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Hyperspaces and symmetric products
of topological spaces *

by
R. M. Schori (Baton Rouge, Louisiana)

1. Introduction. This paper deals with certain hyperspaces of
a topological space X. One such space is the hyperspace of all non-void
closed subset of X, denoted by 2%, and another is the collection of all
non-void subsets of X containing at most n points (n>1) of X. This
is denoted by X(n) and is called the n-fold symmetrie product of X.
Of primary concern will be the case where X is the closed unit interval I,
the n-cell I", or the Hilbert cube I™.

In [1], Borsuk and Ulam introduced the notion of symmetric product
and studied it with two distinet approaches. One was o see what topolo-
gical properties are preserved in the operation of taking a topological
space X to its n-fold symmetric product X (n) and the second approach
was to study the topological properties of some specific X (n), notably I(n).
As an example of the second approach, they proved for n=1,2, or 3
that I(n) is homeomorphic to I"(I (n)~ I™ and for > 4 that I(n) is
1ot homeomorphic with any subset of R"™. Ganes [4] continued the study
of symmetric products by essentially the first approach and Molski [5]
followed the second approach. He showed that I°(2) ~ I and for n >3
that neither I*(n) nor I"(2) is homeomorphic with any subset of R™
In [3] Bott corrected Borsuk’s [2] statement that §'(3) ~ §'x & by
showing that actually §'(8) =~ S

Tn o somewhat different direction, Wu [6] shows that, for n odd,
S*(n) is a homology n-sphere and, for n even, H'= 2, H* ' = Z, and
for j + 0, n—1, H = 0. ‘

Thus, the positive results for giving topological characterizations
for a non-trivial m-fold symmetric product X (n) have been limited to
spaces X = S I, or 7% and n < 3. This paper gives some techniques in
this topological characterization problem for extending the space X
to I™ (m= c0,1,2,..) and n to 0,1,2,... (notation: X (o) = 2%).

# This research was supported in part by the National Seience Foundation Grant
GP-4893.
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Key techniques come from §3 on cones where it is proved (Theorem 1)
that an interval can be factored out of a double cone (in fact, for n > 2,
O"X) ~ CXXI"") and from theorems in § 4 showing that I(n)
(n= 00,2,3,..) is a double cone. In addition it is hoped that these
techniques will help settle the conjecture (*) that 2% a I™ for each Peano
space X. In this direction Theorem 9 of this paper saiys that I°(n) ~ I°(n)x
xI® {n=1, 2, ..). Recent methods of R. D. Anderson suggest that if ¥
is a contractible complex, then ¥ XI®a I”. These methods might also
imply that I%%(n) xI™~ I,

2. Preliminaries. For a topological space X we now define
topologies for 2% and X (n). For that which immediately follows, let ¥
stand for either 2% or X(n). It Gy, ..., Gz (k> 1) are open sets in X, let

2
UG, .., G ={Ae¥: AC | G; and 4 intersects each G} .
=1

The collection of all such T(@, ..., Gx) is a basis for a topology on ¥
that is called the Vietoris finite topology. Note that if X is T, then this
topology on X (n) coincides with the relativized topology on X (n) where
X(n) is viewed as a subspace of 2%

If (X, d) is a bounded metric space, then D: 2% x 2¥ » R defined by

D(4,B)=inf{s: ACS(B,s) and BCS(4, o)},

where §(0, ¢) is the e-sphere about ¢ C X, is a metric on 2% and thus
on X (n), and is called the Hausdorff metric. Tt is well known that if X
is compact then the Vietoris finite topology on 2% coincides with the
topology induced by the Hausdorff metric on 2%,

The following gives a useful characterization of X (n) and motivates
the name “n-fold symmetric product” for the space X (n). Let X™ be the
cartesian product of n copies of X and define f: X" X (n) by fl@y, oy @a)
= {1, ..., Z}. Let § be the equivalence relation on X" associated with S
that is

@y eoey @) 8 (Y1, vy ym)  ifE S @1y ey @) = W1y ey Yn) -

Thus, two points of X" are identified if the point sets of their corresponding
coordinates are equal. Let p: X" X™/S be the natural projection of X
onto the quotient space X™§ and denote D@1y ey Bn) DY [@y, oony Tnl
Define g: X"/8—+X (n) by glay, ..., &n] = {1y oy @0} By [1], p. 877, fis
continuous.

X1 X/(n)
N e

(*) I first heard this conjecture in the form of 27 v I®® from R. D. Anderson.
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The following theorem of Ganea ([4], Hilfssatz 2) characterizes X (n)
(for T, space X) as a quotient of X"

THEEOREM 0. If X is T, then
g: X8~ X ()

is a homeomorphism.

3. Cones. This section is developed independently from hyper-
spaces and symmetric produets but the results are used extensively in
the rest of the paper.

It X is a topological space, by the cone of X, denoted by CX or ¢(X),
we mean (X X I)/E where R is the equivalence relation on X x I defined by

(z,8)R(y,1) iff

Geometrically, we take X X I and *“shrink” X X1 to a point. Heneceforth,
if we say let OX = (X XI)/R be the cone of X, we mean that R is the
equivalence relation defined above. Also, if e X and teI, then [x,]
is the equivalence class in OX with representative (x, ). Define C*(X) by

(1) OY(X) = (X and

(2) O™X) = C{C" (X))

TuroreM 1. If X is a topological space and n = 2, then

(w,8)=(y,t) or s=t=1.

(X)) ~ 0X xI" .

Proof. It is sufficient to prove the theorem for u = 2 since the
general case follows from successive applications of this special case.
Let

0X = (XxD)P, CCX=(CXxID)JQ, and CI=IyT

be the cones of X, CX, and I, respectively. Define
a: XxIP+0XxI

by alz,s,t) = ([#,s],1). Thus, o is continuous and onto. If B, is the
equivalence relation associated with a, then

(x, 8, YR (2, 8, 1") iff
Let

(,8,1) = (2',s',t)or s=8"=1andi=1".

f: CXXI-+(CCX
be the natural projection and define
y: XxIF—00X

by y = B o a. Thus, y is continnous and onto and is described by y(#, 8, )
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= [[w, s], t]. Let R be the equivalence relation on X x I*-associated with ¥

It is routine to check that
(@, s,t)R(2", 8", t) iff

(#,8,8) = (@',8,1), or s=8"=1

and t=1, or t =1 =1.
Define
fi IxF-XxCOI
by f(z,s,t) = (x,[s,?]). Thus, f is continuous and onto. If IR, is the
equivalence relation associated with f, we have

(@,8, ) Ro(z’, 8", ¢) iff (z,8,0)=(2',8,t),or e=2a"and t =1 =1.

XxxCl 2

xxJ? xxi

i

We now show that B, C R. Let a = (z, s,t) By(2', 8’ , #') = b. If a = D,
then aRb. Otherwise 2 =2 and t =1 =1, so =1 = 1 and thus aRb.
Thus 9 induces a function

P IX 0I-0C0X
and »* is described by 9*(x,[s,1]) = [[x, s], ]. Thus, y* is continuous
and onto. If R, is the equivalence relation associated with »*, then
(¢, [s, t])st(wI: [, 27) iff (@, [s,1]) =

CXx/

(@, [s,t']), or s=¢"=1
and ¢ =1,

Let g': CI-I" be a homeomorphism sueh that ¢7Ts’, 7= (1,1
iff &' =1 and ¢= 1. Define

g: XX O0I->Xx I*

by g=1d X ¢" and thus, ¢ is a homeomorphism. Define R, on X xI* by
g{a) B, g(b) iff aRyb. It is easy to verify that R, = R, and thus let

at XxI*>0XxI
be the natural projection.

icm°®
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Since aR,b iff g(a)R,g(b), the homeomorphism ¢ induces a homeo-
morphism ’

g*: 0CX-=CXxI. (O

Henceforth, CCX will be regarded as (X xI?)/R where R is defined
above.

Let S be an equivalence relation on a space X. Then the induced
equivalence relation on CX = (X XI)/R, denoted §;, is defined by
[, 818, (@, ¢'] iff [#,s] = [, 8], or 82’ and s = s". The induced equiv-
alence relation on CCX = (X xI’)/R, denoted by S, is defined by

[wy'g;t:lsz[w'5s,1t,] iff [w,s,t]:[w,s,t]; or 28z,
s=¢,and t=1¢.
TEEOREM 2. Let S be an equivalence relation on o space X and let 8y
and S, be the induced_equivalence relations on CX and CCX, respectively.

Then
(COX)[8, ~ (CX)[8; X1 .

Proof. By Theorem 1 we have
O(Xf8) ~ C(X[8)xI.
We now show that CC(X/S) ~ (COX)/S, and C(X[S) ~ (CX)[8,. Define

»: 00X —>CC(X/8) and w: CX—C(X]8)

by »[z,s,t]=[«],s,1] and pls,s]= [(#1, s|. Thus, » and u are con-
tinuous and onto and it is an easy step to show that S, and 8, are the
equivalence relations associated with » and u, respectively. Thus

(00X)]8, ~ CC(X[8) and C(X|8) ~ (CX)[S;. O
(i) If n =1, then

Ap = {(@:) e I": for some j,x; = 0} is homeommjoh'ic to I"t.

THEOREM 3.

(i) If n=2 and Bn= {(ws) e I": for some j, ;=0 and for some
T, @ = 1}, then An ~ CBn and I" ~ CAn ~ CCBy.

Proof. The proof of (i) is, among other places, contained in the
folk-lore of combinatorial topology.

For the proof of (ii) we start by mentioning that if X is a subset
of a linear space H, ¢ ¢ B\X, (1—s)x+sg ¢ X for each z eX and se(0,1),
and

B(X,q) = {(1—s)z+sq: v¢X and 0<s<1},

defined by flz, ]
X = By, and

Fundamenta Mathematicae, T. LXIII 6

then (X = (X xI)|R, ~ B(X,¢) and f: (X—+E(X,q
= (1—s§)w+sq is » homeomorphism. Thus, if E=F",
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g=(0,0,..,0), the above. conditions are satisfiel and hence (B,
~ E" By, q). But Ay = E"(By, q) and thus OB, ~ 4, where f: CB,—4,
defined by f[z,s]= (1—s)o-+sg= (L—s)z is a homeomorphism.

Likewise, I" = B"(An,p) for p=(1,1,..,1) and thus Cd, ~I"
where g: CA,—I" defined by ¢[y, t] = (1—t)y-+ip is a homeomorphism.
Thus h: (0B, = (B, xI")/R—I" defined by

@, s, 1= g|flx,s], 1] = (1—)fl@, s]+tp = (L—t)(1—s)z+1p

is a homeomorphism. OJ

4. Back to hyperspaces. Let I(n) be the subspace of I(n)
consisting of all elements of I(n) containing 0, and let Ié(%) be the sub-
space of I(n) consisting of all elements of I(n) containing both 0 and 1.

TeEOREM 4. I(n) ~ Ci(n) (n = o0,2,3,...).

Proof. Let CIg(n)= (I{n)xI)/E be the cone of Ijn). Detine
h: CIjn)—Iy(n) by h[A,t]= (1—1t)4 where 4 e Iy(n) and ¢ e I. Thus if
[4,t] e OI3(n), then A is a set in I = [0, 1] that containg both 0 and 1
and h shrinks 4 to the left to fit the interval [0, 1—1].

To show that h is a homeomorphism we define g: Iy(n)—CIyn) as
follows. For A4 e Iy(n), let s =sup 4, let g(4d)=[(1/s)4,1—s] if s#0,
and let g(4)=[4,1] if s=0. Note that [4,1]=[B,1], for any
A, B eIyn), is the cone point of OIy(n). Thus, g o h=id and hog=id
and since the continuity of both is clear, » is & homeomorphism. [J

TEEOREM 5. I(n) ~ CIy(n) (n = o0,1,2,..).

Proof. Let OI(n) = (I(n)xI)[R be the come of Iyn). Define
h: CLyn)—>I(n) by h[4,t]= (1—1t)A--t where A e I,(n) and ¢ « I. Thus
if [4,1] € CIy(n), then A is a set in I=[0,1] that contains 0, and &
shifts A4 to the right ¢ units and shrinks it to fit the interval [t,1]. Thus
the sets containing ¢ in [t,1] come from the sets containing 0 in [0, 1]
at the fth level in CIy(n).

To show that & is a homeomorphism we define g: I(n)->CI,(n) as
follows. For A el(n), let s=infd, let g(4)= [(1/(1—s))(4—s),s| if
s71, and let g(4)=T[4,1] if s = 1. Thus ¢ o h = id and h o g = id and
since both are elearly continuous, k is a homeomorphism. [J

Theorem 5 is actually a special case of the following statement thatb
is called a corollary. The natural order has been reversed to keep from
obscuring the proof of Theorem 5.

CoROLLARY. A hyperspace of a come is a cone. That is, if ¥=CX
= (XXI)|R is the cone of a space X, and # = c0,1,2,.., then

Y(n) ~ OXy(n) where Ton)= {4 e Y (n): A~ [Xx0]0).

* ©
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Proof. We. will show how to modify the proof of Theorem 5. If
yedeXyn), then y= [#,s] where zeX and sel. If Ae Yon) and
tel, let

tA = {[&,1s]: [w,81e 4} and A+i={, s+1]: [x,8]e A} .

Then h: CY¥yn)—Y(n) defined precisely as in Theorem 5 is the
required homeomorphism and the result follows. [ )

Tf R is an equivalence relation on a set X and A C X, then R.mduces
an equivalence relation R4 on A where B4 is defined by aR.4b ift aRb.
However, instead of using the symbol R, we will use B and understand

that it is really R.a.

Tet & be an equivalence relation on & set ¥ and define T'= Ex 8§
on X XY by
(z,9)T(a',y’) iff =zRe and y8y.
The natural funetion
o: (XXY)T—-XRxY[S
defined by ofz, y1= ([=],[y]) s 2 bijection and consequently we will

often equate the sets (X xXY)/T and X/RxY|8. _
Define the equivalence relation 4 on a set X by xdy iff s =1y. We

will often equate X/4 and X.
PmorEM 6. (a) I(n) ~ I(n)XI (n=00,1,2, ...) and '
() if m=1,2, ..., there is a homeomorphism H: I"—I", cmd‘ equiv-
alence relations S and 8. on I" and Sz on 7" such that H induces
a homeomorphism ~
B IMN8-IY8. = I" Y8y T
where I"S ~ I(n) and I"7'[Sgws Io(n).
Proof. (a) By Theorem 4, I(n) ~ OIi(n) and hence by Theorem 5,
I(n) ~ OCIyn). Then by Theorems 1 and 4 we have
I(n) m Clg(m) xI = L) x I .
(b) Let A, and By be defined as in Theorem 3. Define S on I" (and
therefore also on A, and Bx) by
(X1, oens Tn)S W1y -es Yn) HE (@ ey Bn} = Y1y 00y Yn} -
By Theorem 0, I(n) ~ I8 and Iy(n) ~ Aq/S. Liet 8, and 8, bge the eqmvc:
alence relations on OBp= (BnxI)[E, and QOB = (BnXI)/R, respe
tively, induced by §. By the proof of Theorem 3 let
(1) f: CBy—>Ay and R CCB,—~I"
be the homeomorphisms defined by flz,sl= 1—8)= and h(z,s,?)

= (1—t)(1—s)2+1tp where p= ,1,..,1). We now ghow that .
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(a) 8 is the equivalence relation on OB, associated with f, and

(b) 8, is the equivalence relation on COB, associated with h.

We shall prove only (b) since (a) is a simplified version of (b).

Suppose [z, s,1]8,[4", ', t']. We have [, s, t]8,[o, &', t'] iff [z, 8,4
=[o,8,0]; or @8y, s=¢, and t=1 it (m,8,1)= (a',8,1); or
s=¢=1 and t=1; or i=1=1; or {m}= {23}, s=s', and =y,
Thus in all cases

(1= (1 —8)ae+1) = {(1—#)(L—s) 2541}

hlw, s, t]8h[2', 8", 1],
Suppose now that L[z, s, t]Sh[z, s, #']. Thus
A ={1-)A-s)mi+1} = {(1—t)(1—s)ai+ 1t} = B

and since {#;} and {7} both contain 0,7 = mind = minB = . [ { — ¢’ — 1,
[#,8,8]=1[2",¢', %] and hence [z, s, t]8,[a,s’,#]. If t=1¢' = 1, then
since {;} and {w;} both contain 1, we have (1—2)(1~s)+¢= maxd
= maxB = (1—1)(1—s')4¢t and hence s = s’. Tf s = §' = 1, then [z, s, 1]
= [#', &', '] and hence [=, s, t]8,[#", 8", ¢']. If s = " £ 1, then {z;} = {2}
and hence in all cases we have [z, s, 1]S,[«, s’ '],

Thus h: CCBp-I" induces a homeomorphism
(2); B*: (CUB,)8,~>I"8 ~ I(n)
and f: 0By—>A, induces a homeomorphism

F: (OB,)[8,~A4n[S ~ Iyn) .

Define 8t on OB, xI by 8t = 8§, x4. From the statement and proof
of Theorem 1, let X = B, and let

and hence

(3) ¢=g*: 00B,—~CB,%xI.
From the proof of Theorem 2, ¢ induces a homeomorphism.
(4) ¢*: (C0B,)[8,~(0B.)[8, xI = (0B, XI)[SF .
Define
(8) Jit OBy xXI~AaxI

by fi=fxid and define 8* on A,xI by 8* = §x4. Then f, induces
(6) i (OB xI)[8F = (CBn){8y X T+ An/Sx I = (4, xI)[8*.

By Theorem 3, let p: A,—+I""* be a bomeomorphism, define

(n Py AnXT-I" P = I"

by p,=pXid, define § on I"™* by P(x)8p(y) iff xSy, and define S,
on I" by S,= §;x4. Thus, p, induces a homeomorphism

(8) PI: (An X I)[8* = Ay)8 X I I8, = I"Y8xI.

- © '
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Thus by (1)-(8), H=p,efio@oh™: I"=I" is a homeomorphism and
induces a homeomorphism :

HY = p}off oq* o b SIS0 = I" 78 X I

where I"/S ~ I(n) and I"77|8; ~ Io(n). O

THEOREM 7. I™(n) ~ I PR XI™ (m= 00,1,2,..; n=1,2,..)
for a properly defined equivalence relation R. (That is, I"™(n) contains I™
as a factor.)

m ﬂ
Proof. Let I;; = I for all i and j, let I = f{ I;; and let I} = jI;[lIﬁ.
iad =
Then
n m
™ =Jliy=1]] 1.
j=1 i=1
Also, & = (%15, %ajy e, Tmg) for @i eIi. By Theorem 0

I™n) ~ I™R, = (71= { IR,

. .
where (aF, .., &) B(yl", .., ¥2) iE {2, .., €} = (47", oy W)

17"/ ITIL
1Y [y @ e Tin I" [Yu Yz o Yin
Ly oo Zon, Yo Yoo Yon
Ty Tme e Tom Ymi Ymz o Ymn,

Let H: I"—~I" 8, 8., and S; be as in Theorem 6. Define H;: I7—I7

by H;= H and define
Hy: []
i=1

L2

m
Il
i=1

ny

by Hn ___!_]1 Hy. If o € I}, then & = (%ay, .., @in). Define 8™ on‘_]JlI? by

8" = ﬁ S; where §; = S, which says that for each s = 1, ..., m, {@in, ..., Zin}
g=1

= {Yiry ey Yin}- _
&.‘ims: as equivalence relations on I"™ we have R, C 8™ Define R,

m
o . mn m__ .
on I™ by Hu(z)RoHn(y) itf ©Ryy and define 87 on I"" by 8" = gl S
3 : m
where 8,; = S,. By Theorem 6 we have w8y it Hnm(x)So ﬁm(y). Thus,
R, C 8™ implies R,C SJ'. Define S5' on 9" by 8§ 2151 Sp; where
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Spi = 8. Again by Theorem 6, if u,w ¢ I™ ™ and v, ¢ I™, we have
(1, v) 83 (w', v') iff uSF w' and v = o'. Hence, since B, C 87, we have that
(w, ) Ru',v') implies %85 ' and v=o'. Thus, define B on I® "™ py
uRu' iff (u,v)Bu(u’,v) for some v e I™. Hence (u, v)Ry(u’, v') iff uRu’
and v= 9" and thus

Hm5 Imn _V_>l'nm
induces the homeomorphism
H;;ﬁ Imanl_)lﬂrm/Ra — 1(%—1)1n/R XIm

where I"™(n) ~ I™|R,. O

If m =0, let P™ be projective m-space.

TEEOREM 8. I™(2) ~ O(P™ ) xI™ (m=1,2,...).

Proof. From the proof of Theorem 6 (b) take I, A,, and the equiv-
alence relation § for the case n = 2. We see that (z, y)S8(a", y') iff {=, y}
= {#’, 9’} reduces to the case that the point (z,y) is identified with the
point (y, #). Thus for § on 4, we have (,0) identified with (0,2). We
are going to slightly modify the proof of Theorem 6(b) for the case n = 2.
Instead of p being a homeomorphism of A4, onto I' let p be a home-
omorphism of 4, onto J =[—1,1] such that if p(»,0) = u eJ, then
P(0, ®) = ~w. Thus the induced equivalence relation S; on J identifies
each w ¢J with —u. Furthermore p,: 4, XI—J %I and H: I* —>J xI and
for S, on J xI we have the point (u,v) identified with (—u, v). Thus
H*: I8~ xI)|8.= J|Spx I. (Incidently, J/S; ~ I.)

‘We now carry these modifications over to the proof of Theorem 7.
For R, on I™xI™, the point (w,y) is identified with (y, ). We have
Hpy: ™ (J XI™ = J™xI™ and the induced equivalence relation R, on
J" X I™ identifies (4, ) with (—u, v) for (u, ) e J™ xI™. Thus R defined
on J™ identifies u with —wu. Hence, we have

Hy: I™2) ~ ™[Ry —»J™RxI™ .

We now claim that J™/B ~ O(Pm 7). The boundary of J™, BdJ™, is
topologically a (m—1)- sphew, gt Smce R identifies dmmetuca.lly op-
Pposite points on BdJ™ ~ 8™ we have (BdJ™/R ~ P™ . Furthermore
J™ ~ O0BdJ™ where the point (0,0, ..., 0) eJ™ is identified as the cone
point and R on J™ agrees with the equivalence relation induced on
OBAJ™ ~J™ by R on BdJ™. Thus,

J"|R ~ (0BAJ™)R ~ C((BAJ™)R) ~ O(P™Y. 0O

Corollaries 1 and 2 below constitute Molski’s [5] Theorem 1 .and
corollary to Theorem 1, respectively.
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COROLLARY 1. I'(2) ~ I’ and I’(2) ~ I,

Proof. Since P°— {one point} and P' ~ §, we have ((P°) ~ I and
O(P") ~ I" and the results follow.

COROLLARY 2. If M is a 2 manifold, then M(2) is a 4-manifold.

Proof. In the operation. of taking I* to I*(2) ~ I* both boundary
points and interior points are preserved and the result follows.

COROLLARY 3. If m = 3, then I™(2) is not a manifold with boundary.

Proof. It can be shown by a straight forward argument using local
homology theory that if X is a complex and M is a manifold with boundary
such that C(X)X M is a manifold with boundary, then K has the same
homology groups as a sphere or cell (3). The result follows. [

TERoREM 9. I7(n) ~ IZ(n)XI® (n=1,2,..).
Proof. By Theorem 7, I%(n) contains I” as a factor. That is, there
is & space X such that I¥(n) ~ X ><I°‘". Thus

(n) ~ X xI°KI® o I9m)xI°. O
From the proof of Theorem 8 we see that I°(2) ~ J[Rx I where
=[—1,1] and R identifies » in J¥ "with —w.
QuestIoN 1. Is J¥[R ~ I™Y If not, is J"[RXI” ~ I7?

By Theorem 6 we have 27 ~ 2§ x I where 2 is the space of all closed
subsets of I that contain 0.

QUESTION 2. Is % ~ ~ 209

Tt so, then 2 ~ 2'xI, and thus, for n >0,
T ofxI™,

Questiox 3. If 2~ 27X 1, is it true that

of a2 X I%
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Added in proofreading. Raymond Wong has answered the first part of question 1
in the negative. The proof is very easy. The natural projection p of J onto J®/R is
a 2-fold covering map when restricted to J°/0. However I®/{point} is simply connected
which would contradict the assumption that J®°/BaI®.

icm°®

Some remarks concerning the mappings of the inverse
limit into an absolute neighborhood retract
and its applications to cohomotopy groups

by
S. Godlewski (Warszawa)

If {X,, nﬁ} is an inverse system (see [2], p. 213) of compact metric
spaces and Y ¢ ANR (see [1], p. 100), we define a map

@: [lim {X,. n}, Y]->Hm{(X,, Y], #5¥},

where [X, Y] denotes the set of homotopy classes of maps X—¥. We
show that @ is an isomorphism preserving some structures in the set of
homotopy classes: the ““ dependence” structure, the group structure if ¥
is & topological group, and the »th cohomotopy group structure if dim X,
< 2n—1.

The author acknowledges his gratitude to Professors J. Jaworow-
ski and J. Mioduszewski for their valuable remarks and advices.

§ 1. Definitions and notations: Let us denote by 2" the family
of all subsets . of & set N. A funetion 1: 2V-5»2% satisfying conditions:

ACA(A4) for every set ACN ,
if ACBCN, then A(4)CA(B),
MAMA) = A(4)  for every set ACN

is said to be the dependence operation in the set IV, and the set N in which
a such operation is defined is said to be a dependence domain (see [1],
. 66).
? I)xet N, and N, be two dependence domains with dependence opera-
tions 1, and 1,, respectively. A function f: N,—N, satisfying the con-
dition
F(A(4)) CAy(f(4)) for every set ACN,

will be called a A-morphism. A one-to-one A-morphism for which the
inverse funection is a A-morphism is said to be a A-isomorphism (see [1],
P. 66).
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