326 T. B. Muenzenberger and R. E. Smithson

References

(1] K. Fan, Fized-point and minimam theorems in locally conves topological linear
spaces, Proe. Nat. Acad. of Sei. U.S.A. 38 (1952), pp. 121-126.

[2] I. L. Glicksberg, A further generalization of the Kakutani fiwed point
theorem, with application to Nash equilibrium points, Proe. Amer. Math. Soc. 8 (1952)
pp. 170-174.

[8] 8. Kakutani, 4 generalization of Browwers fived point theorem, Duke
Math. Journ. 8 (1941), pp. 457-459,

[4] J. L. Kelley, General Topology, Princeton 1955.

[5] V. Klee, Stability of the fized point property, Colloquinm Math. 8 (1961),
Pp. 43-46.

[6] T. B. Muenzenherger, On partially continwouws multifunctions, Master's
thesis, Univ. of Fla., 1967.

[7] R. E. Smithson, 4 nole on e-continuity and proximate fized points for multi-
ralued functions, to appear.

[8] A. D. Wallace, . fized point theorem for trees, Bull. Amer. Math. Soc. 47
(1941), pp. 757-760.

[91 L. E. Ward, Jr., Moabs, trees, and fized points, Proc. Amer. Math. Soc. 8
(1957), pp. 798-804.

[10] — Characierization of the fized point property for a cluss of set valued mappings.
Fund. Math, 50 (1961), pp. 159-164.

i

UNIVERSITY OF FLORIDA
UNIVERSITY OF WYOMING
RICE UNIVERSITY

Regu par la Réduction le 17. 7. 1967

Remark on strongly additive set functions

by
J. Kisynski (Warszawa)

A set function p# with values in an abelian group, defined on an
additive class of sets 4 is called additive if

#{A v B) = u(A)+u(B)
for every pair A, B of disjoint sets in . A set function 1 defined on a lat-
tice of sets £ containing the empty set @ is called strongly additive if its
values lie in an abelian group, A(@) = 0 and
AMA)— (A A~ B)= A4 v B)— A(B)
for every A «f and Bel. We call any additive and substractive class
of sets a ring.

If a set function 4 with values in an abelian group G defined on a lat-
tice of sets £ containing the empty set may be extended to an additive
set funection 4 with values in & defined on a ring containing £, then (@)
= u(0) =0 and, for any 4 «L and Bef, we have

AA)— (4 ~ B) = u(A\B) = A(4 v B)— i(B),

so that 2 is a strongly additive set function. The purpose of this paper
is to show that the converse is also frue. Namely, we shall prove the
following i

THEOREM. Every strongly additive set function defined on a lattice
of sets containing the empty set may be extended in a unique manner to an
additive set function defined on the smallest ring of sets containing this
lattice.

In the proof of this theorem the notion of a disjoint union of sets
will be used. The disjoint union of a system of sets 4;, 4y, ..., Ay is defined
if and only if these sets are mutnally disjoint and in that case it is defined
as the usual set-theoretic union and is denoted by 4, U 4, ... O 4y,
orby ) A

k=12, w.,n
LEvMA. Let £ be o lattice of sets containing the empty set. Let R be
the class of all sets of the form | J (A\Bx), where Axel and Bref
k

=1,2, eess W

for k=1,2,..,nandn=1,2,.. Then R is the smallest ring containing £.
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This lemma i3 known (see [1], exercise (2), . 25 and exercise (3e),
D. 26), but -we shall give a proof, since it is based on some formulas which
are needed also in the sequel.

Proof of the lemma. For any sets A,B, (C,D we have
(1) (A\B) ~ (C\D) = (4 ~ O\(B v D),
2) (ANBI\(C\D) = [A\(B v 0)] v [(4 ~ D\B]
=[A\B Y 0)] U [(4 ~ 0 ~ D\B],
B (A\B)v (O\D)=[A\(B v 0)] U [(4 ~ € ~ D\B] S [O\D].
Since clearly R contains £ and is itself contained in the smallest

ring containing £, we need only to prove that R is a ring. It follows from (1)
and (2) that it ¢, D, Ay and By, k= 1,2,..,n, belongs to £, then

@) LI UODNAAE) € ,

80 that if, furthermore, the sets (Ae\Bx), k=1,2, ..., n, are mutually
disjoint, then '
LU (4aBa v (0\D)

k=17,
. . n
=[_U o AR\B)] O [ [ UO\DNAi\Br)}]e R .
From this, by an induction in ¥, we deduce that, for ¥ =1, 2, ...,
N
if Apefand ByeLforn=1,2, -y Ny then | ) (4,\Bn) ¢ R, which means
n=1

that B is an additive class of sets. If Amy Bn, Oy and D, are in £ for

m=1,2,..,Manda=1,2, -y N, then, by (4) and since R is additive,
we have

M N M N
L (Am\Bm)INL U (On\Dn)] = LU N [(An\Bu)\(O\Dn)] € B,

and so R is substractive. Thus R is a ring and the lemma is proved.

Proof of the theorem. It is clear from the lemma that if the

desired extension u of 2 exists, then for any set 4 ¢ R and any repre-
sentation of it in the form

5 =
(5) 4 ”=1,2L’JMN (42\Bn) ,
where A, ¢t and B, ¢ £, we have
N
(6) pd) = D (A(dn)— A(4s ~ By)) .
N=]1

From this the uniqueness of the extension & is obvious. Tt is also obvious
that for the proof of the existence of such an extension we need only

icm°

Remark on strongly additive set functions 329

to prove that, for any set 4 ¢ R, the right side of (6) is independent of
the particular representation of 4 in form (5).

The proof of such independence will be corned out in several steps.
Everywhere in the sequel the big Latin letters denote the elements of .

Step 1. If A\B = (C,\D;) ¥ (C:\Dy), then
MA)—2A(A ~ B) = (C)— A(Cy A Dy)+A(Ca)—A(Cy ~ Dy) .
Proof. Since C\D, and C\D, are disjoint, by (1) we have
C,nC,CD,vD,.
Since C\D:C A\B, by (2) we have _
0 = (CADJ\(A\B) = [O\(Dy v 4)]w [(C: ~ B\D{],
form which

(7)

(8) 0:CA Dy
and
(9) BaA 04 C.D{

or +=1,2. Since, by (2)
[AN\(B v 0)] v [{4 ~ DO\B] = (A\B)\(C\\D:) C C\D;
we have, again by (2),
[AN(B v Gy v O))] v [(A ~ D\(B v 0))]= [A\(B v O)NO\D,] = &
and
{(4 ~ DINB v G)] v [(A ~ Dy ~ DN\B] = [(4 ~ DINBNO\D;]= @,
from which

(10) ACBu v,

(11) AnD,CBuU O,

(12) AnD,CBu(,,

(13) A~nD ~D,CB.
Put

U= 4(4)— (4 ~ B)— (1) +4(0, ~ Dy)—24(0y) +2(0y ~ Dy) .

We have to prove that U = 0. Since, by (10) and by strong additivity
of 2,

MA)—2(AAB)=AA ~(Bv 0, 0))—A(4 ~ B)
= A4~ (Cv C)—A{AABA (0, v 0,)

=2AANC)F+AANC)—A(A A C, A Cy)—
—~AMAANABAC)—AMAANBAC)FA(AABAC LG,
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and, by (8) and by the strong additivity of A,
AMO)—2A(Ci ~ Dy) = ).(Gt A~ (4 v Dy))—A(0; ~ Dy)

. =MA~C)—2A4 ~CinDy)
for i= 1,2, we have

V= A~ CAD)+AA A CAD)+A(AABA C C)—
A ABAC)—AANBAC)—AANC A,
By (11), (12) and (9),
MAANCiAD)—LA~BA~GY
= ).(.A ~ACiADin(Bv C'g-.r))~—l(A ANB~Cin Dy
=MAA~CACAD)—AAABACACA Dy,
by (7)
MAANCAC) =24~ CnCn (D v —Dz))
=MAARCACAD)+FUAANC A CAD)—AA A~ C A C~Dy~D,)
and, by (9) and (7)
AnBACACG=A~nBAnCn"Di=A~0ACinD ~D,.
Thus U = 0.
Step 2. If (\D C A\B, then there arve E; and Fy, i = 1, 2, such that
(14) . A\B= (O\D) U (B\F,) © (EN\F,)
and
(15)  A(4)—2(4 ~ B)
= M(C)—A(C ~ D)+ A(By)— A(By ~ Fy) -+ A(By)— A(By ~ Fy).
Indeed, put E, =4, Fi=Bu(, Fy=A~ ¢~ D, F,= B. Then’

by (3); (14) holds and in order to prove that (13) holds we must prove

that
AMA)=2(4 ~ B) = 4(C)— A(C A D)+ i(A)— {4 ~(Bv O) +
FAMAACAD)—HAABACAD).
Since, by the strong additivity of 2,
MA A By O)=2AAB)+A4 AC)—1{A~Bn o),
this is equivalent to proving that
(18) AUO)-HOAD)—~HAAC)+A(A A CAD) +
+AAABrAO)—HAdABACAD)=0.
Sinee ¢\D C A\B, by (2) we have
0= (O\DN(4\B) = [O\(4 v D)] v [(C ~ BAD],

e ©
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so that ¢ C A4 v D and C ~ BC.D, which implies that

) BAalCAD=BAC
and

MO = A€ A4 wD)=MNCAD)+2AAC—AAACAD),
and so (16) follows.

Step 3. If
ANB= U (CAD)
then o
n
AA)— (A ~ B) = X (2(C)—A(C; ~ Dy) .

i=1

Suppose that this statement is true for an »n = &k and let

A\B={ +1(0;\1),~).

=120 k
By step 2 there are E; and Fi, i= 1,2, such that
ANB = {Ore1\Dis2) & (B\F1) & (B\F)
and
(A7) AA)— A4 A B) = i(Cr+1)— U Crs1 A Digsa) +A(Br)— A(By ~ F)+
+ A(Bs)— A(By ~ Fy).
We then have by (1)

BNF = ”u _ LOND) ~ (BaF)] = ;:19 . (G~ BND; © #0)]

=153, ey

for i =1, 2 and so, since the statement of step 3 is assumed to be true
for n=r,

k
(18) (B~ i(Be~ Fo) = ) (4(Cs ~ B)—A(Cy ~ By ~ (D © ).
i=1
Since, for j=1,2,..,k by (1),

ONDy = U [OND) ~ (BNF)] = U [(G) ~ BINDs v 7))

i=1,

by the step 1 we have

(19) A(Cs)—i(C; ~ Dy) = Z (A(C] ~ Ei)— Z(Cj ABin{D;o F;)”

=1
for j=1,2,..,k It follows from (17), (18) and (19) that
k+1
MA)— A4 ~ By =) (M(G)—4(C; ~ Dy).
j=1
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Thus we see that if the statement of the step 3 is true for n = k, then
it is also true for » = k--1. By step 1, this statement is true for n = 1

and » = 2. Hence, by the principle of mathematical induction, it is true
for every n=1,2, ...

Step 4. If
i=1, 2[J m (Ai\Bi) = fﬁlgj... n (OJ\DJ) ’
then
D (MA)—2(4i ~ B)) = D (M0 —4(C; ~ Dy)) .
i=1 j=1
‘We have
ANBi= U [ANB) A (OND)I= U [(4sn GN(Biv D))

and

ONDyj= U [(ANB) ~ (OND)]= U [(den O\(Biw Dy,

m=1,25 cons
so that, by step 3,

n .

MA)—2(4i n B) = D' [4(ds ~ O)—4{4i ~ G ~ (Biu D))

=1
and
AO)—2(0 ~ D) = D) [AAc ~ C)—A{Ai ~ G ~ (Bs w Dy)] .
Hence
D (MA)—A(4s ~ By) = i D (MAin )=2(4i A ) A (B D))
t=1 =1,2, eess M
F=12, 0

n

= D (M0)—2(Cy ~ Dy) .

=1

Thus the statement of step 4 is proved and so the proof of our
theorem is completed.
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