomposition has to possess two properties, denoted
by (Sem) and (Syn) (%).
(Sem): The sequence L, F,{, is s-valid (s-tautologous) if and only
if the sequence £, Gl, G,{, £, i8 s-valid (s-tautologous) for
every 1. .
(Syn): y(F) >
Therefore we define the formulas of the form Ki(A (4,-- 1,,,)

«Jg(A (t5,.- t,,,)] and FE; as indecomposable and others as decomposable.
A sequence is said to be indecomposable if it is built up of indecomposable
formulas only or if it is empty.

A non-empty sequence of formulas that satisfies at least one of the
{following 4 conditions is said to be s-fundamental if it contains:

(i) two formulas of the form K F) and K;(¥), i 7s
(ii) two formulas of the form Ky (¥) and Ji(F),
(iii) » formulas of the form Jo(F), ..., Ina(F),
(iv) one formula of the form H;, i3> s.
The complete list of all the rules is rather long.

1. The rule of elimination of a unsversal quantifier (
of all terms be ordered into a sequence

(4.9) [

and let z; be the firgt free mdmdual variable in (4.9) which does not

oceur in any formula of £,, £, or in the formula, Y:1F (ys). The rule of elimi-
nation of the quantifier “_> is the following one:

L ¥iF(y1), L,
£17F(m1/?/|7), £ :
(‘) The property (Sem) iz a semantic one and that denoted by (

(4.8)

g=1.
G"q’ -

(G?) for every ¢ and j.

. Let the set G

@

Syn) syntactical.
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Sinee »(yiF (y1) > v(F (2s]yq),
is true of (Sem) because

w((ﬁuﬂiF(‘yi), tz) < (~17T (msfys), ’:2)

for every w and =; described above. Namely, w ¢ W(w, ), whence
w(y:P (ys)) = {w'(F(@sly9)} < w(F(

On the other hand, if one assumes w(F (2;)) > e; for any w defined upon
a certain P and a certain Z, one obtains w'(F(x;)) > e} for each w’ ¢ W (w, j)
and each given w defined upon that P and that Z. Since P is complete,
we have

(Syn) holds true for that rule. The same

inf

e zilys)) -

inf {w'(F(z))} = w(yF

P
(yil2s) > €5
w’ e W (w,7)

The property of being s-tautologous behaves in the same way by this
rule. Namely, the algebra P° is obviously complete.

2. The other rules satisfy (Sem) because they preserve particular
values. Namely, their interpretation always leads to identities in Post
algebras. We quote them.

The rule of elimination of an existential quantifier (Q).

Ela g’iF(yi)y s
L1 F(ti/?/i)y Lo T (Y1) !
where #; is the first member of sequence (4.9) such that the formula F(t;)
does not yet appear in the construction of the diagram.

The elementary formulas of the form A;‘(th ...t5), denoted by A,
have to be decomposed according to the following rule (e):

£,4, 8 .

L1y Ko(4), La; &y, By Ey(4), Laj oo 5 L1y sy Kns(4), £,

Rule (e) reflects the axiom of Post algebras (2.1). Indeed,
int{eo (£, Ko(4

@

(e)

w(l, 4, L) = ) w(clﬂElyKl(A) Ez)

ey w(ﬂl, Bz, Kno(4), Ez)} .

The proof of the other rules is essentially the same. Namely, each
rule is based upon appropriate identities (2.2)-(2.8) and many others
very similar to those

L1, (B}, £
El; Eﬂﬂl: r—z
L1y Jo(H), £
Ez; Eoy £a

JE), @ ela);

(JE), (p,qeln,p +# Q);
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E]r K}’(Eﬂ)z CZ
£1;E0} Ez

£, Ko(Bq), L, .

%ﬁﬁ%ﬁ%i (Prgeln,p 7 a)

~1)y ~2

(p e In);

Ly, JolJod ), L

o, KD, (LD
L1, Jo (TolF)), L .
—Ty-ET)—,Tz—— (pyqeln,p==0,n—1);
Ly, Tn_aldg(FY), L.
19 1( !1( ))7 2 (q P In)§

&, 74, 5,
£, Ko Kol ), £
o EAm, L, el

s Ep(Ko(F)), £
gt—l,pg}%,fl— (p,qeln,p #0,n—1);
L1y Ena(Ho(F)), L,
ﬁlqu(F)y £2
ﬁl: JO(KG(E)); E‘ﬁ
G, 4D

Gy Ipl Kol F)), L
o 5l 5 (®s9eln,p +0,n—1);
Ly By, £y

(¢ € In);

ﬁ]_,Jn—l(Kq(F))i £'2 ( ¢ I ).
£, Kq), £, e
L1, Ko [Jo(F)), L,
- . '’ = In .
) N A
£y, Ep{To(F)), £, I
R Pygeln,p #0,n—1);
L1, Bnallo(F)), L, I
QUKH(-F); tz (qe ”),
LFo a, L .
El’F, G’ tz !

L, FnG@,rz, .
L,F,8;6,6,5,°
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(Tih £, JoF v @),5 .
L1, Jo(F), Ly; £, Jol&), L’

(Ti)e Ly (P v G), L,
h El} JO(F)) ey JP(-F)7 Qz; £17 JP(F).’ JZD(G): £2; El: JG(G)) sey J.’P(G): E'Z

(peln,p s 0,n—1);

L1y Inao(F U @), L .
ﬁly Jﬂ—l(F)y Jﬂ—l(G)a Ez !

ElyJo(-Fn G)y Ly .
L1y Jo(F), Io(B), £,

(Im) L Joll ~ G), 5,
2 QlyJZJ(-F) H --',Jﬂ-—l(F)7 £2§ ﬁl;JP(F)7 JP(G) ’ ﬁz; ElyJ:D(G)y "-7Jﬂ—1(G)s £2

(peln,p#0,n—1);

(I1)a

(Jm),

£y dna(F G)y £y

. .

(Jm)s Cr, TaalB), Ly G, Tad(@), 550
. L, EoF v @), ¢

K 1) 0 3 =2 .

(Kih L, KF), Ko@), £, *

(5, b, KolF U @), 8,

L1y Bo(F), Kp(@)y L3 e 5 &1, Kp(F) y Kp(G), Lo oev 5 £, Kol F), Ky(G), £y
(p €In,p # 0, n—1);
£y Ko F v G); £y

(K 5, BoalB), 0 G, K@, 55 0

E’l! KO(F ~ G)y tz .
(Km), T, BB, O &, K@), 5 *
(Rm),

£17-K17(-F [a) G)a £2
L1 Kp(F), Ena(6), o5 en 5 Loy Ep(F), Kp(@), L5 .5 &y, Kna(F), K@), L

(p eIn,p # 0,n—1);

£1) Ena(F ~ &), L

(Km), 5, Kua(F), Kna(®, 5,0
£ Jo(yF), Ly
5 L doly )5 Le
(TQ)h L, G F), £’
3 J F b cz
Q8 L, Jo(yF)

Ly G p(F), Lo ﬁlyl/Ko(F): L35 o5 Loy l—Kp—l(F)’ £,
(peln,p #0,n—1);
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L1y In—1(yF), £
(TQ), Ty TaalF), &
Q) £ g o), L
o £, Ip(7F), L,
2 L1, G o(F) , Lo3 £171K27+1(F)7 £55 wer} El’iJK"“l(F)’ L
(peln,p#0,n—1);
_ Ly, InoalFF), Lo
{JQ)s L, GIna(F), 55’
ﬁl} Ko(ﬂp)a EZ
(EQ) Ty ), L,
EUKP(:[/F)Y L
- I 0, n—1);
(KQ)Z f.]_,_g/Kp(-F)y an(F), ey ng—l(F)y ﬁz (P € P #* s N )!
£ Kn-1(yF), La
(KQ)s Ty, JEna(F), &,
{KQ), &, TE,(), &
_ L, Ko(7F), £y I 0, n—1);
S N . 2 ey P 7w ) A L
(K-Q)s L1y Kﬂ“l(gﬁ’)’ Ly

ElyﬂKn—1(F)7 [

The definition of D(F) is induetive. The list quoted above is both
complete and minimal, i.e. there is exactly one rule according to which
every formula of 4 has to be decomposed if not indecomposable. Since
the maximal number of possible premises is 2n— 3, if n > 3, the elements
of D(F) can be labeled by suitable sequences (i = (zl, vy z}"c) composed
of elements zje {0, ..., 2n—4} as follows:

(i) Leoy € :D(F and it is the formula F itself.

(il) I £z, € D(F), but it is an indecomposable or an s-funda-
mental sequence, then £ ... .o > is not defined for any #z4:. Such
sequences are called end sequences of D(F)

({if) It €¢,..q ¢ D(F), then Lotz € D(F) for any zgpq.

(iv) If Loz € D(F), but it is neither indecomposable nor funda-
mental, then £, .. i3 a certain £,, &, £, of (4.8) while £y,

be the sequence £, Hi, ..., Hy,, £; of (4.8), ie. the first premise of that

rule, ..y £y, -1y Wil be the sequence £, HY,... H‘,’q,tz, ie. the

icm°®
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gth premise and the sequences Lz, w2z, are not defined for any
2pt1 == Q-

D(F) is a tree if ordered with respect to the inclusion of initial segments

with indexes {; = <z1, - zk> of its elements and, because of the rule ( Q),
not always a finite set.

5. Results. For every formula F of A the following four conditions
are mutually equivalent:

(1) F is s-valid,

(2) F is s-tautologous,

(8) the diagram D(F) is a finite set and each of its end sequences is
s-fundamental,

(4) F is provable in a modified Gentzen formalism.

The proof will be carried out according to the following diagram (5).

2
/ N
N\
1) (3)

/
¥
(4)
(1) =(2). Obvious.

(2) —(3). The proof is by contraposition.

Assume first that D(F) is finite and that a certain end sequence of
D(F) is not s-fundamental. According to (Sem), s-validity (s-tautol-
ogousness) of F implies the s-validity (s-tautologousness) of each £, ¢ D(F)
and consequently of every end sequence. Now we prove that an end
sequence £; is not s-tautologous if it is not s-fundamental.

Such a sequence, being non-void and indecomposable, containg
necessarily some formulas of the following three forms (5.1)-(5.3):

(5.1) B
{5.2)

with
Ko (A5 b)), .

r<s,
KAl .81 ,

Sty it p £ g for P, g =iy, .sin

) s ooy TG 1P

‘where m,, ..., mr do not exhaust the set {0, ...
appear among the 4, ...

where (17, ..., 1%y = ({37,

(5.3) Tona[AE(H2 ..

,n—1} and where i, may
, in Of (5.2), but then ip = my, .., Ip 7 M.

(%) Here ““—" stands for “implies”.

Fundamenta Mathematicae, T. LXIII 20
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In order to prove that such an £; is not s-tautologous, we define
an interpretation w® of A within B and P° by taking the following canon-
ical realization of terms:

wei) = ¢,
(5.4) : w'(@:) = @i
w"(@;‘(ti‘...tik)) =1,

where #; is that member of the sequence (4.9) which is of the form
O (w(ts,) . w0(Es)) -

Since w(E,) = e}, let w® be defined for other elementary formulas
as follows:

a;c(,wo(tfr), ey wo(t;})} = 33‘1 )

where dr = iy, ..., in if AF appears in £; in the form (5.2). For a certain AF
and the iy of (5.3) (if any such), w® has already been defined if 7, occurs
among the iy, .., 1%, of (5.2). If ip differs from each of them, let

a,’{(w"(tf“), sy w"(t};”)) =,

where ? is that member of the set {0, ..., n—1} for which { 5% my, ..., t # m,.
Outside €; let w® be defined in an arbitrary way. An elementary
verification yields:

W Ko (Ag(t7 .. t8))) = Filel) = b,
W (AFH? . 12))) = ma(el) = b .

Consequently, w%(f;)= ¢ for a certain r < s.

Assume next that D(F) is infinite. In this case F' is not s-tautologous
either. Consider the set § of all formmlas of D(F) which appear in at least
one of those elements £; e D(F) for which are defined the successors £y
of every rank # > {. § is non-void because D(F) is infinite. We take again
the canonical realization (5.4) and put

]

(5.5) WA, . 1)) = [e*; B KAl 1)) €

¢ otherwise;

#1

0 - s k
) w“(Aé‘(t,-,---tf,,))=‘e§’“" it gt t) <6,

€ otherwise .

The supposition that F is s-tautologous will lead to a contradiction.
Namely, w*F) > ¢; also for the above interpretation, whence the set

=1{GeS: ()= e},

* ©
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a subset of @, is non-void. But y(F) decreases through decomposition
with respect to (Syn). On account of (Sem) we may expect further elements
in %, i.e. there is a certain formula H ¢ X of minimal order. If this H
is indecomposable and of the form

(5.7) K;(A;‘(t,lj..t;k)) or  Judf(t;,..4)

then w(’H)= e; by definitions (5.3), Tesp. (5.6). On the other hand,
w'(H) > 2 because H e Je. This is the contradiction:

It remains to prove that the set R of all indecomposable formulas
of & contains some formulas of the form (5.7) if # is supposed to be
s-tautologous.

Indeed, F;¢ R. Otherwise ¢ <s would imply w'(Ei) < e;, whence
E; ¢ 3 and, consequently, H;¢ R. If ¢ > s, then F;el; for a certain ¢.
Therefore £; would be an s-fundamental sequence of D(¥), whence an
end sequence of it. But no formula from any end sequence of D (F) belongs
even to G. .

The other properties of the set R are:

(i) if a certain & ¢ R belongs to £;, so does the same G for each f;
with & >¢ (by the definition of the diagram and the fact that R C8);

(ii) if a certain Ki(A;c(tjl...tjk)) e R, then for any j 4 K,-(Af(tjl...t,-k))
¢ R. In the opposite case both formulas would appear together in
a certain £,, which is a common successor of ; and £, in D(F), whence £,
would be an s-fundamental sequence and therefore an end sequence
of D(¥F). This, however, is impossible.

(iti) if & certain K(dq(ty,...1;,)) € R together with some TmAF(ts --13)) 5
. J,,L,(Ag’,‘(tjl...tjk)), then neither ¢ = m,, ..., 4 = my NOT My, ..., My exhaust
the set {0, ..., n—1}. In other words, such a j % ¢ as given in (5.6) can
always be chosen.

The assumption that H is decomposable also leads to a contradiction.
If a certain rule of the form (4.8) has to be applied to such an H, then,
as we know by (4.7) and (Sem), for every 4, 1 < i< g, thereisa j, 1 <j
< 74, such that GF « ® if H e J. However, y(G;) < y(H) for every ¢ and §
because of (Syn). It turns out that H is not of minimal order.

Finally let H be of the form %;G (y:). Let H belong to £; with minimal,
.e. the rule (Q) has been applied to H for the first time and with #; as
term. By the supposition 7:@(y) € &, ie.

6 <w(GG(y) = sup {w(G(@sy)} -
w’ €W (u,7)
Hence there is a successor £¢ of £, in D(F) (not necessarily the immediately
first one) of the form
ﬁ{, G(tk/yf)i f’é, Y6 (Y1) ,
20%
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but such that w®(G(ifys) > €2. Namely, P° is totally ordered. Therefore
Glinfys) € 3. But y(G(tefys)) < y(7sG(ys)). This violates the minimality
of y(H).

(3)(4). We describe first what kind of Genfzen formalism will
be used. Every s-fundamental sequence is thought of as a provable
sequence (7). We assume that to every rule of decomposition (of elimina-
tion of a connective or a quantifier) of the form

£

Tty =1,
o

corresponds a rule of inference (of the introduction of that connective or
quantifier) of the form

(5.8)

The proot of a formula F is a finite sequence of sequences of formulas
with the property that its last member is the formula F itself and for
each member either of the following two conditions holds: (i) it is an
s-fundamental sequence, (ii) it is obtained from some preceding sequences
through the application of a rule of inference (5.8).

A formula is said to be provable if there is a proof of it.

Now to the proof itself. Rearrange the elements of D(F) in a sequence
(5.9) Lo sy Loy vy B2, .
with respect to the decreasing lengths of their indexes {; and those of
equal lengths lexicographically. The sequence (5.9), when supplied with
a suitable commentary, is the proof of the formula F. The proof of this
fact is essentially the same as that used in [3]. Namely, (5.9) is a finite
sequence of sequences by supposition and £, is the formula F itself.
The sequence £, is s-fundamental because ¢; is of maximal length, i.e.
£y, is an end sequence of D(F). For every k, 1 <k <m, and the corre-
sponding ¢ of length, say, p the following statement holds: either { is
not a proper initial segment of any of the sequences of length p -1 which
are given in (5.9) by {3, ..., {j, and where £, , ..., £, precede £; in (5.9),
or {; is a proper initial segment of ¢, 1 < ¢ < s, such sequences. In the

first case none of the sequences Q5i¢ , where

i it Ji .
Cin= By ey 2py8ppry  for i=1,..,s,

(") E.g. By, for i > s, is a provable sequence that is also a provable formula. If
£1, 4,8, is an s-fundamental sequence, so is £,, 4, B, £,. The same is true of £,, 4, B, £»
and £, B, 4, £,. Therefore we neglect the structural rules of inference.

* ©
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is defined for any zz,‘ﬂ, ie. £, is an end sequence of D(F) and, consequently,
s-fundamental. In the second case we have

% i
Ck=<zly-~-;zp>)
2 B .
L= <@Ly ey 2y gy fOr  i=1,..,q.

Hence £, is the conclusion of that rule of inference which corresponds
to the rule of decomposition just here applied.

(4)>(1). The s-fundamental sequences are obviously s-valid (cf. (2.2),
(2.3), (2.4) and (4.7)). With respect to (4.7), (4.8), (Sem) and (5.8) s-validity
is preserved under the rules of inference. Hence every provable formula
is s-valid.

6. Implication. No implication has been used so far. However,
if we put
B>y = 1_/>\i k@) VEY) ,
we are able to interpret each formula of the form A = B within every
Post algebra of order » taking

w{4d = B) = w(d)->w(B) ().

The decomposition of formulas of the form 4 = B, Ki4 = B), and
Ji(A = B) becomes a matter of simple computation because there is
a perfect normal form for each of the funetions # -y, ki(z —y) and ji(z —>vy).

There is an axiomatic stipulation of propositional caleulus built up so
as to ensure that the Lindenbanum—-Tarski’s algebra of formulas is a count-
able Post algebra of order #, which justifies the above implication. The
usual detachment rule is sufficient to develop such a stipulation. The
completeness theorem follows from the fact that the quotient algebra
modulo a prime ideal of order zero is an m-element Post algebra. These
results, however, lie outside the scope of the present article and they
deserve particular treatment.
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On ordered topological spaces

by
R. Duda (Wroctaw)

1. A topological space X is called ordered if there exists a transitive
relation <, called order in X, satisfying the following two conditions
(see [2], p. 38):

(i) If %,y « X, then one and only one of the relations z <y, =y,
y < @ holds.

(ii) If #,yeX and o<y, then there exist neighbourhoods U ()
of # and U(y) of y such that # <<y’ and 2’ <y whenever #' ¢ U(x) and
¥ e Uly).

Condition (ii) can be, as is easy to observe, replaced by the following
one

(ii") If p e X, then the sets {weX: 2p} and {xeX: p <a} are
both open in X. ]

In what follows an ordered space will always mean an ordered topo-
logical space.

There are many examples of ordered spaces. Such are, for instance,
the diagrams {(z, f(#)): ¢ B}, where f: R>Y is any function mapping
the real line R into a topological space ¥, with the topology inherited from
R x Y. A great variety of such diagrams, interesting from the topological
point of view, can be found already in the case of ¥ = R, cf. [14]. Another
set of examples of ordered spaces is provided by metric separable spaces
whose all quasicomponents are single points (cf. [10], IT, p. 93; see also
the Remark following Theorem 6 of this paper).

Ordered spaces bave several interesting properties (for instance,
they are all Hausdorff spaces) and they have already been studied to some
extent, e.g. in [2]. The aim of the present paper is to conduct this study
further.

Thus, in part 2 of this paper we shall show that in ordered spaces
quagicomponents coincide with components (Theorem 1) and we shall
discover a close affinity between ordered connected spaces on one hand
and irreducibly connected spaces on the other hand (Theorem 3), both
results to be applied later.
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