88 : R. M. Schori

[8] R. Bott, On the third symmetric potency of S, ibid. 39 (1952), pp. 864-368.

[4] T. Ganea, Symmetrische Potenzen topologischer Rawme, Math. Nach. 11 (1954)
pp- 305-316.

[5] R. Molski, On symmetric products, Fund. Math. 44 (1957), pp. 165-170.

[6] W. Wu, Note sur los produits essenticls symélriques des espaces topologique,
I Comptes Rendus des Seances de I’Académie des Sciences 16 (1947), pp. 1139-1141,

»

LOUISIANA STATE UNIVERSITY
Baton Rouge, Louisiana

RBegu par la Rédaction le 17. 5. 1967

Added in proofreading. Raymond Wong has answered the first part of question 1
in the negative. The proof is very easy. The natural projection p of J onto J®/R is
a 2-fold covering map when restricted to J°/0. However I®/{point} is simply connected
which would contradict the assumption that J®°/BaI®.
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Some remarks concerning the mappings of the inverse
limit into an absolute neighborhood retract
and its applications to cohomotopy groups

by
S. Godlewski (Warszawa)

If {X,, nﬁ} is an inverse system (see [2], p. 213) of compact metric
spaces and Y ¢ ANR (see [1], p. 100), we define a map

@: [lim {X,. n}, Y]->Hm{(X,, Y], #5¥},

where [X, Y] denotes the set of homotopy classes of maps X—¥. We
show that @ is an isomorphism preserving some structures in the set of
homotopy classes: the ““ dependence” structure, the group structure if ¥
is & topological group, and the »th cohomotopy group structure if dim X,
< 2n—1.

The author acknowledges his gratitude to Professors J. Jaworow-
ski and J. Mioduszewski for their valuable remarks and advices.

§ 1. Definitions and notations: Let us denote by 2" the family
of all subsets . of & set N. A funetion 1: 2V-5»2% satisfying conditions:

ACA(A4) for every set ACN ,
if ACBCN, then A(4)CA(B),
MAMA) = A(4)  for every set ACN

is said to be the dependence operation in the set IV, and the set N in which
a such operation is defined is said to be a dependence domain (see [1],
. 66).
? I)xet N, and N, be two dependence domains with dependence opera-
tions 1, and 1,, respectively. A function f: N,—N, satisfying the con-
dition
F(A(4)) CAy(f(4)) for every set ACN,

will be called a A-morphism. A one-to-one A-morphism for which the
inverse funection is a A-morphism is said to be a A-isomorphism (see [1],
P. 66).
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Let X and Y Dbe two topological spaces and let M C Y%, where ¥¥
denotes the set of all mappings of X into ¥, and f: X Y. We shall say
that f is homotopically dependent on M provided that there exist maps
@y Ppy ey @ue M and 9: ¥*-¥ such that f~dp where p: X—->T% i
given by the formula

¢lw) =

(It is & modification of this notion given in [1], p. 64.) The set of all maps
homotopically dependent on M will be denoted by w (M), the set of homo-
topy classes of maps belonging to M by M and the set of homotopy classes
of maps belonging to w (M) by A(M). Analogously as in [1] (see p. 67)
one can prove that the operation A defined is the dependence operation
in the set [X, Y.

If {X,, 5} is an inverse system (see [2], p. 213) over a directed set
(I'y<), then for any space Y the map n5: X;—X, (for a < p) induces
a funetion =f*: [X,, Y]—>[X5, Y] given by the formula ¥ (1) = [ff
and then {[X,, Y], %} is a divect system (see [2], p. 212) over the directed
seb (I, <). If a,f eI, then f > o means that a < p and a < # means
that it is not true that o < . The limit of the inverse system {X,, ob}
(see [2], p. 215) will be denoted by lim {X,, na} and the limit of the direct
system {X,, o2} by lim {X,, o2). An element of Jim Jin {X,, a4} (or lim {X,, ot
or the Cartesian product P X.), whose representative in X, is 2 %, Will be

denoted by {w.}.

Let 1, be the dependence operation in the set [X,, ¥] defined as
above. For an arbitrary set B Clim {{X,, ¥], 75} and for an arbitrary
element a e I', let B, be the subset of [X,, ¥] such that

[a] € By <= {[g]} ¢ B . (%)
Let A¥(B) e the subset of Im{X,, Y], } such that

{lpd} € 7¥(B) <= VoA g € 2B - )

(pu(), @al(@) s e p1(®)) -

It is easy to see that such defined operation isa dependence operation
in the set lm {[X,, ¥], n5¥}.

Let {X,, nﬂ} be an inverse system of compact metric spaces over
a directed set (I',<) and X = lim{X,, «%}. Tmbedding each space X,
into the Hilbert cube @, we can imbed the space X into the Cartegian

product }; Q.. Therefore we can assume that X C P . and then
a€ a€l’

(*) »<=>"" means ,.if and only if”.
¢,

»
y/:r means ,,there exists y ¢ I, and ,, A" means ,,for each a = =y
azy
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X, C Q. Let us pick 4 point 2° = {15} ¢ X where 7 ¢ X,. For an arbitrary
ael, let T, and X, be subspaces of the space P Q. such that
ael’

{wg} € To == [(Be e X)A(B <
{15} € Xo <= [({ws} € Ta)

a = 25 = 75(@)] ,(°)
(B<ka=m5=ag].

These definitions imply

(1) X,X.CT,, NT=X, a<f=T;CT, foreach a,fel.
fza
Let ty: Xo—>Tay Fui X—To, 7 Tp—T, (for a<p) be inclusions.

The function h X,+X, given by the formula o {%5}) = %, 18 & homeo-
morphism. The set T, is homeomorphical with X, x P Qg; therefore, it

is compact. Let us define the function 7,: T, =X, by the formula

. &g if ﬁ < a
where 23=

zp i pf<La.

It is obvious that 7, is a deformation retraction. Let

ra({me}) = {ap}
MB = Fbﬂtg' jﬁ-%i

Let us observe that 7 A 1af «hs. Therefore, we can identify the sets X
with the sets X, and the maps 7 with the maps 2. Henceforth X, will
be denoted by X, and % by 7. By this convention we have

(2)

for a<f.

X.CT., ta? Xo—+Ta,
2= v Xp—+Xa

ret To>X,,

for a<§B.

§2. A natural transformation. Let us prove the following

Levuma 1. If Y ¢ ANR, then for each map f: X—X there is yel
such that for each a >y there ewists @ map fau: T,—Y such that f= fom,.
Moreover, if a<< ﬂ then fu|Tp= fs- )

Proof. Let J: U—~Y be an extension of f on some neighborhood U
of X in P Q. (for existence, see [3], Theorem 13.2, p. 333 and Theorem 8.1,

ael'

p. 325). From (1) and the compactness of T, it follows that there exists
y eI' such that for a =y we have T,C U. The map fo= f | T, satisfies
the required conditions.

TevmA 2. If ¥ ¢ ANR and fo: Lo, gp Ts—Y are maps such that
faTtu = gpTis, then there ewists y eI’ such that

Fatalh = Gptgs -

¢) »A” mesns ,and”, and ,,a = b” means ,if o then b”.
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Proof. By hypothesis there exists a map h: X' x<0,1>—Y such
that
h(z,0) = fa7i () and h(w,1)= gsms(x) for weX.

Let us define the funetion F: XX 0,1 u T.X (0) v Tyx (1)=¥ by
the formafla
h(z,t) for oeX and 0<t<1],
F(w, t) = | fiz) for xeT, and t=20,
gs() for wxeT; and t=1.

It is obvious that F' is well defined and continuous. Let F: V- be an

extension of F' on some neighborhood ¥ of X X <0,1> v T, x (0) v T x (1)

in P Q.x<0,1) (for existence, see [3], Theorem 13.2, p. 333 and Theo-
a€l’

rem 8.1, p. 325). From (1) and the compactness of T, (for a e I') it follows
that there exists y ¢ I' such that y>a, y > # and T, x<0,1) CV. Let
H=F|T,x 0,15, Then H: I,%<0,1>—-Y and H(w, 0) = f,7i(x) and
H(w,1) = gpmj(w) for weT,. Therefore f,m, ~gs7;. Hence, since the
maps 7, and y7s are homotopic with the identity maps, we have

JataTaTlaty & gpipta T, .

Hence, from (2) fitumi ~gpipnh and the lemma is proved.
Let us define the funection

@: [Im {X,, 28}, Y]-lim {{X,, Y], #*}
by the formula
B([f]) = {[fuel}

where f.: T,—Y are mappings associated to f by lemma 1. It is well
defined, because if f~g and f = fuT,, g = gs7;, then by lemma 2 f,i, %
~ gpigas, hence miH[f, ] = nﬁ# [9st6], therefore {[ft]} = {[gs¢]}. The funec-
tion & will be called & natural transformation.

TEROREM. The natural transformation

@: [X, Y]-ln {{X,, ¥], 4%}
is @ one-to-one fumction.

Proof. For any map ¢. X,~Y we have D([@aTaa]) = {[@al},
therefore @ is onto. Now, let there be given two maps f,g: X—Y such
that O([f]) = B([g]). Let f = f,7, and g = g, 7, where faand g, are mappings
associated to f by lemma 1. From the hypothesis, {[fitol} = {[gatl}s
therefore there exists § > a such that finf = got,nf. Hence by (2)

FataToTht & fateToTng
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$hus foTthisrs o guahipry , and nextly
= faTa= fa-ﬁziﬁ ggai‘;ﬁﬁ =fuTla= ¢,
and the proof is concluded.

§ 3. Some properties of the natural transformation. Let 1,
4s (for a e I') and A% be the dependence operations in the sets [X, Y],
[Xq, Y] and lim {[X,, Y],nﬂ#}, respectively, defined as in § 1. Then
the following theorem is true.

THEOREM 1. The natural iransformation

o: [X, Y]-lim {{X,, Y], %%}
8 a A-isomorphism.

Proof. It suffices to prove that for each set 4 C[X, Y] we have
o((4) = }.#(@(A)). For, suppose that [f]e A(4) and let M be the set
of all representatives of the homotopy classes belonging to 4, and M,
be the set of all representatives of the homotopy classes belonging to
(P(A))a (see the definition of B, in §1). Hence, we have 4 =M and

(@(A))a = M,. Thus f € w (M), therefore f ~ 9p, where #: ¥*Y, @: XY
p(2) = (p(2), ..., pr(®)) and @i M (for i =1, 2, ..., k). By lemma 1 there
exists ¢ ¢I" such that for a>y we have f= fom, and g;i= @um, (for
9=1,2,..,k). Let us define the map ¢.: T,—~Y* by the formula

Pa(®) = (qjlu(w): Poa(®) ony ‘Pka(x))

Let ¢, = Out: X,—Y. Since f~dp, we have go~fat,. Let us observe
that

Patel®) = (Pratel®), oy Pratal(®)) 8D {{Piatl} = D([pua]) = O ([pd)

and since @; € M, then [pie 4, therefore {[pwial} c P(A). Hence [pist]
€ (B(A))ay thus @iata € M,. Therefore [ga] € la((di(A))a), and since go = fala,
we have [fots] € 4((B(4))d), thus {[fur]} € 7¥(@(4)). Then we have B([f])
= {[fatal} € Z#(Qﬁ(A)), therefore

& (2(4) C ¥ (D(4)) .

Now, suppose that {{¢.]} € A¥(@(4)). Then ¢, € w(M,). Tt follows that
there exist maps #: ¥*—>¥ and y: X,—T* such that v(x) = (p(a), ...
oy ve{@), pie M, (for i=1,2, .., k) and g, =dy. If we set yi= pirom:
XY (for i=1,2,..,%k) and define y: XYY" by the formula x(z)

= (Xl(w)’ ¥} Zlc(m)); then _ _
Dy = PPraTa = Qula T -
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Since p; € M,, we have {[yi]} e ®(A). On the other hand,
Ty} = {[pitetal} = D([piraTa]) = D([1]) -

Hence y;e M, therefore [g.7.7.]eA(A), but since D([gtam]) = {[g]},
we have {[g.]} ¢ ®(1(4)). Therefore A¥(0(4)) CB(A(4)). Thus B(A(4))
= 2#(@(44)). This completes the proof of theorem 1.

Now, let T be a topological group. In the sets [lim {X,, a4y, ¥] and
lim {{X,, Y7, :'t':#} there is given the group operation as usual. Then it
is easy to see that the natural transformation is a homomorphism, and
sinee it is one-to-one function, therefore it is an isomorphism. Hence,
we obtain the next

THEOREM 2. If ¥ is a topological group, then the natural transforma-
tion @ is an isomorphism.

Exawperk. Let 8; (for i=1,2,..) be a circle considered as the
set of all complex numbers z with |s| = 1. Let =i: §;—8; (for ¢ <) be
a map given by the formula xi(z) = z”j", where p is a fixed natural number.
The space X = lim{S;, i} is called the p-adic solenoid (see [2], p. 230).
Applying theorem 2 we can easily caleulate the first cohomotopy group
7{(X) of the p-adic solenoid, for it is isomorphic with the group
lim {='(85), 21¥}. If #1(8;) is considered as the group of integers, then
al¥: 7'(8s)—>a4(8;) (for 4 < j) is given by the formula n’f*(ct) = pj'i-ol,
where ¢; € 74(8:). Let G(p) be the group of all rational numbers of the
form m[p?, where m =0, £1, £2,..., 4=1,2,.. It is easy to see that
the group 1_'125{:51(;5’;),:1’;#} is isomorphic with the group G(p), namely
the funection ¥: EIH{nl(Sf),ni-#}—»G(p) given by the formula ¥({ef})
= eifp?, where ¢; € 71(§;), is an isomorphism.

THBOREM 3. If for each ael A&imX,<2n—1, then the natural
transformation

@ "(lim (X, #f})->lim {x"(X), 7}
8 an isomorphism.
Proof. Take two arbitrary maps f, g: X— 8", where X = lim {X,, 28}

and 8" is n-dimensional sphere. Since dim X, < 2n—1 and. X, are compact,
then Aim X < 2n—1. Let F: X X (0, 1>—~8"%x 8" be a normalizing homo-
topy for f and g, and let h: X—>S8"v8" = (§"x (8)) v ((s)% 8% be a nor-
malization of them (see [4], p. 210). Then F(z,0)= (f(z), g(=)) and
F(a:ﬂ, 1)=h(z) for » e X. Let there be given the map 2: §"v8 --8"
defined by the formula Q(y,s)= Q(s,y)=y. Then [fl+[g]= [Qh]
(see [4], p. 210). Take y e I' such that for each « =y there exist f,, ¢.:
T.—~8" and h,: T,—8"vS" such that = faTay §= guTa, h = ho7, and,
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moreover, if a <8 then filTs = fz, ¢ualTs = g5, halTp= ks (see lemma 1).
For each a >y, let us define the function

Fot X0, 0T, %x(0)w T,x(1)->8"x 8"
by the formula

F(x,t) for reX and 0<i<1,
Fo(r,t) = | (ful@), gulx)) for reT,andit=0,
ho() for xeT,and t=1;

then if ¢ < 8 then F X x 0,13 u Ty (0)u Ty (1) = Fy. Let : V-
—8" % 8" be an extension of F on some neighborhood ¥ in P Q.x <0, 1.
ael'

Take f > a such that Xzx<0,1> C Tpx {0,1)> CV. Setting H = Flx,x
X {0,1> we obtain a normalizing homotopy H: Xzx{0,1>—~8"x 8"
for maps fpis and gpip and then hge is a normalization of them. Hence,
by the definition of the natural transformation, we conclude that ¢ is
a homomorphism, and since it is a one-to-one function, then it is an
isomorphism.
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