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Completeness degree

A generalization of dimension
by
J. M. Aarts (Cambridge, Mass.)

All spaces under discussion are metrizable

1. Introduction.

1.1. In this paper we give an outline of a generalization of dimension
theory by replacing the empty set in the definition of inductive dimension
by a topologically complete space. The most important notion is that of
strong inductive completeness degree which is analogous to strong inductive
dimension Ind. The formal definition is as follows (ef. [7], p. 9).

DEFINITION. A space X has sirong inductive completeness degree —1,
Ied X = —1, if X is topologically complete. If for any disjoint closed
sets ' and @ of a space X there exists an open set U such that F# C U C X\G
and Ted B(T) < n—1, then X has strong inductive completeness degree < n,
TedX < TedX = if TedX <o and Ted X <L n—1. If Ted X L n for
each n, then JedX = oo.

1.2. Dimension and completeness degree are related by the following
theorem which justifies the use of the term “completeness degree”.

MAIN THEOREM. A metric space X has strong inductive completeness
degree < n if and only if X has a topologically complete extension Y such
that I\X has strong inductive dimension < n.

In view of this theorem Ied X < # is an infernal, necessary and suf-
ficient condition on a metrie space X so that X has a topologically complete
extension Y with Ind Y\X < n. This theorem is proved in section 3.
The main theorem can be restated by introducing the notion of completeness
deficiency (G- deficiency in [1]). By the completeness deficiency of a space X
we mean the least integer # such that X has a complete extension ¥ with
Ind I\X = n (of course, we allow # to be oo). Then, the main theorem
says: the strong inductive] completeness degree of X equals the com-
pleteness deficiency of X.

1.3. Now, by replacing Ind by Ied several theorems can be obtained
from dimension theory. This is done in sections 4 and 5.
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On the other hand, in view of the main theorem, some *“dual theorems”
can be expected to hold. See 4.5 and 4.7.

The device of replacing Ind by Ied does not work in the following
cases: the sum theorem in its full generality (there is a restricted sum
theorem in 4.6) and the product theorem. See 2.4, 4.6 and 4.8.

1.4, We will define small inductive completeness degree and covering
completeness degree as analogies to small inductive dimension and
covering dimension respectively. It turns out that covering completeness
degree and strong inductive completeness degree coincide. Small and
strong inductive completeness degree are equal for separable spaces (see
section 7 and 6 respectively).

1.5, Other generalizations of dimension have heen discussed by
J. de Groot and T. Nishiunra ([2], [3], [4] and [9]).

2. Preliminaries and examples.

2.1. The closure operator will be denoted by an upper bar. Bx(U)
(or B(U) when no confusion is likely to arise) denotes the boundary of 7
in X. The complement of B in 4 is denoted by A\B. For shortness sake,
“complete” means “topologically complete”. I is called an eatension
of X if X is a dense subset of ¥, For metric spaces the dimension functions
dim (= covering dimension) and Ind (= strong inductive dimension)
coincide. We use Ind and dim indiseriminately.

2.2. We frequently use the following consequence of the heriditary
normality of a metric space.

Lexya. For any subsets A and B of a space X satisfying 4 ~ B =0
and 4 ~ B = O there exist open sets U and V such that AC U, BCV and
UnV=@ (cf. [7], p. 3).

2.3. A topological property P will be called hereditary with respect to
Gs-subsels if whenever a space X has property P then every @y-subset
of X has property P. In the sequel, many proofs are hased upon the
following property of complete extensions of a space.

LE)EVIA? Let P be o topological property heveditary with respect to
Gs-subsets. If for a space X there exists a complete extension with the prop-
erty P, then each complete extension Y of X contains a complete extension
of X with the property P.

This lemma can easily be deduced from the following well-known
theorems.

TEEoREM. (Alexandrov-Hausdorff.) X is complete if and only if X
is a Gs-subset of each space Y which containg X (see [6], p. 337).

THEOREM. (Lavrientiev.) Each homeomorphism between subspaces A

and B of complete spaces X and ¥ respectively, can be extended to a homeo-
morphism between Gs-subsets of X and Y (see [6], p. 335).

icm

Completeness degree 29

Proof of the lemma. Let ¥, be a complete extension of X with
property P. Due to the theorem of Lavrientiev, the identity map of X
onto itself ecan be extended to a homeomorphism between Gs-subsets Z
and ¥, of ¥, and Y respectively. Due to the theorem of Alexandrov—
Hausdortf, Y, is complete and this set has property P. Indeed, P is
a topological property and Z has P because P is hereditary with respect
to Gs-subsets.

2.4. We now discuss the existence of spaces with strong inductive
completeness degree #. The main theorem (1.2), which will be proved
in section 3, is used.

TuroreM. Let X be a non-complete space and Y a union of o locally
countable family {Cuyaes of compact subspaces. If Z is a complete extension
of XX Y, then dimY < dim(Z\X X X).

Proof. First suppose that ¥ is compact. Let A be a eomple‘re ex-
tension of X. We assume that X x ¥ is embedded in X x ¥ in the natural
way. According to lemma 2.3 thele exists a complete extension Y, of
X x Y, which is contained in X% ¥, sueh than dim (YN\X X ¥)
< dim(Z\X x Y). Let p denote the natural projection of X x ¥ onto X.
P is closed since T is compact. Because Y, is complete, Xx Y\T, is an
F,-subset of Ixr. Consequently, p (X x T\Y,) is an F,-subset of X

P(X x T\Ty) is contained in X\X but it is not all of X\X since X is
noiy complete. Let xe (AN ( (X x ¥Y\T,). Then, p7(x)C T \Xx Y.
Since p~i(x) is homeomorphie with ¥, dimp-i(z) = dim Y. (“‘onsequen’ﬁly,
dimY < dim(Y\X x ¥).

It Y is not compact, then due to the sum theovern of dimension
theory ([7], p.17) for some ae A we have dim(,= dimY. Now, the
same argument as above can be used to show that for each complete
extension Z of X x ¥ there is a topological copy of C,in Z\X x Y. Hence

dim(AN\Xx Y)> dim(C,=dim7Y .

Examrre. Let @, 7 and B denote the rationals, the unit interval
and the real numbers, respectively (endowed with the usnal topology).
Then IedQ x I" = Ted@ X R" = n.

Indeed, from the theorem above, it follows that for each complete
extension Z of @ x I" we have dim(Z\@ x I") = dimI" = n. On the other
hand, I*** ean be regarded as s complete extension of @ x I" such that
dim (I"*\@ x I") = n. It follows that the completeness deficiency of
Q x I" is n. By the main theorem Ied@ x I" = n. Similarly, Ted@ x R'=mn
is proved.

PROPOSITION. For each &k (—1 < k< n—1) there is a subset X of the
n-dimensional BEuclidean space & with Ted X = L. & contains no sets of
higher Ted.
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Proof. In view of the example above it suffices to show that if
X Cg" then Ted X < n—1. Obviously, X is complete. Ind(X\X) < n—1
in view of [7], p. 98. By the main theorem it follows that Ied X < n—1.

25. Exsavprm. Recall that a space X is called totally imperfect
if iti contains no (homeomorphic) copy of the Cantor set. Let X be a sepa-
rable complete space of dimension % > 2. We will exhibit a subset ¥
with Ted ¥ > [n/2]—1 ([#/2] denotes the greatest integer which does not
exceed n/2). By & theorem of Bernstein ([6], p. 422) X can be decomposed
into two totally imperfect, mutually disjoint subsets ¥ and Z. Rither
dmY > [n/2] or dimZ > [#/2] (otherwise, by [7], p. 19, Aim X < dim Y4
+dimZ+1 < 2([n/2]-1)+1 < n). Assume dimZ > [n/2]. Then TedY
= [#/2]—1. Indeed, due to lemma 2.3 there exists a complete extension X,
of ¥ such that YCX,CX and dim(X\Y) is minimal. X\X; iy an
F,-subset of X since X, is complete (theorem of Alexandrov—Hausdorft;
see 2.3.). Then, X\X, is a Borel set (for definition see [6], p. 250). Con-
sequently, if X\X; is uncountable, it contains a copy of the Cantor set
(L6], p. 355, theorem of Alexandrov—Hausdorff). However, X\X,CZ
and Z contains no Cantor sets. It follows that X\ X, is countable, whence
zero-dimensional. Because Z = (X\X,) v (TNY), dim(XN\T) = [n/2]—-1.
From the main theorem it now follows that Ied ¥ > [n[2]—1.

3. Proof of the main theorem. We first prove some [lemmas.

3.1. Levma. If A is a closed subset of X, then Ied A < Ted X.

Remark. Actually IcdX <n is an invariant under the taking of
Gs-subsets (see 4.4).

Proof. The proof is by induction on Ted X. Tf Ted X — —1, then X
is eomplete, which implies that 4 is complete; hence Ied 4 = —1. Assume
the lemma for spaces X with Ted X < n—1. If F and @ are disjoint closed
subsets of the subspace A of a space X with Ted X < n, then there exists
an open set U of X such that FC UCX\G and IecdB(TU) < n—1, be-
cause F' and @ are also closed in X. Then, FC U ~n A C A\NG and B4(U ~ A4)
CB(U) ~ A. By the induction hypothesis, TedBa(U ~ 4) < n—1. Fence
Ted 4 < n.

3.2. LeMMA. Let A be o subset of X with TedA <n (n> 0). For
any disjoint closed subsets F and G of X there emists an open set U such
that FC U C ING and Ted (B(U) A A) < n-1.

Proof. Since X is normal, there exist open sets V and W for which
FCV, GCW and 7 ~n W = @. Because Tod A <, there exists an open
subset D of A such that 7 ~ 4 C D C A\ and Ted B4(D) < n—1. Neither
of the disjoint sets # v D and ¢ u (A\D) contains & cluster point of the
other. By 2.2_there exists an open set U such that FUDC U and
Un(@ov4\D)=@. B(U)C O\U and B(U)~ 4 is a closed subset
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of B4(D). From lemma 3.1 it now follows that Ted(B(U) ~ 4)
< n-—1.

Remark. If in the lemma “Ted” is replaced by “Ind”, then one
gets a well-known result from dimension theory, which can be proved
similarly by replacing “Ied” by ¢“Ind”.

3.3. LemvA. The union of a o-locally finite collection of F',-substes
of & space X, is an F,-subset of X.

Proof. For each i=1,2,.., let {F,] yieli} be a locally finite
collection of F,-subsets. For each index y¢let F,, = | J {FE| k=1,2, ..},
where each . is closed. Then, for each & and ¢ the set | {(Fh| yi e I}
is closed, sinee {FL| yielIy} is locally finite. Olearly, U {F,,| yiel5;
$=1,2,.0 = I piell; i=1,2,..; k=1,2,..) and the lemma
follows.

3.4. Proof of the main theorem 1.2. “if”-part. The proof is
by induction on dim(¥Y\X). The “if”-part obviously holds for n = —I1.
Assume the “if-part for X and ¥ with dim(¥\X)<n—1. Suppose
that ¥ is a complete extension of X with diga(Y\X) <. Let F and ¢
be disjoint closed subsets of X. Delete F ~ & from Y. ¥; = Y\(F ~ G)
is a complete extension of X and dim(¥,\X) < n. Then, in the space ¥,
we have F ~ G = @. It follows that in ¥, there exists an open set U
such that FC UC Y\G and dim(B(T) ~ (¥\X)) <n—1 (see remark
in 3.2.). By the induction hypothesis Ied(B(U) ~ X) <an—1. Bx(U) is
a closed subset of B(U) ~ X and by lemma 3.1 we have Ied Bx(U) < n—1.
This proves that Ted X < ».

“only if”-part. The proof is by induction on IedX. Suppose IedX
= n > 0. (The case n» = —1 is obvious.)

A. TFirst, take an arbitrary complete extension ¥ of X. We W]]l
delete an F,-subset of ¥ so that the complement of X becomes < n-di-
mensional.

B. In Y there exists a o-locally finite collection of open subsets
{U,| y «I'} and a collection of closed subsets {F,| y eI’} such thab

1) F,CU,, for each y ¢I" and

2)if V,, yel, is an open subset such that #,CV,CU,, then
{V,l v eI} is a o-locally finite base. N

Indeed, let W; be the family of all open balls of diametfer < 1/4 ‘(m
some metric of ¥). Let W= {U,| ae A} be a locally finite covering
which is & refinement of W;. Since Uy is a locally finite eovering, there
is a closed covering {Fi aeA;} such that FiC U; for every aeAd;
(see e.g.[T1, . 2). Asis easily seen {U7| aeds;i=1,2,..}and {F;] a e 4y
i=1,2,..} satisfy all conditions required.
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C. By lemma 3.2 for each y e I there exists an open set V', such that '

F,CV,CU, and Ied(B(V,) n X) <n—1.

D. By the induction hypothesis each set B(V,) ~n X has a topologi-
cally complete extension C, such that C,)\(B(V,) ~ X) has dimension

<n-—1. By lemma 2.3 we may assume that C,CB(V,). Since B(V,)

is closed, B(¥,)\C, is an F,-subset of X.

E. We delete from Y the set J{B(V,)\C,| y eI} and obtain
a space ¥;. Due to lemma 3.3 and B the set | J {B(V,)\C,| y €'} is an
F,-subset of Y. It follows that X, is complete. We will show that
dim (T\X) < .

F. From B it follows that {V", ~n (Y\X)| y e I’} is a o-locally finite
base for the subspace Y\X. Now,

Bryx(Vy n (Y\X)) C Bry(V,) n (TAX)
as is easily seen,
Br,(Vy) n (TN\X) C B(V,) ~ (TA\X)
and
BV}~ (TN\X)CONB(V,) nX)  (by D).
It follows that

dim By x(V, A (YA\X)) < dim C\(B(V,) ~ X) <n—1 (see D).
By [7], p. 18 we have dim(Y\X) < n

3.5. CoroLLARY. If Ied X = n and AimX = m, then X has a complete
extension Y such that AimY = m and dim(I\X) = n.

Remark. This result is in contrast to the situation for compactifica-
tions. There is an example of Nishiura [8] of a space X with the following
property: if ¥ is a compactification of X such that dim (¥\X) is minimal,
then dim Y > dim X.

Proof. By the preceding theorem there is a complete space Y,
such that dim(Y,\X) = n. X is an m-dimensional subset of Y.. By [7],
p. 32, there is an m-dimensional (complete) ;-subset Y of Y, such
that YCYCT,. dim(I\X)=n as follows from TedX = n and the
preceding theorem,

4. A theory for Icd. In this section we eheck which of the funda-
mental theorems of dimension theory can be generalized to theorems for
Ted. We also prove some “dual” theorems.

4.1. First, we give two simple propositions which can be proved
by induction.

ProrosiTION. Ted X < dim X
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PrOPOSITION. If Ted X = 9, then for each k, —1 < k < n, there exists
a closed subset F'y such that Ted Fy = k. !

The first proposition follows from the comparison of the definitions
of Icd and strong induective dimension. To prove the second proposition,
observe that there exist disjoint closed sets F' and @ in X such that for
every open set U with F C U C X\G we have IedB(U) = n—1. Indeed,
Ted X < n—1. Since Ted X < n, for some U with FC UC X\G we have
Ted B(U) < n—1. Hence IcdB(U)= n—1 for such a U. Define B(U)
= Fy_y. Foa 2<li<g<n) is defined by induction. Obviously, X =F,
and @ = F_, satisfy the conditions of the proposition.

4.2. In order to apply dimension theory in combination with the
main theorem, the following two lemmas are used.

LzvMA. The union of a locally finite collection of G- subsets of a space X
@8 & Gs-subset of X.

Proof. Let {Gy ae A} be a locally finite collection of G,s subsets
of X. Let {U,| a<A} be a locally finite collection of open. sets sueh that
G, C U, for each a ([5], p.158). Let G,=) {U’| i=1,2,..}, each T’
being an open subset of X. We may assume that vic U, f01 ea,eh i and a.
Then

UG aed}=1) {U{U! aed}| ’L——l,.f,...}

Indeed, obviously
LG ae AYC [T acd}] 1=1,2,..}.

If @ ¢ | {6 aed), then there is a neighbourhood U of # which meets
at most finitely many Ua: Us,, ..., Us, say. Since 2 ¢ | J{Ge| ae A}, it
follows that # ¢ Gy w ... v Ga,. Then, i, ..., % can be selected such that
2¢UP k=1,..,n Ifi=maximum {i, ..., %}, then z ¢ | {UY aed).

43, LevMa. If {Gd) acA) is a locally finite family of subsets of
a subspace X of a space X, then there exisis an open subset” U of X such
that X C U C Y and {G.] o € A} is a locally finite collection in the subspace U,

Proof. For each point ¢ X, one can select an open neighbourhood
U(a) of z in Y such that U(s) ~ X meets at most finitely many elements
of {@.] @ e A}. Then U = | {U(#)| @ ¢ X} satisfies all conditions required.

4.4. We now investigate the values of Ied for subsets of a space X.
As shown by the examples in 2.4 and 2.5, completeness degree is not
a momnotone function. However, since a G4-subset of a complete space X
(ie. TedX = —1) is complete, the following theorem can be expected
to hold.

THEOREM. If A is a G,-subset of X, then Ted 4 < IedX.

Proof. Let A=) {Us ¢=1,2,..}, each U; Deing open in X.
Due to the main theorem there exists a complete extension of X for which
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dNim(I’\X) = IedX. For each ¢ there exists an open subset U with
UinX = Uj;. Then, () {U i=1,2,..} is a complete extension of A
and .

Ted 4 < dim( (U i=1,3, SAX) < dim(INX) = Ted X .

The converse of this theorem holds for IedX = —1 (theorem of
Alexandrov—Hausdorff, 2.3). However, this converse does not hold in
general as the following example shows.

ExAMpLE. In the notation of the example in 2.4, let X be the disjoint
union of a copy of @ xI™ and a copy of I". As is easily seen, Icd X = m
(cf. the next theorem). Assume m =n—1 and n>1. @ xI™™ can be
regarded as a subset of the copy of I®. Then, TedQ x I"'= n—1 < m.
However, @ x I" 'is not a G,-subset of X. Indeed, if @ x I""is a @4-subset
of X, then it is a Gy-subset of I" which implies Ted(Q xI"™") = —1. This
contradicts the assumption # > 1.

4.5. Next, we discuss the a.rialogy and the “dual” of the following
sum theorem of dimension theory: If X = A u B, then dim X < dim 4+
+dimB-+1 ([7], p. 19).

THEOREM. If A and B are subsets of X, then

Ted(4 v B) <TedA+4TedB+1,
Ted(4 ~ B) < TedA-+TedB+1.
CorOLLARY. The Ied of a space cannot be increased by the adjunction

of a complete space. The Tcd of a subset of a space X cannot be increased
by the taking of the intersection with a complete subset of X.

Proof. Let Xbea complete extension of X. Let A and B be @5-sub-
sets of X which contain A and B respectively such that

dim(A\4) = Ted4 and dim(B\B)= led B
(main theorem and 2.3). AvBisa complete space and

Ied(4 v B) < dim (4 v B\(4 © B)) < dim (L 4) v (B\B))
< dim (A\A4)+ dim (B\B)+-1 = Ted A+ T
_—— \B) -+ +TedB+1.
Ted(4 ~ B) < dim[(A ~ B\(4 ~ B)] < dim ((A\4) (B\B))
< TedAd+TedB+1 .
4.6. Thfa second sum theorem of dimension theory states®that if
{#y] y eI} is a locally countable closed covering of a space X with

diJ_nIf’,, <n f?r eaqh y eIy then dimX < n ([7], p. 17). The analogy of
this theorem is obviously false. The space @ of the rationals is the countable
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union of singletons which obviously are complete. However, Ied@ = 0
as is easily seen. We have the following sum theorem.

THEOREM. Let {F,| y e I'} be a locally finite cover of a space X such
that T, is open or closed and IcdF, <n for each y eI. Then IedX < n.

Proof. Tet X be a complete extension of X. In view of lemma 4.3
we may assume that {F,| y ¢I'} is a locally finite collection of subsets
of X. For each yel’, let @, be a Gs-subset of X such that

1 Fy=6,n %,

(2) G, CFy,

(8) Aim(G\F,) = LedF,, and

(4) it F, is open, then @, C U,, where U, is an open subset of X such
that U, ~ X =F,.

The existence of such a Go-set @, is proved as follows. By 2.3, there
exists a Gy-set B, in X such that F,C B, and dim(E\F,)= IedF,.
If F, is closed in X, one takes the intersection of &, and the G-subset F,
of ¥. This set satisfies conditions (1), (2), and (3). If F, is open, then
E, ~ U, is the required @,-subset G,. Since {F,| v e I'} is a locally finite
collection of subsets of X , by (2) and lemma 4.2 it follows that G=1{G,|yel}
is & complete extension of X. - _

If F, is closed in X, then H, = F,\@, is an F,-subset of X, since ¥
is closed and F\G, is an F,-subset of F,. If P, is open in X, then U,\G,
= H, is an Fg4-subset of X, since H, is the intersection of U, and X\G,,
both U, and Z\G being Fy-subsets of X. Bach H, is contained in X\X.
Sinee H, C F, for each y e I', {H,| y ¢ I'} is locally finite. By lemma 3.3
we have {J {H,| y eI} is an F,-subset of X. We delete this F,-subset
from G and obtain a complete extension G, of X. If F, is closed in X,
then

(%) F,n (G\X) = Gy ~n (G\X) .
If 7, is open in X, then
(%) U, A (GN\X) = Gy (G\X) -

Then we have
NI = U {6y n (\X)| y 1},

{6, ~ (G\X)| y eI} is a locally finite collection of subsets of G\ZX,

G, ~ (G\X) is open or closed in @, for each yeI Dby (*), and

dim (G ~ (G\X)) <7 by (3). By the sum theorem of dimension theory

it now follows that dim(G\X) < n (observe that in a metric space each
open set is an F,-subset). By the main theorem Ted X < 7.

The following example may illustrate the foregoing sum theorems.

3%
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ExAMPLE. The unit interval I is the union of two Gj-subsets Z,;
and Z, each of which is zero-dimensional (by [8], p- 19 and p. 32). Z, X Q
and Z,x Q will be regarded as subsets of Ix @ (as for notation see 2.4).
Then IXQ = Z,XQ v Z,x Q and TedZ, X @ = TedZ, X @ = 0, as is easily
seen.. By Theorem 4.5 we have Ied X @ < 1. Actually, in 2.4 TedIx@ =1
has been proved. This example shows that the condition “F, iz open
or closed” cannot be replaced by “F, i3 a G4-subset”.

4.7. Ttis an open problem whether. or not the following decomposition
theorem holds for completeness degree (cf. [7], p. 19). Let n = 0. Ted X < n
if and only if X = 4, U ... U Ay for some n+1 subsets A; with Ted
A4;<0, i=1,..,n+1. The “if”-part is a consequence of theorem 4.5,
bnt the construction of 2 decomposition is an open problem.

Observe that in dimension theory the decomposition theorem is
a consequence of the sum theorem. If the decomposition theorem holds
true for completeness degree, this might lead to a proof of the independ-
ence of the decomposition theorem from the sum theorem in dimension
theory. The decomposition theorem holds true in case Ted X = dim X,
Indeed, if Ted X = dim X < », then X can be decomposed in »+1 zero-
dimensional subsets 4y, ..., An41 -€ach of which has Ted = 0 (otherwise
Ted A; < dimA; = 0 and theorem 4.5 lead to a contradiction). Thus,
for example, @ XI" can be decomposed into n-41 subsets 4, ..., dpi1
such that TedAd;=0, i=1,..,n41.

However, the “dual” of the decomposition theorem is ezmlv estab-
lished.

STRUCTURE THEOREM. Ied X < 0 if and only if, in some X - containing
space Y, X s the intersection of n—+1 sets X; such that TedX, <0
t=1,..,n+1

Proof. The “if"’-part follows from 4.5,

“only if?-part. Let Y be a complete extension of X such that
dim (Y\X) < #n. Decompose Y\X into n-+1 zero-dimensional subsets
Ay ooy Apga. Put Xy = Y\ A4, and by the main theorem the *“only if”’-part
follows.

4.8. As shown in 2.4, there is no product theorem for completeness
degree. But we do have:

TuroREM. If B is complete, then

Ted(A X B) < IedAd+dimB.

P?oof. It 4 is a complete extension of A, then 4 XB is a complete
extel‘lsmn of AxB. The theorem now follows from the product theorem
of dimension theory ([7], p. 20) and the main theorem.
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5. Some characterizations of Ied. In this section we give two
characterizations of Ted which are motivated by well-known theorems
of dimension theory. The first characterization is proved by modifying
the method of 3.4

5.1. THEOREM. Let n > 0. IedX <n if and only if there exists
a-locally finite open base B for X such that Ied B(V)<n—1 for every
Vedh.

This theorem should be compared with Theorem II 2 in [7], p. 32.

Proof. “only if”’-part. In X there exists a o-locally finite collection
of subsets {U,| y<I'} and a collection of closed subsets {F,| y ¢ I'} such
that

1) ¥,C U, for each y eI, and

2) if V,, yel, is an open subset such that F,CV,CU,, then
{V,| v e I'} is a o-locally finite base (see 3.4, B). If Ied X < m, by lemma 3.2
for each y eI" there exists an open set W, such that F, C W, C U, and
Ted B(W,) < n—1. Obviously, {W,| y e I'} satisfies all conditions of the
theorem. :

“if -part. Let B = {V,| yelI'} be a o- 100'1.11y finite base for X such
that Ted B(V,) <n—1 for each yel. Let X be o complete extension
of X. ForeachV, ¢ B, let V be an open subset of X such tha.t V nX=7V,.
Now (in some flxed metuc of X) the diameter of V,, is equal to the
diameter of ¥, for each y eI, since X is a dense subset of X. Let If;
denote the union of all elements Vy which satisfy the condition diameter
V, < 1Ji. Obviously, T, is an open subset of X, i=1,2,.. Now, write
B=J{B |1=1,2, } Where each B is locally finite. By lemma 4.3 there
exists an open bubset W of X such that X C W, and $; is a locally finite
collection in the subspace W¢, i=1,2,.. -

Then, ¥ = {Win T4 i= 1,2,..} is a G,-subset of X which
containg X and for which the family {V A~ Y| Ve B} is a o-locally finite
base.

Now, the proof is completed as follows. For each v el, the set
Bx(V,) C By(V, ~ Y). Since Ted Bx(V,) < n—1, by the main theorem and
lemma 2.3 there exists a complete set C, such that BX(V,,) ce,C By(Vy nY)
and dim C\Bzx(V,) <n—1. Asin 3.4 E and F, |J {Bx( (Vy A ING,| y eI}
is deleted from Y and the remaining space Y satisfies dim (Y \X) < n.
Consequently, by the main theorem Ted X <

52. In dimension theory the notions “order of a covering” and
“order of the system of boundaries of a base” are very important. Keeping
this in mind we ean except the usefullness of & condition of the form:
the intersection of any n--1 members of a collection is complete.

We have the following theorem (cf. [7], p. 32).
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Temorey. Ted X < n if and only if there is a o-locally finite base
{V,| y eI} for X such that B(Vy) A eon B(Vyy) 18 complete for each
set of n--1 different indices.

Proof. “if”-part. The case n= —1 is obvious. For n=0, it is
a rewording of the “if”’-part of the preceeding theorem. In view of the
preceeding theorem if suffices to show that for each y eI we have
TedB(V,) <n—1. Let n=>1. {B(V,) Vsl p=v,8 eIt is a o¢-locally
finite base for B(V,) and Bgg,)(Vs) C B(Vs). Then, for each set of n-+1
different indices y, yy, ..., s We have

Baiyp(Var) A oo~ Baop(Vya) CB(Vy) A B(Vy) oo 8 B(Vy)

and the theorem follows by induction.

“only if”-part. Let ¥ be a complete extension of X “such that
dim(¥\X) < n. As in 3.4B let {U,| y «I'} be a o-locally finite open
base for ¥ and {F,| v eI} a collection of closed sets such that #,C U,
and if V,, y eI, is an open subset with F,CV,C U,, then {V,| y eI}
is a o-locally finite base for Y. Now, for each y e I' there is an open set U,
and a closed set F;, such that F, C interior ¥, CF,C U, C U, C U,. By [7],
PD. 25-26 in the subspace ¥\X there exist open subsets W,, y e I, such
that

Ty~ (T\X) C W, C W, ~ (T\X) C (T\INT,

ﬂ {(WW\WW) n (Y\X)l t=1,.,0+1}=0

for each set of n41 different indices y,, ..., ynt1. For each y neither of
the disjoint sets F, v W, and (Y\U,) v ((I\X\W,) contains a cluster
point of the other. By lemma 2.2 fhere exists an open set V, such that
F,CV,CV,C U, and (V,\V,)~ (IN\X)C (WAW,) n (I\X), yel. Tt
follows that M) {(V,\Vy) ~ (I\X)| 4= 1, ..,n+1} = @ for each set of
n-+1 different indices. Obviously,

and

Bx(Vy) oo n Bx{Vy,,) C (Vm\\vm) AN (VWH\VWH) .

The last set is complete and it is contained in X in the case where y,, ..., ynt1
are n-1 different indices. Now, the theorem easily follows.

6. Small inductive completeness degree.

6.1. By replacing the empty set in the definition of small inductive
dimension ([7], p. 9) we get

DEFINITION. A space X has small inductive completeness degree —1,
icd X = —1, if X is complete. If for every neighbourhood U(p) of every
point p of X there exists an open neighbourhood V such that p e V .C U(p)
and icd B(V) < n—1, then X has small inductive completeness degroe < n,
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icdX <n.icd X =nificdX <nandiedX {n—1.icdX = ccificdX L n
for each 7.
Obviously, we have the inequality

icd X < TedX .
We have

6.2. TaROREM. If X is a separable metric space, then iecd X = Ted X.

Proof. The proof is a copy of the proof of ind X = IndX for
separable spaces in [7], p. 90. We only have to replace ind and Ind by ied
and Ted respectively. icd X < IedX as observed above. Inductively on
icd X, we show that icdX >IedX. If iedX = —1, this inequality is
obvious. Suppose that icd X = IedX has been proved correct for each
space X with iedX <n—1. Suppose iedX = n. Let {U:] i=1,2,...}
be a countable open base. If U;C U; and if there exists & W such that
U,.CWCU;, icdB(W)<n—1, then we choose a fixed W with this
property and denote it by Wi. Otherwise Wiy = @. If follows from
Ted X = n, that {Wy| 4,j=1,2..} is an open base with icdB(Wy)
< n—1. By the induction hypoi;hesis Ied B(W;;) < n—1. By theorem 5.1
we have Ied X < n.

6.3. Due to this theorem all theorems, which are proved for Ied,
hold for ied in the separable case. However, observe that several theorems
can be proved directly, i.e. by induction and without using the main
theorem. For example; if A is a Gy-subset of X, then ied A < icd X.

icd(A u B) <icd A+icd B+1.

It is an open problem whether icd X = Ied X in general.

7. Covering completeness degree.

7.1. DEFINITIONS. A border cover of a space X is & family of open
sets {U,| v e I'} such that X\ (J{U,| y«I'} is complete. The order of
a border cover U at p is the number of members of U which contain p
(of course, we allow order -co). The order of a border cover U will be
the supremum of the orders of U at the points of X. A border cover
{U,| y eI} is a refinement of {V4| 64} if for each y there is a 6 such
that U, CVs.

72. DErFINITION. If for any border cover U of X there exists
a border cover U such that U refines U and order of U< 21,
then X has covering completeness degree <, coedX <. If coedX <n
and cocd X <{n—1, then cocdX = n. If cocd X <{n for each n, then
cocd X = oo.

Though coed is quite different from Ied in the way it is defined,
we have that coed and Ted coincide.
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7.3. THEOREM. cocd X = Ted X.

Proof. cocdX < TedX: Let ¥ be a complete extension of X such
that dim YA\X = TedX = n. Let {U,| y «I} be & border cover of X.
For each y an open subset T, of Y is selected such that Uy ~ X=1,.
Let ¥, =X v {ﬁ,,\ yeI}. Then ¥, is a complete extension of X such
that dim(¥\X)=n (the completeness of Y, follows from the fact thab
Y, = (I\U Tyl yeID v (U {ffyl y €I7), both summands being com-
plete). Since dim(¥\X)=n, the family {Uy ~ (¥\X)| y eI} has an
open refinement {V,| 6 €4} of order < n+1-([7], p. 23). By [6], p. 122
it follows that in Y, there exists an open collection {Wy| 6 A} sueh that
Wi (TN\X) =TV, and Vs, ..o n Vo= O implies Ws oo N Wo =0,
84y vy O € A. So, the order of {W,| 6 4} does not exceed n-+1. Finally,
for each & there exists a y such that V,;C 177 A (N\X). Let Og= Wy~ ﬁ;,.
Then {Os| 6 €A} is a border cover of X of order n+41 which refines
{U,| y eI'}. Hence cocdX < n.

Ted X < cocd X: Let ¥ Dbe an arbitrary complete extension of X
and let o denote a metric of ¥. Let Uy = {S;(#)| @ ¢ Y\X}, where 8,(z)
= {ye¥| o(,y) <1} Let Wi= {U ~ X| U €Uy} and let U; be a border
eover of X which is a refinement of Us; and has order < coed X +1 = n—+1.
Then, for each ¥V ¢ U, an open subset W of Y is selected such that W~ X
= V. The collection of all W, which are obtained in this way, is denoted
by W;. Since X is dense in ¥, we have order W, <= 1-1. Suppose we have
defined W, ..., Wg—y. Let Wy = {Syu(x)} # ¢ I\X} and let Uy = {U ~ X|
U € Us}. Let Uk be a border cover of X which is & refinement of both Uy
and Uy, and which has order < n-+1. Then, for each Ve Ur an open
subset W of ¥ is selected such that W ~ X = V. This can be done in
sucéh a way that W is contained in some member of Wy since Uy is & re-
finement of Vy_,. Wy is the collection of all W which are obtained in this
way. For each k, the set Y= X U {{J{W| W eWs}] is complete. It
follows that Yk is a G4-subset of Y. Consequently, Z == () {¥¥l k= 1,2, ..}
is a complete extension of X. We will show dim(Z\X) < n. Let Wi, = {W
A (Z\X)| WeWg}. Then {Wi| t=1,2,..} is a sequence of open co-
verings of Z\X such that

1) Wiy is o refinement of Wi, k=1,2, ..,

2) order Wy < n+1, k=1,2, ...

3) mesh W;—>0 as k—>oo,

By [7], p.126 it follows that dim(Z\X) < n.

?

Hence IedX < n.
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