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 Maximal lattice-ordered algebras
of continuous functions*

by
Philip Nanzetta (Cleveland, Ohio)

Let X be a compact Hausdorff space and let D(X) be the lattice
of continuous functions from X to the extended real line, yR, which are
real-valued on a dense subset. With a natural definition of operations,
D(X) becomes a partial algebra.

A P-algebra is a real Archimedean lattice-ordered algebra with
positive 1 which is a weak order unit. A @-subalgebra of D(X) is a subset
of D(X) which is a &@-algebra under the operations defined above. By
Zorn's lemma, every @-subalgebra of D(X) is contained in a maximal
@-subalgebra.

The purpose of this work is a study of D(X) by means of these
maximal @-subalgebras.

D(X) is an object of some importance in representing certain algebraic
structures as collections of functions, as the following paragraphs indicate.

M. Henriksen and D. G. Johnson have proved ([6], 2.3) that every
@-algebra A is isomorphie to a point-separating - subalgebra of D (A6(4)),
where AG(A) is the (compact) space of maximal I-ideals of A.

Likewise, each Archimedean vector-lattice is isomorphic to a point-
separating I-subspace of D(X) for an appropriate choice of X (see [9],
6.8).

The operations on D(X) need not be everywhere defined. However,
D(X) can be embedded “isomorphically” in a &@-algebra .D(Xw). This
proposition leads to the following result: A subalgebra of D(X)is a maximal
@ -subalgebra iff it is & maximal subalgebra.

The idea of locallity in maximal @-subalgebras turns out to be of
some importance. Let A Dbe a maximal &@-subalgebra of D(X). If fis
locally in 4, then f belongs to 4.

The structure space, A6(4), of A is obtained as a quotient space
of X. The embedding of A info D(J(;(A)) induced by the quotient map
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is just the Henriksen-Johnson embedding. Locallity is used in showing
that the (maximal) stationary sets of A are nowhere dense, closed, and
connected (or ave isolated points).

The result of the previous paragraph indieates that stationary sets
are small. Examples are given to show that stationary sets may be very
large. For a familiar 1-dimensional space X, there is a maximal &@-sub-
algebra of D(X) with a 1-dimensional stationary set. If o is any cardinal
number, there is a maximal @-subalgebra of D([0, 11" with structure
space [0, 1].

Tf X is a 1st-countable space, the intersection of all the maximal
@-subalgebras of D(X) is exactly the set of locally eonstant functions.

The class of uniformly closed (= closed under uniform convergence)
& -algebras is of particular interest. Just as the Stone~Weierstrass theorem
shows that ¢(X) is the smallest uniformly closed @-algebra with structure
space X, we prove that there is a largest uniformly closed &-subalgebra,
U(X), of D(X) with structure space X. U(X) is characterized as the
collection of all elements of D(X) whose coinfinity sets are 0*-embedded
in X. Bvery uniformly closed maximal @-algebra is U (X) for some space X.
U (X) is the intersection of all the maximal I-subspaces of D(X). Conditions
are given under which U(X)= ((X), and necessary and sufficient con-
ditions are given for U(X) to be isomorphic to C(Y) for some space Y.

Using the characterization of U(X), it is show that if P is a hyper-
real prime ideal of a uniformly closed maximal &-algebra A, then A[P
has no countable cofinal subset. Hence hyper-real quotient fields of
uniformly closed maximal @-algebras are (real closed) #,-fields. It is
known that in the absence of maximality this result need not hold.

Since D(Y) = D(BY) for any completely regular space ¥, no partic-
ular eﬁort has been made to eliminate compactness from the hypotheses
of certain theorems.

The author would like to express his gratitude to Professor E. C. Wein-
berg for hours of valuable discussion and penetrating questions on the
material of this paper.

1. Preliminaries. An attempt has been made to keep this paper
reasonably self-contained. Questions of notation and terminology can
be answered by consulting [3] or [6], the latter of which is devoted to
a study of the structure of &-algebras.

In this paper, all given spaces are assumed to be completely reqular
(and Hausdorff). When not mentioned to the contrary, X is elways
@ compact space.

The set (field, topological space) of real numbers is denoted by R;
and the set of natural numbers, by N. If Y is a space and # < R, then r
denotes the constant function on Y taking the value 7.
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1.1. A space Y is emtremally disconnected iff the closure of every open
subset of ¥ is open. It is known ([3], 1H) that every open subset of an
extremally disconnected space is C*-embedded and extremally disconnected,
and that every dense subset of an extremally disconnected space is ex-
tremally disconnected.

Let f: ¥—>Z be a continuous funetion. Then f is tight iff every non-
empty open subseb of Y contains the non-empty inverse image of an open
subset of Z; f is fitting iff f is closed, onto, and the inverse image of each
point of Z is compact.

TugorEM. ([13], section 2.) Bvery space ¥ is the comtinuous image
under @ tight fitting map, 7, of an evtremally disconnected space, Yo. If Z
is another extremally disconnected space and o is o tight fitting map of Z
onto Y, then there is a homeomorphism o of Yoo onto Z such that ¢ o g = 7.
(This is an extension of a theorem of Gleason [2].)

The pair (Y, ) is called the minimal projective extension of Y.

1.2. Tet Y be a subset of Z. Then ¥ is C*-embedded in Z iff every
continuous function on ¥ to [0, 1] has a continuous extension over Z. When
Y is dense in Z, ¥ is C*-embedded in Z iff every continuous function
on Y to any compact space has a eontinuous extension over Z. For any
(completely regular) space Y, there exists & compactification, ¥, of ¥
characterized by the condition ¥ is C*-embedded in Y. For a more
detailed description of BY, see [3], Chapt. 6.

1.3. A @-algebra is a real Archimedean lattice-ordered algebra with
positive 1 which is a weak order unit. Equivalently, a @-algebra is & real
Archimedean Iattice-ordered algebra which as a ring is a subdirect sum
of totally ordered rings, and which has an identity.

Let Y by a completely regular space. A continuous function f: Y—+yR
is said to be an ewtended real-valued function iff the coinfinity set, R(f)
={yeX: fy)eR}, of fis a dense subset of ¥. D(Y) is the set of all
extended real-valued functions on Y. With the partial order defined
pointwise, D(Y) becomes a lattice.

Let f and ¢ be extended real-valued functions. If there is a function .h
in D(Y) such that h{z) = f(z)+yg(x) for all 2 e R(f) ~» R(g), then h is
the sum, f-+g, of f and g. Since R(f) ~ R(g) iy dense, this sum is unique
if it exists. Similarly, fg is the extension of the pointwise product defined
on the intersection of the coinfinity sets, and it is unique if it exists.

A subset A of D(Y) which is a @-algebra under the operations on
D(Y)is called a @-subalgebra of D(Y). Subalgebra, subspace, and - subspace
are defined similarly.

Note that a @-subalgebra of D(Y) is simply an 1-subalgebra with 1.

ProrosITION. ([6], 2.2.) D(Y) is o @-algebra iff every dense cozero
subset of ¥ is O*-embedded.
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1.4. An (algebra) ideal I of a ®-algebra 4 is an [-ideal iff aed,
bel, and |a| < [b] together imply a ¢ I. Let 6(4) denote the set of all
maximal l-ideals of 4. If I is lideal of A, let h(I) = {M € M(A): T C M.
If 8 C #(4), let k(8) = §. The topological space with underlying set
A(4) and closure operator 8—hk(8) is called the structure space of A,
For a e 4, let A(a) be the set of maximal I-ideals of A containing g.
Then the collection {G(a): ae A} forms a base for the closed sets of
Ao (4).

If I is an I-ideal of a P-algebra A and if a e 4, then I(a) denotes
the image of & under the natural projection of A onto A/I.

Let A Dbe a lattice-ordered ring and I an I-ideal of A. Then Al can
be made into a Ilattice-ordered ring as follows: call I(a) positive iff
a” = (—av0) belongs to I (see [3], Chapt. 5).

The following fundamental representation theorem is due to M. Hen-
riksen and D. . Johnson.

TurorEM. ([6], 2.3.) Bvery ®-algebra A is isomorphic to an algebrg A’
of extended real-valued Sfunctions on M(4). Moreover,

(2) M(A4) is a compact (Hausdorff) space, and

(b) if S and T are disjoint closed subsets of AMo(A4), then there is an
o’ e A" such that o'[S] = {0} and o'[T] = {1}.

Proof. We give only the definition of the isomorphism a—a’ of A
into D(4(4)). For each 0 < aed, let

o'(M)=int{reR: Mla)<r} (Me A(4)).
For arbitrary a ¢ 4, let a'(M) = (a*)' (M) —(a~)(M).
1.5. THrOREM. ([5], 3.3.) If A is a ®-algebra and B is a subalgebra,
then the least sublattice of A containing B is a subalgebra of A.

1.6. The next theorem is a slightly weakened version of a theorem
of [6], and follows immediately from the proot of [6], 5.2.

TuarOREM. ([6], 5.2.) A D-algebra A is isomorphic to C(X) for some
space Y iff

(@) R(4A) = {R(f): fe 4} is dense and C*-embedded in M(4),

(b) A is uniformly closed (t.e., closed under uniform convergence), and

{6} A is closed under imversion (te, if aecd with Z(a) disjoint
Jrom R(A), then a is invertible in 4). '

In this. case, ¥ may be taken to be R(A).

2. Maximal O-algebras. A mazimal P-subalgebra of D(Y) is a
&-subalgebra of D(Y) which is not properly contained in any @-sub-
algebra of D(Y).

In many of the arguments throughout this Dbaper, we will want to

know whether a particular function f belongs to a given maximal & -sub-
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algebra 4. The results of this section permit us to ignore the lattice oper-
ations in attempting to adjoin f to A, and to concentrate on “loeal belong-
ingness’’.

2.1. Let (Yx,7) be the minimal projective extension of Y. Tt is
easy to show that the map +*: D(Y)—=D(¥.) given by 75f)=fov is
a lattice isomorphism which preserves sums and products when they
exist. Moreover, if 7*(f)4-+*(g) belongs to T*[D(Y)], then f+g is defined
in D(Y); similarly for products. Since Y., is extremally disconnected,
it follows from 1.3 that D(Y) is a &-algebra.

THEOREM. A subalgebra 4 of D(Y) is a marimal subalgebra iff 4 is
a maximal @-subalgebra.

Proof. It clearly suffices to prove that every subalgebra of D(Y)
is contained in a @-subalgebra.

Let A be a subalgebra of D(Y). Then t*[4] is a subalgebra of t*[D(Y)],
and *[D(Y)] is & sublattice of D(¥); hence the sublattice, E, of D(Y)
generated by v*[4] lies in «*[D(¥)]. By 1.5, E is a @-algebra. Clearly,
then, =" [E] is a @-subalgebra of D(Y) containing A.

The proof of 2.1 with the Henriksen-Isbell result (1.5) replaced by
its analog for vector-lattices (easily proved by induction using the well-
known identities a(avd) = aavab, (aVb)+-¢ = (a++c)v(b+e¢) for0<aeR
and a, b, ¢, in a (real) vector lattice and their duals) can be used to show
that maximal subspace and maximal [-subspace of D(Y) are the same. )

2.2. Since maximal subalgebras of D(Y) contain the constant
functions, we have the following corollary.

CoroLLARY. If A is a mazimal ®-subalgebra of D(Y), and feD(Y)~A4,
then for some mneN, there exist mie A (0 <i<n) such that ) myf*
is not defined.

2.3. Let 4 be a ®-subalgebra of D(Y¥) and let fe D(Y). Then f
is in A ot xeY iff # has a neighborhood on which f agrees with some
element of 4. The @-subalgebra A is called local iff f in A at each z¢ Y
implies that f belongs to A.

TuEOREM. Let X be a compact space. Then every mazimal @-sub-
algebra of D(X) is local.

Proof. Let 4 be a maximal ®-subalgebra of D(X) and suppose
that f is in A4 at each x e X. By a compactness argument, there exist
a finite open cover {U; L <i<n} of X and a subset {a;: 1<i<n}
of 4 such that fli;, = ai|r; for all I<i<n.

Let gy, ..., gr e A. Define h: X-+yR by

h(x) = E{gja,-f(w): 0<j<k} for xel;.
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Now, h is well-defined and h e D(X). Since h agrees with Daif on R(f) A
A R(g) A v ~ R(g), we have k= 3 g;f. By corollary 2.2, fe 4.

The ideal of locallity has been considered by Arens [1] in commutative
Banach algebras.

3. Structure spaces. In this section, A is assumed to be a @-sub-
algebra of D(X) containing the comstant fumciions.

3.1. The following proposition generalizes a result of M. Henriksen
and D. G. Johnson ([6], 2.5).

PrOPOSITION. For » ¢ X, the set

My={feA: fg(x) =0 for all ge A}

is a maximal 1-ideal of A. Every mawmimal 1-ideal of A is of this form.
Finally, My # My iff there is some fe A such that f(x) # f(¥).

Proof. Clearly M, is a proper [-ideal of A.

Note that if fe A vanishes on a neighborhood of x, then fe M,
and that if fe M, then f(z)= 0.

Suppose that I is an [-ideal of A such that for all z ¢ X, there exist
feI and ge A with fg(x) > 0. By compactness of X there are fi, ..., fa
in I such that (|f,gu] ...+ [fagal) is strictly positive for all z ¢ X, so I = A.
Hence every proper l-ideal of A is contained in some M.

Suppose that M, properly contains My. Let fe Mgz~My. Then
there is g « A such that fg(y) = 1 (and fg(@) = 0), so (fgA1/2) —1/2 belongs
to My~DM,, a contradiction. Hence no M properly contains any M.
In view of the preceeding paragraph, this implies that each M is & maximal
l-ideal. If M, # M,, then there are f ¢ M, and g ¢ Asuch that fg(y) # 0.
If f belongs to A with f(2) 5= f(y), we may suppose that f(z) =1 and
fly) = —1; then fvO0 e My; clearly fvO0 ¢ M,.

3.2. A subset § of D(X) is said to separate points of ¥ C X iff when-
ever ¢ and y are distinet points of ¥, then there exists a ¢ S with a(2) = a(y).

Let t be the relation on X defined by (#, y) e v iff A does not separate
the points of {z, y}. Clearly r is an equivalence relation. The equivalence
classes of v are called stationary sets of A. (Note that here “stationary set”
is used insteac of the customary ‘“maximal stationary set’.)

TrEOREM. The structure space, M(A), of A is homeomorphic to (the
quotient topological space) X[t

Proof. Write Y for Xjr, and let ¢ be the natural projection of X
onto Y. Since M= My iff (2,y) e, t(o(@)) = M, defines a bijection
71 ¥+ U6(4). Now, Y is a continuous image of X, so ¥ is quasi-compact.

Let A6(a) = {M e M(4): ae M} be a basic closed subset of AG(A).
Then

oo (M(a)) = o ({o(@): ae M) = {weX: acM}=() {Z(ab): beA},
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which is closed. Henee v is continuous. Since AG(4) is Hausdorff and ¥
is quasi-compaet, T is a homeomorphism.

This theorem can be used to obtain the structure space of a @-sub-
algebra B of D(Y) for an arbitrary completely regular space Y. Every
funetion in D(Y) has a unique extension to an element of D(8Y)—this
yields an isomorphism of B into D(SY). Let 1z be the identity element
of B. Since 13 is idempotent, the only values that it can assume are 0, 1,
or co. Since 15(co) is thus open (and nowhere dense), 1z can assume only
the values 0 and 1. Hence the set

{xefY: 1p(e) =1} = {we fX: 1p(x) # 0}

is an open-closed subset of #Y on the complement of which every function
in B vanishes. Hence B can be considered as a ®-algebra of extended
real-valued functions on this set.

3.3. If 4 is a @-subalgebra of D(X) and g is the natural projection
of X onto X/r, then A can be considered as & @-subalgebra of D(X/r)
as follows: if o(z) = o(y), then a(®)=a(y) for all aec A, so defining
o: Xjt—yR by a"(e{z)) = a(x) yields an isomorphism a—a” of 4
into D (X/x).

The homeomorphism 7+: J#6(4)~X/r induces an isomorphism
(v)*: D(Xfr)+D(AM(4)) by ()(f)=Fev" Then a—(7)* (@) is an
embedding of 4 into D(J(,(A)). It is natural to ask whether this embed-
ding agrees with the Henriksen-Johnson embedding, a—a’, of A into
D(M(A)) (see 1.4).

THEOREM. The homeomorphism of theorem 3.2 induces the Henriksen—
Johmson embedding of A into D{M(A)}; i.e., in the notation of the above
paragraphs, a’ = (z<)*(a").

Proof. Let 0 < aed, Myed(4). Recall that a'(M,)=inf{r<R:
Mya) <r}. If Mia)<r for some 7eR, then there is m e M; such
that a<r4m, 50 r=rt+mr)=(r+m)(@) >a)= o (v (M)
= (v9)*(a") (Mo). Henee (v)a")<o’. If reR with r< a'(My), then
r < My{a), so there is m e M, with r+m < a; then r = (r+m)(z) < a(x)
= (v=)*(a"")(M,). Hence a’ < (v)*(a"").

‘We will usually not distinguish notationally between elements of 4
and their images in D (X/x).

3.4, It is clear that if 4 is a maximal @-subalgebra of D(X), then 4
is & maximal @-subalgebra of D(A6(4)). In the latter case, 4 is said to
be a maximal D-algebra.

4, Stationary sets for maximal @-subalgebras.

4.1, Connectedness in the next theorem depends only on the fact
that A4 is local and contains the constant funetions. i
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TaEoREM. Let A be a maximal @-subalgebra of D(X). Bvery station-
ary set of A with-more than one point is closed, nowhere dense, and con-
nected.

Proof. Let § be a stationary set of A with more than one poins,
and let # €. Then 8 =) {f~ of(x): fe A}, so 8 is closed.

If y eintS and y # », then there is an open neighborhood U of y
such that z¢ U C 8. There is a closed neighborhood V' of y such that
VCU. Let geC(X) with g(y) =0 and ¢[X~V]= {1}. Every element
of A is constant on the open set U, and g is constant on the open seb
X~V, 50 Dfigi is defined whenever fred (0<i<n). Hence ¢ed.
But g separates x and y.

Suppose 8= Bu (¢ where B and C are closed and disjoint, and
C#0. Let geC(X) with 0<g<1, g[U]= {0}, and g[V]= {1} for
some open neighborhoods U and V of (' and B, respectively. Let
Z={weX: g is not in A at «}. Note that Z is closed and Z is disjoint
from U v V. Now, 4 separates each point of Z from 8, so by compactness
of X, A separates Z from §; hence there is f ¢ 4 such that f vanishes on
a neighborhood of Z, is 1 on a neighborhood of S, and is bounded. Then
fgis in A at every point of X, so fye A. Since fy separates B and (,
we must have B = . Hence § is connected.

It has been pointed out to the author that connectedness of stationary
sets also arises in a different context. The following statement was proved
by M. Katétov [10], Lemma 18, see [3], 16.31: If A is a subring of *(X)
containing the constant functions and if f belongs to 4 whenever f2e 4,
then every stationary set of 4 is connected.

4.2. CoroLLARY. If X s a totally-ordered space or is zero-dimensional,
then every mazimal @-subalgebra of D(X) separates points of X.

4.3. LEMMA. Let h e D(X) and let Y be o connecled subset of N'(h)
= {r eX: |h(x)| = oc} satisfying

(x) Iffi Y—>[—1,1] is continuous and onto, then there exists r e (—1,1)
such that f(r) is nowhere dense in Y.

Then if g « D(X) is not constant on Y, g does not belong to any @ -subalgebra
containing h.

Proof. Since Y is connected, either ¥ C pos & or ¥ C neg h; we caw
assume h >0. Suppose z,yeY with g(z)= —1 and g¢(y)= 1. Let
7 e(—1,1) such that g<(r) is nowhere dense in ¥Y—we can assume that
7= 0. Finally, we suppose that gh is defined and arrive at a contradiction.

Suppose that there is ze Y such that every Y-meighborhood U
of z contains points #(U) and y(U) at which ¢ is, resp., strictly negative
and strictly positive. Let U be a ¥ -neighborhood of z. Clearly gh(w(U))
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= —oo and gh (y(U)) = oo. Hence every neighborhood, ¥, of z contains
points @(V ~ Y) and y(V ~ Y) at which gh is — oo, + oo, resp., cont-
radicting continuity of gh.

Hence for each z ¢ Y there exists a ¥-neighborhood, U, of z such
that either U, C posyg v Z(g) or U: Cnegg w Z(g). Let B be the set of
z ¢ Y satisfying the former and C, the set of 2 satisfying the Iatter. Since
Z(g) is nowhere dense in ¥, B~ C=0. If z ¢ B, then inty U, C B, so B
is open in Y; similarly, ¢ is openin Y. Now, Y= B u (,z¢ C, and y ¢ B.
But this contradicts connectedness of X

Note that if ¥ is a space in which every disjoint family of open sets
is countable—e.g., if ¥ is 2nd-countable—then 1 satisfies condition (#)
of the lemma.

4.4. Let A be a maximal @-subalgebra of D(X). The sets N(g) for
¢ e A are called infinity sets of 4. Stationary sets of 4 with more than
one point arise as & result of certain functions’ being “kept out of” A.
Since funetions are kept out of A by infinity sets of 4, it is reasonable
to except a close relationship between stationary sets of A and infinity
sets of A4, and this is indeed the case (see 4.5). However, there may be
a stationary set on which no function of A is infinite, and which is not
even a zero set. i

BEXAMPLE. A stationary set for a mawximal @-subalgebra A of D(X)
which is not a zero set, which has more than one poiht, and which is disjoint
from every infinity set of A.

Let L be the 1-point compactification of the long line (see, for example,
[3], p. 262). Let X = Lx[0,1]. For convenience, if # L, we denote
by v(z) the “vertical line segment” {z} X [0, 1]. Tt will be shown that v(co)
is a stationary set for some maximal @-subalgebra A.

Recall that the long line is the lexicographic product W x[0, 1)
with the first coordinate dominating, where W is the space of countable
ordinals, and the product is given the order topology. For s ¢ W, define
fseD(X) by filo(oo)]= {0}, fi((w,2),9)=0 (w+s), and fi(s,®),9)
= (J#—4%|""—4) V0. Since s # ¢ implies that f; vanishes on a neighborhood
of N(fi), {fs: se W} is contained in a subalgebra of D(X). Let 4 be
a maximal @-subalgebra containing all of the fi.

Since N'(fs) = »(s, %) is homeomorphic to [0, 1], lemma 4.3 implies
that each N°(fs) is a stationary set of A. Since oo is a limit point of
{(s, ): s W}, v(co) is also a stationary set of A. Since oo is not a G,
set, it is not a zero set.

If f < A is infinite at any point of v(co), it is infinite on all of v(oo);
N(f) is a zero set. But every G, set containing v(oco) has non-empty
interior.
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4.5. PRrOPOSITION. If 8 48 @ stationary set of & mazimal @-subalgebra A
of D(X) with more than one point, and if V is any open set intersecting 8,
then V contains points at which some element of A is infinite.

Proof. Suppose V C R(4). Since § is connected, S ~ ¥ has more
than one point; let # and y be distinet points of § ~ V. Let g € 0(X) with
g(w) =1 and g[X~W]= {0} for some closed neighborhood W of @ con-
tained in V~{y}. Since ¥ C R(4), ¢ ¢ A (see 2.2). But g is not constant
on 8.

4.6, TarorEM. If ¥ is a nowhere dense connected zero set of X and
if Y satisfies (%) of lemma 4.8, then Y is o stationary set for some mawimal
@-subalgebra of D(X

Proof. f Y= Z(f), let h=|f]" and let 4 be a maximal @-sub-
algebra of D(X) containing h.

This theorem is a partial converse to theorem 4.1. As example 4.4
shows, theorem 4.1 cannot be strengthened to include zero set in ifs
conelusion.

4.7. As the next two examples show, stationary sets for maximal
@-subalgebras may be very large.

ExAMPLE. A 1-dimensional space X with maximal P-subalgebra
which has a 1-dimensional stationary set.

Let X = {(w, sin(l/z)}: @€ (0,1]} v ({0} X [—1,1]). The set ¥ = {0} x
X [0, 1] is & nowhere dense connected zero set satlsfymg (*) of lemma 4.3.
By theorem 4.6, Y is a stationary set for some maximal @-subalgebra 4
of D(X).

4.8, BExaMpiE. A mazimal @-subalgebra of D([0, 11 for any car dmal
a>1 with structure space [0,1].

Index the rationals in [0,1]: @ ~ [0, 1] = {g:: 1 €« N} so that ¢, = 0.
Define f; e D([0,1]) by fi(z) = 1z (fi(0) = o). Let U, be a closed in-
terval containing ¢, in its interior but not containing g; for ¢+ < n. Let I,
be a closed interval contained in the interior of U, and containing g.
in its interior. Let h, e C([0,1]) such that hy[[0, 1]~ Un]= {0}, hallu]
= {1}, and 0 <<y << 1.

For 1 <n eXN, define f, inductively by

Ta(@) = ha() [In (L vint {|fi(@) — fulga)| ™ 1< i< n})],
Jalgn) = oo
Then fn e D([0, 1]).

(a) Since h, vanishes on a neighborhood of {gi: ¢ < mn}, 80 does fu.
(b) Since fy(x) = fi(gs) iff = g, fn is infinite only at gn.
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(e) If j < m, then
0 < lim [|f;(2) —f1(gn)| fu™ ()]
T—=>qn
= mhqu}l [1f@) ~F1(gn)] (i {|fi(@) —fi(ga) ™" & < m})™]

<}gﬁ [1fi(@) —Filgn)| (In | f5(@) —Filga) ™)™
=0 forall meN.

() If P is a polynomial in f;, ..., fo—1 which vanishes at g, then
lim f,™(#) P(2) = 0.

T—In

Proof. For fixed n > 1, the proof is by induction on the degree
of P. The statement is clear if degree of P is 0

Suppose that degree of P is s > 0, and the statement holds for every
polynomial in fy, ..., fa—s of degree < s. For notational reasons, we assume
that there are only two terms of P of highest degree: rf;™...f,,"* and

1 fui™ We suppose that i; £ 0, j, = 0. Write P as (f1_f1(q", }Q+
+(fo—Flgn) B+ 8 where @ = 7fi" ™ ..faci ™, R=tf " fuui™, and
S has degree < s. Since P, (f1 —f1(Q‘n)), and (f2~f2(qn) va.msh at gn, SO
does 8. By the induetion hypothesis and (¢) above, lim f,"P = 0.

T—>(n

e) {fi: i € N} belongs to some subalgebra of D([0, 1]).
Proof. Let 8 be a polynomial in fi,..,f». We can write § as

m
4}’ Fu'Pilf1y -y fa—1) Where (by induction) each P; is defined as a continuous
function on [0, 1] to ¥R and which is finite except (possibly) at ¢y, ..., gn—1-

m
Zo:' fu' Py is defined and continuous on [0,1]~{g,} since f, vanishes

on a neighborhood of {g:: ¢ < n}.
Write Pi(z) for Pi(z)—Pi(qs). Then

8= D 1Pt D fu Pilga) + P, .
1 1

By (d), the first term. vanishes at qn; P, is finite at g,; the middle
term is +-oco, —oo, or 0 according as Pj(gs) > 0, Pj(gs) < 0 where j is
the highest index for which Pj(gs) # 0 and j >0, or all Pigs) (¢ >0)
are zero.
(£) Now, write [0.1]* as [0,1]x [0,1] and define g» ¢ D([0, 1) by
= fa(x). Let A be a maximal @-subalgebra of D([0,1]’) containing
the gn (n e N).
K. A. Ross and A. H. Stone prove ([14], theorem 2) that any disjoint
family of open subsets of a product of separable spaces is countable.
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Hence [0, 1 satisfies (+) of lemma 4.3. By that lemma, each {g:} x [0, 1
is a stationary set of A. By denseness of @, each {r} X [0, l]ﬂ is a stationary
set of A (r€[0,1]). Hence A(4) is homeomorphic to [0, 1].

5. Intersection of maximal ¢-subalgebras.

5.1. LEMMA, If © e X has a countable base of neighborhoods and if f
belongs to all mawimal @-subalgebras of D(X), then f is constant on some
neighborhood of .

Proof. Suppose that fe D(X) is not constant on any neighborhood
of », and that 2 has a countable base of neighborhoods. Then f takes
infinitely many values on each neighborhood of @. Let {Ux: n ¢« N} be
a base of neighborhoods of  such that ¢l U1 C Un for all n e N. Let (ay)nen
be a sequence in X such that f(ai) # 4-o0, ase Ui, as # x, and 7;¢j‘
implies that f(a:) # f(a;). We canassume that a; ¢ Us~cl U1 (by choosing
subsequences of (Us)ieny and (a:)ien). Now, (f(a,,))nhv is a sequence in R
eonverging to f(), so f(@n))nex has either an increasing or a decreasing
subsequence; suppose the former, and—by a change of notation—suppose
that (f(an))ney is increasing.

Case 1. If f(2) = co. We can assume that f(a,) > 0 for all » ¢ N.
For each n e N, there exists g, ¢ C(X) satisfying :

gulan) = (—=1)"(f(an)) ™,  gul(X~Ta) v el Uypia] = {0},

t}}e gn ave alternately positive and negative, and g, is bounded by gu(an).
Sinee {gn|x~m: 7 € N} is locally finite and (f(a”))mN converges to oo,
we may define g= 3 ga, continuous. However, fg(an) = (—1)"(f(an))*
80 fg is not defined at x. ’
_ Case 2. If f(x) < co. Since f belongs to a maximal @-subalgebra A
iff f—f(x)e A, we may assume f(z) = 0; also, fe A iff —fe A4, s0o we
tre:a.t the case f(#) = 0, 1 > f(an) > 0 and (f(@a))nen is decreasing. There
exist g, e O(X) satistying:

ol T Ve = P

24+ (=1)"
f (“n) ’

gl (el Unia) W (X ~TUpna) v {@p-1, Gns1}] = {0}.
Define g by " ' sy nia}] = {0}

0< g <

g(y) =sup{ga(y): neN} (y+#a), ga)=oco.

As before, g e D(X). For # odd, fg(aa)= f(an)gu(an) =1; for = even,
fg(an) = 3. Hence fg(x) cannot be defined so that fg is continuous.
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Tn either case, ¢ belongs to some maximal @-subalgebra A and fé¢A.

5.2. Since maximal &-subalgebras of D(X) are local and contain
the constant functions, we have the following corollary.

COROLLARY. Let X be a 1st-countable space. Then an element f of D(X)
belongs 1o all maximal &-subalgebras of D(X) iff f is locally constant.

The restriction that X be 1st-countable cannot be dropped com-
pletely. For D(N) contains non-locally constant functions; e.g., any
unbounded funetion of D (BN) is not locally constant. But ¥ is extremally
disconnected, so D(BN) is a @-algebra.

5.3. THEoREM. Let Y be o 1st-countable space and let X = BX. Then
f e D(X) belongs to all magzimal @-subalgebras of D(X) iff flv is locally
constant.

Proof. If f belongs to all maximal @-subalgebras, lemma 5.1 implies
that f is constant on some X -neighborhood of each point of ¥Y—since
each point of ¥ has a countable base of neighborhoods in X (see [3],
section 9.7).

Conversely, suppose that fy is locally constant. Let A be a maximal
@-subalgebra of D(X). Let a: e A (0 <i=n); then since flr is locally
constant, g = Dady)( f[y)i is defined and continuous. Since Y is C*-em-
bedded in X, the extension, > agfi, of ¢ is defined. By corollary 2.2,
f belongs to A.

5.4, Ag the mnext theorem shows, not all @-subalgebras of D(X)
are intersections of maximal @-subalgebras.

TarorEM. If X is zero-dimensional, then the intersection of all maximal
& -subalgebras of D(X) separates points of X.

Proof. D(X) contains a family of locally constant functions which
separates points. The intersection contains all locally constant functions.

For 1st-countable spaces, the converse of this theorem is also true.

5.5. TEEOREM. If X is lst-countable, then X is zero-dimensional iff
the intersection of all maximal @-subalgebras of D(X) separates poinis of X.

Proof. By corollary 5.2, D(X) contains a family of locally constant
functions which separates points of X. Noting that any member of this
family takes on only finitely many values, one easily obtains a family &
of eoverings of X each consisting of two disjoint open sets such that for z,
y e X, there is {U,V} e F with ¢ U and y « V. Hence X is totally discon-
nected.

6. Characterization of uniformly closed maximal J-alge-
bras. Let A be a @-algebra. If

Ur) = {(a,d) e Ax A: la—b| < 7},

Fundamenta Mathematicae, T. LXIII
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then the set of U(r) for strictly positive real numbers r is a base for
& uniformity on A. The uniform topology is 1st-countable and conver-
gence in this topology is just uniform eonvergence as extended real-valued
functions on 4G(4). If 4 is a complete uniform space with this uniformity
then A is said to be wniformly closed. ’
The major result of this seetion is theorem 6.3: There is a unique
maximal @-subalgebra, U(X), of D(X) containing ((X). U(X) is the
sgt; of all functions in D(X) whose coinfinity sets are O*-embedded.
Since every maximal uniformly closed @-algebra 4 contains ¢ (dﬂ)(A)),

this .theorem yields & very useful characterization of uniformly closed
maximal @-algebras.

6.1. If A is a @-subalgebra of D(X) containing the constant functions
an(.l separating points of X, then by the Stome~Weierstrass theorem
A is uniformly closed iff C(X) C 4 iff] A* = O(X) (by [6], 3.7, A is IIIli-’
formly closed iff A* is). In view of the first paragraph of 3.3, the following
proposition is clear.

PROPOSITION. Let A be a @ - subalgebra of D(X) containing the constant

Junctions. Then A is uniformly closed iff A contains {fe C )
! i X): f
on all stationary sets of A}. e OGS 11 constant

62 LENFMA. Let Y be a completely regular space, and let feD(X).
g‘igylb;:ddigz?;dym.uhmever ge (G‘“(Y))+ with Z(g) = N(f), then R(f) s
Proof. First suppose 1 <feD(Y) s g i i
g € (X)) with Z(g) = N( f).fLet (1 <) huec lé'*t(}glta(tf)j)!.] ge(flfxinzczl ;(Vl-f];te‘;f;
9(@) = h(@)[f(2) for z ¢ R(f), and ¢(@) = 0 for z ¢ N(f). Then g ¢ (ovx)*
and Z(g) = N(f). Now, fg extends & over V. If % e C¥(R(f)), then k+
+n> l.for some 7 €N, 50 k+n, and hence k, has an extensi(’)n over ¥
Hence, in this case, R(f) is C*-embedded. ‘
Let f e D(Y) such that fy is defined whenever ¢ belongs to (cxy)*
with Z(g) = N°(f). Let f,=f"+1 and f,= f~+1. Let < (CH(X))* with
Z(h) = N(f,); then Z(h)= N(f*). Let ke (ONT)* with Z (k)= N(f")
ﬁivk%Z(f 1= {,'1}. Thfan Z('hk) = N(f) and hk agrees with % on pos f.
» by hiypothesis, hkf is defined and hif equals hf * on pos f; f* is bounded
on {y e ¥: f(y) < 1},50 hf" is defined. Then By = hft 4 h 1; defined ﬁince
a bopnded function can always be added to any element of I)('Y)L BI
?he flrs!; part, R(f;) is C*-embedded in Y. Similarly, R(f,) is O*-emb-e;ldeg
ui Y. Since the intersection of two open dense C*- embedzded sets is. always
C*-embedded (see [3], 9N), R(f) = R(f) ~ R(fy) is C*-embedded. }
6.3. THEOREM. Let Y be a 2 - 4
= {fe D(X): fg is defined for all c;?%lf t;l)y} 1;’%?7 wpase ond fet T

1 ©
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(i) fe U(X) iff R(f) is C*-embedded in Y, and

(ii) T(Y) s the unique mawimal G- subalgebra of D(X) containing C(Y).

Proof. (i) follows from the lemma,.

Since C(Y) is an algebra, C(X) C U(X); moreover, any subalgebra
of D(Y) containing C(Y) lies in U(XY). To show that U(Y) is an algebra,
it suffices to observe that if f and ¢ belong to U(Y), then R(f) ~ R(g)
is C*-embedded.

While the last statement in the proof of 6.3 is known (see [3], 9 N),
1 cannot resist giving the following proof (a portent of things to come):
If he O*(.‘R(f)), then 7 has an extension A’ e C*(X); since gh' is defined,
(glrn) b is defined. This implies, by the lemma, that R(f) ~ R(g) is
¢*-embedded in R(f), hence in Y.

Hence D(X) contains a unique maximal uniformly closed @-sub-
algebra which separates points of X.

6.4. A space Y is said to be a OM-space iff C(Y) is a maximal
@-subalgebra of D(Y), or equivalently, iff O(¥)y=U(X).

COROLLARY. A space Y is a CM-space iff ¥ has no proper dense

© O*-embedded cozero subset.

Proof. If X~Z(f) is dense and C*-embedded, then f* is defined
and if, in addition Z(f) # @, then " belongs to U(X)~C(X).
6.5. The next corollary was pointed out to the author by J. R. Isbell.

CoroLLARY. If X is a compact space of power < 2% then X is
a CM-space.

Proof. If X had a proper dense C*-embedded cozero subset, S,
then, by [3], 9.5, X~§ would have power at least 2°,

6.6. THEOREM. U (X) 4s the intersection of all of the mazgimal 1-sub-
spaces of D(X).

Proof. Suppose that f belongs to the intersection. Since every
element of D(X) belongs to some maximal I-subspace, f4-k is defined
tor all h e D(X). Let g ¢ O*(R(f)). Define b: X—yE by hix)= g(@)—f(2)
for z ¢ R(f) and k() = —f(z) for & ¢ N(f). Since g is bounded, A is con-
tinuous; N (k) = N(f) so heD(X). Clearly f+h extends g over X. By
theorem 6.3, fe U(X).

Suppose fe U(X) and leb he D(X). Define k: R(f)—>yR by ()
= f(@)+h(z) for zeR(f) ~»R(H) and k(x)= h(x) for oeR(f)~R(R).
Since every point of R(f) has a neighborhood on which f is bounded, & is
continuous. Since f e U(X), R(f) is C*-embedded, so % has a continuous
extension & over X. Sinee N (k') CN{f) v N(k), k' ¢ D(X). Hence f+h
is defined for all & e D(X). This implies that f belongs o every maximal

subspace of D(X), hence to every maximal I-subspace of D(X) (see 2.1).
5%
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6.7. COROLLARY. The following are equivalent:

(a) D(X) is a vector space.

(b) D(X) is a D-algebra.

(c) Bvery dense cozero subset of X is C*-embedded.

Proof. (The equivalence of (b) and (¢) is & result of [6]—see 1.3.)
Each of the three statements is equivalent to D(X) = U(X).

6.8. By a construction similar to the proof (case 2) of 5.1, one easily
obtains the following lemma.

) LEyMA. Let T be a completely regular space and let x be o non-isolated
point of Y with countable base of neighborhoods. Then Y ~{x} is mnot
C*-embedded in Y.

o 6:9.‘ PROPOSITION. If % is a lst-countable point of ¥ and if f < D(Y)
is infinite at x, then there is some g € C(X) for which fg is not defined.
Proof. By the lemma, R(f) is not C*-embedded, since Y&{w} is
not‘ and R(f) is dense in ¥ ~{z}. By theorem 6.3, there is a ¢ with the
desired property. '
6.10. CorOLLARY. Huvery 1si-countable space is o CM-space.

6.11. ProrosiTIoN. If X = BY for some non-pseudocompa 4
d 0MPact s /
then X is not a CM-space. P /3 pace Y,

Proof. In this case, C(X) properly containg C(X) (in D(X)).
6.12. TuEorEM. U(X) is isomorphic to O(Z) for some Z iff X ;
iff X = BX
for some CM-space Y, and in this case, U(X) is isomorphic to U (17)./3
Proof. If U(X) is isomorphic to 0(Z), then 1.6 impli
i , .6 implies that U(X)
= O(:K(U(X))) and that R(U(X)) is dense and C*-embedded in X;
l.i., X =B(R(UX). Let Y=R(UX). I §= T~Z(f) is a dense
(4 -embe@ded cozero set of ¥, then S is *-embedded in X, so |f|™ has
an extension g e D(X). }Tow, Y C R(g) ~ ¥ C 8,50 by 6.4, ¥ is a. CM-space.
) O*Fm the converse, 1.f fe U(X), then (by 6.3 and [3], 9N), R(fin ¥
ﬁ -embgdded in ¥; sinee R(f) is open, R(f) ~ ¥ is dense in ¥; clearly
.(f) A EY.IS & cozero set of ¥; hence, since ¥ iy a CM-space, ¥ C R(f).
§mee ¥ iy dense and C*-embedded in X, 6.3 implies that fu»ﬂ; is an
isomorphism of U(X) onto C(Y). . o
6.13. CorOLLARY. If X has a mini ¥ :
i, T, them Gy — ) inimal O*-embedded dense cozero
For example, U(BR)= C(R).
6.14. ProposiTIoN. If U(X) is isomorphi
. rphic to C : ] -
compuact space Y, then X is a OM-space. Y (0 Jor e peeudo
Proof. f ¢: 0(¥)—U(X) is an isom i
. 5 somorphism, then = N
=zl = n. Hence every element of U(X) is bounde,d. rim =
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6.15. Suppose that U(X) is C(2) for some space Z, and let B be
a ®-algebra with structure space X. Then B = C(¥) for some Y iff B
is uniformly closed and closed under inversion. For, in this case, since B
is uniformly closed, separates points of X and contains the constant
functions, ¢(X) C B. Since U(X) is the nnique maximal @-algebra con-
taining C(X), B C U(X). Hence K(U (X)) C R(B). By 1.6, K(U(X)) is
dense and O*-embedded in X, so R(B) is dense and C*-embedded. Hence,
by 1.6, B is isomorphic to C (K(B)). Necessity is immediate from 1.6.

7. Stationary sets for uniformly closed maximal ®-sub-
algebras. It is still an open question whether uniformly closed maximal
& -subalgebras of D(X) must separate points of X. This section provides
some partial answers and gives a condition which stationary sets for
such a @-algebra must satisfy.

7.1. PROPOSITION. Let A be a uniformly closed maximal O -subalgebra
of D(X). If M(4) s a CM-space, then A separates points of X, and X is
a CM-space.

Proof. Since C(A6(4)) is maximal and O(4(4)) C 4, we. have
A= O(JK)(A)), s0 A contains only bounded functions. Hence A C C(X),
and, since A is maximal, U(X)= 4= CX)

7.9. CoROLLARY. If A is a uniformly closed maximal @-subalgebra
of D(X) and if Mo(A) is 1st-countadle, then H(4) = X.

Proof. This follows from 6.10 and 3.2.

7.3. TaeorEM. If X is a meiric space, then every uniformly closed
mawimal @-subalgebra of D(X) separates points of X. Hence O(X) is the
unique uniformly closed maximal @-subalgebra of D(X).

Proof. Lebt A be a uniformly closed maximal @-subalgebra of D (X).
Let ¢: X—>X/tr be the natural projection. By [11], 3.12, ¢ induces an
upper semicontinuous decomposition. of X; by [11], 5.20 ff, M(4) is
a metric space. By corollary 7.2, Mo(4) = X. .

7.4. ProposrrioN. If X is 1st- countable and if A is a uniformly closed
mazimal @-subalgebra of D(X), then whenever f e A with N (f) non-empty,
N(f) is a union of stationary sets each with more than one point.

Proof. Clearly, if any stationary set meets N (f), then it is contained
in N(f).

Suppose that there is some % e N (f) such that {z} is 2 stationary
set of 4. Let g: X—>J(4) be the projection; then o(@) is a 1st-countable
point of A6(4) ([11], 8.12). By proposition 6.9, A cannot contain O{M(4)).
But A is uniformly closed and separates points of M(4).

7.5. PropoSIION. Let A be a uniformly closed maximal @-subalgebra
of D(X). If Sis & non-trivial stationary set of A and if U is any open set
containing S, then U~8 contains points at which some fe A is infinite.
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Proof. Suppose that U is an open set containing § for which
U~~8 C R(A). Since U contains a point of X ~R(4) (by proposition 4.5),
8= N(g) for some geA. Let p: X—X/r be the projection. Now A4 is
the set of all f e D(X/r) for which f% is defined whenever b ¢ O (X/r), so if
fe A, then o[R(f)] is C*-embedded in X/r. Let @y = o[S]. Then X/r~{z,}
is O*-embedded in X/r. Let @ 2y in §; let fe O(X) with f(z) = 1 and,
for some elosed neighborhood W of # contained in U~{y}, f[X~W]= {0}.
By proposition 4.5 (with ¥V = U~=S), no other non-trivial stationary set
meets U, so every ke O*(U~R8) can be dropped to &' e O*(o[ Ul~{,}).
It follows from the fact that X/r~{m,} is (*-embedded in X/r that
p[Ul~{w,} is O*-embedded in p[ U], so &’ has an extension k'’ over o[ U]J;
k" o o extends k& over U. Hence U~48 is C*-embedded in U. Any he A
taking on an infinite value on U is infinite on § and nowhere else on .
Hence >, hi(flv)* is defined whenever ki e 4 (0 < © < n); 2 ha(flxow)’= {0}.
Thus fe A. But f is not constant on 8.

8. Non-uniformly closed maximal $-subalgebras. The exis-
tence of unmiformly closed maximal @-algebras is immediate from
section 6. If D(X) is a @-algebra, then D(X) contains no non-uniformly
closed maximal @-subalgebras. Otherwise, D(X) contains many such
&-subalgebras.

8.1. TEEOREM. If feD(X)~U(X), then f belongs to & mazimal

O@-subalgebra My of D(X) which is not uniformly closed and whose only
non-trivial stationary sets are cowtained in N(f).

Proof. Sinee R(f) is not C*-embedded, lemma 6.2 implies that
there is g e (O”“(X))+ with Z(g) = N(f) for which fg is not defined. Let
8 = {h e C(X): % vanishes on & neighborhood of N (f)} and let M; be
% maximal subalgebra of D(X) containing S u {f}. Clearly the only non-
trivial stationary sets of My lie in N(f). Now, if g»= (¢9—1/n)*, then
gn € 8 C My; bub (gn)nen converges (uniformly) to g ¢ My. Hence My is
not uniformly closed.

8.2. CorOLLARY. If D(X) is not a $-algebra, then D(X) contwins
o non-uniformly closed maximal &-subalgebra.

) 8.3. Examrre. D([0,1]) contains at least ¢ distinet (but perhaps
isomorphic) non-uniformly closed mawimal @-subalgebras. (By starting with
one of the M, of this example and a family of ¢ homeomorphisms of [0,1]
onto itself, one obtains a family of ¢ isomorphic but distinet maximal
@-subalgebras.)

Fc.)r each 2 €[0, 1], let f» « D([0, 1]) with N°(fs) = {x}. Then if » 5= 4,
there is g € C([0,1]) vanishing on a meighborhood of z and having the

property that gfy is not defined (see 6.9). Then (by construction of My),
ge M, ;ZNM fy-
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8.4. A @-subalgebra A of D(X) is closed wunder composition
iff whenever f e 4 and ¢ « C(R), then g o (f|r(y) has an extension belonging
to A. The extension is denoted g(f).

PROPOSITION. Let A be a non-uniformly closed mazimal @-subalgebra
of D(X). If X is 1st-countable or locally connected, then A is not closed
under composition.

Proof. PFirst, suppose that X is locally commected. Let 1<fed
with f(ag) = oo and let g « C(R) be given by g(z) = sinz. Let U be a con-
nected neighborhood of @,; f[U] is eonnected and contains oo, so it con-
tains nw-+ /2 for two successive integers n. Hence every neighborhood
of z, containg points at which g o (flgp) is 1 and —1.

Suppose that X is 1st-countable. Let f ¢ 4~ U(X) and let z, € N (f1).
Let (as)iex be @ sequence in RK(f) converging to ; then (f(ai))ieN con-
verges to co. We suppose that all f(as) are distinet. Let g ¢ C(R) with
g(f(ai)) = (—1)i. Then g o (flgp) bhas no continuous extension over X.

9. Quotient fields. A totally ordered set S is an #,-set iff when-
ever Q and R are (perhaps empty) eountable subsets of 8 with every
clement of Q less than every element of R (denoted @ < R), then there
exists s ¢ § greater than every element of ¢ and less than every element
of R. A totally-ordered field which is an 7,-set is called an - field.

Tt is proved in [7], 1.5 that every prime ideal in a uniformly closed
@-algebra is an l-ideal.

Tet A be a uniformly closed @-algebra. A maximal ideal I of A4 is
said to be réal iff A[I is isomorphie to the real field; otherwise, it is hyper-
real. Tn. either case, AT is a totally-ordered field containing a cannonical
copy of R—i.e., the set of I(r-1) for r «R.

Tt is known ([3], 18.8, 13.4) that if I'is a hyper-real maximal ideal
of C(Y), then O(X)/I is a real closed 7, -field.

This statement is not true for arbitrary uniformly closed @-algebras.
M. Henriksen, J. R. Isbell, and D. G. Johnson give an example ([7], 1.9)
of a uniformly closed @-algebra A, closed under composition, with
a hyper-real maximal ideal M such that A/M has a countable cofinal
subset.

Tt is the purpose of this section to show that the above-mentioned
theorem does hold for uniformly closed mawimal &-algebras.

91. If A is any wuniformly closed maximal @-algebra, then
A = U(HM:(4)). The next proposition is eclear from 6.3.

ProPoSIIION. Hvery uniformly closed mazimal &-algebra is closed
under coOmMposition.

9.2. The next proposition is proved in the same way as the special
case for C(Y). See [3], 7.15.
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PROPOSITION. Let A be a uniformly closed @-algebra. BEwery prime
ideal P of A contains

O:.={feA: Z(f) is a neighborhood of x}

Jor a unique & € Mo(A). Hence M, is the unique maximal ideal of A con-
taining P.

9.3. THEOREM. ([7], 1.7.) Let P be a prime ideal of the wniformly
closed @-algebra A. If S and T are mon-empty countable subsets in AlpP
such that 8 < T, then there is an a € A|P such that S <a < T.

9.4. A O-algebra A is closed under countable composition iff whenever
(fa)nen is a sequence in A and g e C(R™), then there exists h ¢ A such
that h(z) = g(fi=), fulx), ..} for all @ e R(fa). If it were known that
every maximal uniformly closed @-algebra is closed under countable
composition, the next theorem would be an easy consequence of fhe
flollowing result ([7], 2.6): Hvery @- algebra closed under countable composition
is @ homomorphic image of C(X) for some space Y. However, it is not
known whether this is true, so a direct approach must be taken.

'll‘]IE(?REM‘ Let My be o hyper-real mazimal ideal of U(X) containing
a prime ideal P. Then U(X)/P has no countable cofinal subset.

Proof. (This proof is a modification of the proof [12], 2.6, for O'(¥).)
Let @, < a, < ... be a sequence of elements of U(X)/P. We can suppose
tl.la.t @, = 0. By [3], 13.5, there exist f; < f, < ... in U(X)+ with P (fi) = a,.
Sinece My is hyper-real, U(X)/My is non-Archimedean—let 1<geUX)
such that My(g) > n in U(X)/My for all n ¢ N. Note that g(y) = co. We
can assume that N(fi) contains N (g) (since we can replace f; with f;vg).
For i e N, define @; ¢ O(R) by Dir)=0ifr<i—lore> 141, Dyfi) =1
and & is linear on [¢—1,4] and [¢, i+1]. ’

Since U(X) is closed under composition, D¢(g) e U(X) for all ;¢ N.
Let e R(g); let Vo= {ze X: g(o)—1 < 9(2) < g(=)+1}. For e Va,

0 w2

2oyl = 3 g e

n—-2

where n is the greatest integer in ¢(®). Hence the funection 7’ given by

W (e) = IZ@(gw))fi(z) (e R(g))

;s' 1(liefined a,;l'd continuous on R(g). Since R(g) is C*-embedded in X,
a8 & continuous extension h; by the Baire catezor

! gory theorem R

Is dense; hence M R(fy) C R(h) implies % ¢ D(X). (1R
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Let k e C*(X). Since @i(g)fik is defined for all i ¢ N, 2(@(5])]’,70) |R@)
1

is defined and continuous. But R (g) is C*-embedded in X, so this function
has a continuous extension which must be hk. Hence &k is defined for
all ke CXX), so he U(X).

Let Up= {zeX: g(x) > n}. For ze U~ R(g),

ha) = D) Bifg(@))fil2) = fula) ,

50 h > fn on the neighborhood U, of y. Hence Z ((h- f2)7) is & neighborhood
of y, 50 (h—fs)" € Oy C P. This implies P (k) = P (fa) > an for all n e N.

It is interesting to note that among all uniformly closed @-algebras
with structure space X, the largest, U(X) and the smallest, C(X) share
an algebraic property which need not be enjoyed by @-algebras between
them. It seems that in going from C(X) to a larger @-algebra A +# U(X),
one can add enough functions to create problems without adding enough
10 solve them.

9.5. This theorem together with the Henriksen, Isbell, Johnson
result (9.3) yields the following, just as in the C(Y) case (see [3], 13.8).

THEOREM. If M is a hyper-real maxvimal ideal of a uniformly closed
maaximal -algebra A, then AJM is an 7,-field.

10. Completion.

10.1. Let C be a @-subalgebra of B. Then C is said to be order-dense
in B iff b= sup{ceC: ¢<b} for all beB.

PROPOSITION. Let B be a ®-algebra and let C be a @-subalgebra of B
containing the identity element of B. Then there is a continuous onto function
0 JMo(B)—ub(0) which induces the embedding of C in B. Moreover, if C
is order-dense in B, then p is tight.

Proof. We have O C D(4(B)), C contains the constant functions,
and J6(B) is compact. Identify 46(C) with A6(B)/x by theorem 3.2. Theo-
rem 3.3 implies that ¢, the projection of A6(B) onto A:(0) induces the
embedding of C into B (via f->f o p). )

'We will congider B and C as @-subalgebras of D(./K,(B)). For z € M(B),
MZ denotes the maximal I-ideal {f e B: fg(#) = 0 for all ¢ ¢ B}, and e
denotes {f e C: fg(x) = 0 for all g e C}. We next prove that if ¢ is dense
in B, then MS= C ~ M;. Suppose |fg|(x) >0 for some feC, geB.
Dengeness of ¢ in B implies that there exists heC with h>=lg], s0

(@) >0. '
Let {M e A:(B): a ¢ M} be a non-empty basic open subset of A:(B).
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Tet b e € such that 0 < b < |al. If M e g({I e (0):D ¢ I}), then b ¢ M,
50 a ¢ M. Since b # 0, {I « A(C): b¢ I} is non-empty. Hence ¢ is tight.
10.2. D. G. Johnson has proved [8] the following theorem:

If A is o @-algebra, there is a complete isomorphism 0 of A onto an
order-dense @ -subalgebra of a complete D-algebra A'. Moreover, A’ is
umique in the following semse: if @ is an isomorphism of A onto a dense
&-subalgebra of a complete ®-algebra B, then there is an isomorphism ¥
of B onto A’ such that ¥ o @ = 6.

The next proposition characterizes the structure space of A,

Tf B is a complete @-algebra, then B is uniformly closed ([6], page 94),
so B*, the set of bounded elements of B, is isomorphic to O (M6(B)).
Since B* is complete, J6(B) is extremally discomnected ([15], 12).

ProPOSITION. Let A be a P-algebra. Then the structure space of the
completion of A is the minimal projective extension of the structure space
of A: S(4A') = (M(4))es.

Proof. As remarked above, JG(A4') is extremally disconnected.
By proposition 10.1 there is a tight map of AG(4") onto M:(A4). By the
uniqueness statement in 1.1, the proof is complete.

Tt is remarked in [13] that the above proposition holds when 4 = C(Y)
for some Y.
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