88

R. M. Schori

- [3] R. Bott, On the third symmetric potency of S₁, ibid. 39 (1952), pp. 364-368.
 [4] T. Ganea, Symmetrische Potenzen topologischer Räume, Math. Nach. 11 (1954), pp. 305-316.
 - [5] R. Molski, On symmetric products, Fund. Math. 44 (1957), pp. 165-170.
- [6] W. Wu, Note sur les produits essentiels symétriques des espaces topologique, I Comptes Rendus des Seances de l'Académie des Sciences 16 (1947), pp. 1139-1141.

LOUISIANA STATE UNIVERSITY Baton Rouge, Louisiana

Reçu par la Rédaction le 17. 5. 1967

Added in proofreading. Raymond Wong has answered the first part of question 1 in the negative. The proof is very easy. The natural projection p of J^{∞} onto J^{∞}/R is a 2-fold covering map when restricted to $J^{\infty}/0$. However $I^{\infty}/\{\text{point}\}$ is simply connected which would contradict the assumption that $J^{\infty}/R \approx I^{\infty}$.

Some remarks concerning the mappings of the inverse limit into an absolute neighborhood retract and its applications to cohomotopy groups

by

S. Godlewski (Warszawa)

If $\{X_a, \pi_a^{\theta}\}$ is an inverse system (see [2], p. 213) of compact metric spaces and $Y \in ANR$ (see [1], p. 100), we define a map

$$\Phi: [\underline{\lim} \{X_a, \pi_a^{\beta}\}, Y] \rightarrow \underline{\lim} \{[X_a, Y], \pi_a^{\beta \ddagger}\},$$

where [X, Y] denotes the set of homotopy classes of maps $X \to Y$. We show that Φ is an isomorphism preserving some structures in the set of homotopy classes: the "dependence" structure, the group structure if Y is a topological group, and the nth cohomotopy group structure if $\dim X_a \le 2n-1$.

The author acknowledges his gratitude to Professors J. Jaworowski and J. Mioduszewski for their valuable remarks and advices.

§ 1. Definitions and notations. Let us denote by 2^N the family of all subsets of a set N. A function λ : $2^N \to 2^N$ satisfying conditions:

$$A \subset \lambda(A) \quad \text{for every set } A \subset N \ ,$$
 if $A \subset B \subset N \ , \quad \text{then} \quad \lambda(A) \subset \lambda(B) \ ,$
$$\lambda(\lambda(A)) = \lambda(A) \quad \text{for every set } A \subset N$$

is said to be the dependence operation in the set N, and the set N in which a such operation is defined is said to be a dependence domain (see [1], p. 66).

Let N_1 and N_2 be two dependence domains with dependence operations λ_1 and λ_2 , respectively. A function $f: N_1 \rightarrow N_2$ satisfying the condition

$$f(\lambda_1(A)) \subset \lambda_2(f(A))$$
 for every set $A \subset N_1$

will be called a λ -morphism. A one-to-one λ -morphism for which the inverse function is a λ -morphism is said to be a λ -isomorphism (see [1], p. 66).

Let X and Y be two topological spaces and let $M \subset Y^X$, where Y^X denotes the set of all mappings of X into Y, and $f \colon X \to Y$. We shall say that f is homotopically dependent on M provided that there exist maps $\varphi_1, \varphi_2, \ldots, \varphi_k \in M$ and $\vartheta \colon Y^k \to Y$ such that $f \simeq \vartheta \varphi$ where $\varphi \colon X \to Y^k$ is given by the formula

$$\varphi(x) = (\varphi_1(x), \varphi_2(x), \dots, \varphi_k(x)).$$

(It is a modification of this notion given in [1], p. 64.) The set of all maps homotopically dependent on M will be denoted by $\omega(M)$, the set of homotopy classes of maps belonging to M by M and the set of homotopy classes of maps belonging to $\omega(M)$ by $\lambda(M)$. Analogously as in [1] (see p. 67) one can prove that the operation λ defined is the dependence operation in the set [X, Y].

If $\{X_{a}, \pi_{a}^{\beta}\}$ is an inverse system (see [2], p. 213) over a directed set (Γ, \leqslant) , then for any space Y the map π_{a}^{β} : $X_{\beta} \to X_{\alpha}$ (for $\alpha \leqslant \beta$) induces a function $\pi_{a}^{\beta \ddagger \ddagger}$: $[X_{\alpha}, Y] \to [X_{\beta}, Y]$ given by the formula $\pi_{a}^{\beta \ddagger \ddagger}$ ([f]) = $[f\pi_{a}^{\beta}]$ and then $\{[X_{a}, Y], \pi_{a}^{\beta \ddagger}\}$ is a direct system (see [2], p. 212) over the directed set (Γ, \leqslant) . If $\alpha, \beta \in \Gamma$, then $\beta \geqslant \alpha$ means that $\alpha \leqslant \beta$ and $\alpha \leqslant \beta$ means that it is not true that $\alpha \leqslant \beta$. The limit of the inverse system $\{X_{\alpha}, \pi_{a}^{\beta}\}$ (see [2], p. 215) will be denoted by $\varprojlim \{X_{\alpha}, \pi_{a}^{\beta}\}$ and the limit of the direct system $\{X_{\alpha}, \sigma_{a}^{\beta}\}$ by $\varprojlim \{X_{\alpha}, \sigma_{a}^{\beta}\}$. An element of $\varprojlim \{X_{\alpha}, \pi_{a}^{\beta}\}$ (or $\varprojlim \{X_{\alpha}, \sigma_{a}^{\beta}\}$, or the Cartesian product $P(X_{\alpha})$, whose representative in X_{α} is X_{α} will be denoted by $\{x_{\alpha}\}$.

Let λ_a be the dependence operation in the set $[X_a, Y]$ defined as above. For an arbitrary set $B \subset \varinjlim \{[X_a, Y], \pi_a^{\beta \sharp \dagger}\}$ and for an arbitrary element $\alpha \in \Gamma$, let B_a be the subset of $[X_a, Y]$ such that

$$[\varphi_a] \in B_a \iff \{[\varphi_a]\} \in B . (1)$$

Let $\lambda^{\sharp}(B)$ be the subset of $\underline{\lim}\{[X_a, Y], \pi_a^{\beta\sharp}\}$ such that

$$\{[\varphi_a]\}\ \epsilon\ \lambda^{\sharp\sharp}(B) \iff \bigvee_{\gamma\ \epsilon\ \Gamma\ a\geqslant \gamma} [\varphi_a]\ \epsilon\ \lambda_a(B_a)\ .\ (^2)$$

It is easy to see that such defined operation $\lambda^{\#}$ is a dependence operation in the set $\varprojlim \{[X_a, Y], \pi_a^{\beta \#}\}.$

Let $\{X_a,\pi_a^{\vec{\beta}}\}$ be an inverse system of compact metric spaces over a directed set (Γ,\leqslant) and $X=\varprojlim\{X_a,\pi_a^{\beta}\}$. Imbedding each space X_a into the Hilbert cube Q_a we can imbed the space X into the Cartesian product P Q_a . Therefore we can assume that $X\subset P$ Q_a and then

$$\begin{split} \{x_{\beta}\} & \in T_{\alpha} \Longleftrightarrow \left[(x_{\alpha} \in X_{\alpha}) \wedge (\beta \leqslant \alpha \Rightarrow x_{\beta} = \pi_{\beta}^{\alpha}(x_{\alpha}) \right], (^{3}) \\ \{x_{\beta}\} & \in \widetilde{X}_{\alpha} \Longleftrightarrow \left[(\{x_{\beta}\} \in T_{\alpha}) \wedge (\beta \leqslant \alpha \Rightarrow x_{\beta} = x_{\beta}^{0} \right]. \end{split}$$

These definitions imply

$$(1) \quad X, X_{\alpha} \subset T_{\alpha} \,, \quad \bigcap_{\beta > \alpha} T_{\beta} = X \,\,, \quad \alpha \leqslant \beta \, \Rightarrow \, T_{\beta} \subset T_{\alpha} \quad \text{ for each } \alpha, \beta \in \Gamma \,.$$

Let ι_{α} : $\widecheck{X}_{\alpha} \rightarrow T_{\alpha}$, $\overline{\pi}_{\alpha}$: $X \rightarrow T_{\alpha}$, $\overline{\pi}_{\alpha}^{\beta}$: $T_{\beta} \rightarrow T_{\alpha}$ (for $\alpha \leqslant \beta$) be inclusions. The function h_{α} : $\widecheck{X}_{\alpha} \rightarrow X_{\alpha}$ given by the formula $h_{\alpha}(\{x_{\beta}\}) = x_{\alpha}$ is a homeomorphism. The set T_{α} is homeomorphical with $\widecheck{X}_{\alpha} \times P$ Q_{β} ; therefore, it is compact. Let us define the function r_{α} : $T_{\alpha} \rightarrow \widecheck{X}_{\alpha}$ by the formula

$$r_{lpha}(\{x_eta\}) = \{x_eta'\} \quad ext{ where } \quad x_eta' = egin{cases} x_eta & ext{if } & eta \leqslant lpha \ x_eta' & ext{if } & eta \leqslant lpha \ . \end{cases}$$

It is obvious that r_a is a deformation retraction. Let

$$\widetilde{\pi}_a^{\beta} = r_a \overline{\pi}_a^{\beta} \iota_{\beta} \colon \widetilde{X}_{\beta} {
ightarrow} \widetilde{X}_a \quad ext{ for } \quad a \leqslant \beta \; .$$

Let us observe that $\widetilde{\pi}_a^{\beta} = h_a^{-1} \pi_a^{\beta} h_{\beta}$. Therefore, we can identify the sets \widetilde{X}_a with the sets X_a and the maps $\widetilde{\pi}_a^{\beta}$ with the maps π_a^{β} . Henceforth \widetilde{X}_a will be denoted by X_a and $\widetilde{\pi}_a^{\beta}$ by π_a^{β} . By this convention we have

(2)
$$X_a \subset T_a$$
, $\iota_a \colon X_a \to T_a$, $r_a \colon T_a \to X_a$, $\pi_a^\beta = r_a \overline{\pi}_a^\beta \iota_\beta \colon X_\beta \to X_a$ for $a \leqslant \beta$.

§ 2. A natural transformation. Let us prove the following

LIEMMA 1. If $Y \in ANR$, then for each map $f \colon X \to Y$ there is $\gamma \in \Gamma$ such that for each $\alpha \geqslant \gamma$ there exists a map $f_a \colon T_a \to Y$ such that $f = f_a \overline{\pi}_a$. Moreover, if $\alpha \leqslant \beta$ then $f_a | T_\beta = f_\beta$.

Proof. Let $\widetilde{f}\colon\thinspace U\to Y$ be an extension of f on some neighborhood U of X in P Q_{α} (for existence, see [3], Theorem 13.2, p. 333 and Theorem 8.1, p. 325). From (1) and the compactness of T_{α} it follows that there exists $\gamma\in \Gamma$ such that for $\alpha\geqslant\gamma$ we have $T_{\alpha}\subset U$. The map $f_{\alpha}=\widetilde{f}\mid T_{\alpha}$ satisfies the required conditions.

LEMMA 2. If Y ϵ ANR and f_a : $T_a \rightarrow Y$, g_{β} : $T_{\beta} \rightarrow Y$ are maps such that $f_a \overline{\pi}_a \simeq g_{\beta} \overline{\pi}_{\beta}$, then there exists $\gamma \in \Gamma$ such that

$$f_a \iota_a \pi_a^{\gamma} \simeq g_{\beta} \iota_{\beta} \pi_{\beta}^{\gamma}$$
 .

^{(1) &}quot;⇔" means "if and only if".

^{(2) ,,} \wedge '' means ,, there exists $\gamma \in I$ '', and ,, \wedge '' means ,, for each $\alpha \geqslant \gamma$ ''.

^{(3) ,,\(\}sigma\)" means ,,and", and ,, $a \Rightarrow b$ " means ,,if a then b".

93

Proof. By hypothesis there exists a map $h: X \times \langle 0, 1 \rangle \rightarrow Y$ such that

$$h(x, 0) = f_a \overline{\pi}_a(x)$$
 and $h(x, 1) = g_{\beta} \overline{\pi}_{\beta}(x)$ for $x \in X$.

Let us define the function $F: X \times (0,1) \cup T_a \times (0) \cup T_\beta \times (1) \rightarrow Y$ by the formula

$$F(x,\,t) = egin{cases} h(x,\,t) & ext{ for } & x \,\epsilon\, X ext{ and } 0 \leqslant t \leqslant 1 \;, \ f_a^i(x) & ext{ for } & x \,\epsilon\, T_a^i ext{ and } & t = 0 \;, \ g_eta(x) & ext{ for } & x \,\epsilon\, T_eta ext{ and } & t = 1 \;. \end{cases}$$

It is obvious that F is well defined and continuous. Let $\widetilde{F}\colon V\to Y$ be an extension of F on some neighborhood V of $X\times \langle 0,1\rangle \cup T_a\times (0)\cup T_{\beta}\times (1)$ in P $Q_a\times \langle 0,1\rangle$ (for existence, see [3], Theorem 13.2, p. 333 and Theorem 8.1, p. 325). From (1) and the compactness of T_a^1 (for $a\in \Gamma$) it follows that there exists $\gamma\in \Gamma$ such that $\gamma\geqslant a,\ \gamma\geqslant \beta$ and $T_\gamma\times \langle 0,1\rangle\subset V$. Let $H=\widetilde{F}|T_\gamma\times \langle 0,1\rangle$. Then $H\colon T_\gamma\times \langle 0,1\rangle\to Y$ and $H(x,0)=f_a\overline{x}_a'(x)$ and $H(x,1)=g_\beta\overline{x}_\beta'(x)$ for $x\in T_\gamma$. Therefore $f_a\overline{x}_a'\simeq g_\beta\overline{x}_\beta'$. Hence, since the maps ι_ar_a and $\iota_\beta r_\beta$ are homotopic with the identity maps, we have

$$f_{\alpha} \iota_{\alpha} r_{\alpha} \overline{\pi}_{\alpha}^{\gamma} \iota_{\gamma} \simeq g_{\beta} \iota_{\beta} r_{\beta} \overline{\pi}_{\beta}^{\gamma} \iota_{\gamma}$$
.

Hence, from (2) $f_{\alpha}\iota_{\alpha}\pi'_{\alpha} \simeq g_{\beta}\iota_{\beta}\pi'_{\beta}$ and the lemma is proved. Let us define the function

$$\Phi: [\underline{\lim} \{X_{\alpha}, \pi_{\alpha}^{\beta}\}, Y] \rightarrow \underline{\lim} \{[X_{\alpha}, Y], \pi_{\alpha}^{\beta\#}\}$$

by the formula

$$\Phi([f]) = \{ [f_a \iota_a] \}$$

where $f_a\colon T_a\to Y$ are mappings associated to f by lemma 1. It is well defined, because if $f\simeq g$ and $f=f_a\overline{\pi}_a$, $g=g_\beta\overline{\pi}_\beta$, then by lemma 2 $f_a\iota_a\pi_a^{\nu}$ $\simeq g_\beta\iota_\beta\pi_\beta^{\nu}$, hence π_a^{ν} $\stackrel{\text{\tiny def}}{=}$ $[g_{\beta}\iota_{\beta}]$, therefore $\{[f_a\iota_a]\}=\{[g_\beta\iota_{\beta}]\}$. The function Φ will be called a natural transformation.

THEOREM. The natural transformation

$$\Phi: [X, Y] \rightarrow \lim \{ [X_a, Y], \pi_a^{\beta \ddagger} \}$$

is a one-to-one function.

Proof. For any map $\varphi_a\colon X_a\to Y$ we have $\Phi([\varphi_ar_a\overline{\pi}_a])=\{[\varphi_a]\}$, therefore Φ is onto. Now, let there be given two maps $f,g\colon X\to Y$ such that $\Phi([f])=\Phi([g])$. Let $f=f_a\overline{\pi}_a$ and $g=g_a\overline{\pi}_a$ where f_a and g_a are mappings associated to f by lemma 1. From the hypothesis, $\{[f_a\iota_a]\}=\{[g_a\iota_a]\}$, therefore there exists $\beta\geqslant a$ such that $f_a\iota_a\pi_a^{\theta}\simeq g_a\iota_a\pi_a^{\theta}$. Hence by (2)

$$f_{a}\iota_{a}r_{a}\overline{\pi}_{a}^{\beta}\iota_{\beta}\simeq g_{a}\iota_{a}r_{a}\overline{\pi}_{a}^{\beta}\iota_{\beta}$$
,

thus $f_{\alpha} \overline{\pi}_{\alpha}^{\beta} \iota_{\beta} r_{\beta} \simeq g_{\alpha} \overline{\pi}_{\alpha}^{\beta} \iota_{\beta} r_{\beta}$, and nextly

$$f = f_{\alpha} \overline{\pi}_{\alpha} = f_{\alpha} \overline{\pi}_{\alpha}^{\beta} \overline{\pi}_{\beta} \simeq g_{\alpha} \overline{\pi}_{\alpha}^{\beta} \overline{\pi}_{\beta} = g_{\alpha} \overline{\pi}_{\alpha} = g$$
.

and the proof is concluded.

§ 3. Some properties of the natural transformation. Let λ , λ_{α} (for $\alpha \in \Gamma$) and λ^{\ddagger} be the dependence operations in the sets [X, Y], $[X_{\alpha}, Y]$ and $\varinjlim\{[X_{\alpha}, Y], \pi_{\alpha}^{\beta \ddagger}\}$, respectively, defined as in § 1. Then the following theorem is true.

THEOREM 1. The natural transformation

$$\Phi \colon [X, Y] \rightarrow \underline{\lim} \{ [X_a, Y], \pi_a^{\beta \sharp} \}$$

is a λ -isomorphism.

Proof. It suffices to prove that for each set $A \subset [X, Y]$ we have $\Phi(\lambda(A)) = \lambda^{\sharp !}(\Phi(A))$. For, suppose that $[f] \in \lambda(A)$ and let M be the set of all representatives of the homotopy classes belonging to A, and M_{α} be the set of all representatives of the homotopy classes belonging to $(\Phi(A))_a$ (see the definition of B_a in § 1). Hence, we have A = M and $(\Phi(A))_a = M_a$. Thus $f \in \omega(M)$, therefore $f \simeq \vartheta \varphi$, where $\vartheta \colon Y^k \to Y, \varphi \colon X \to Y^k$, $\varphi(x) = (\varphi_1(x), \dots, \varphi_k(x))$ and $\varphi_i \in M$ (for $i = 1, 2, \dots, k$). By lemma 1 there exists $\gamma \in \Gamma$ such that for $\alpha \geqslant \gamma$ we have $f = f_a \overline{\pi}_a$ and $\varphi_i = \varphi_{ia} \overline{\pi}_a$ (for $i = 1, 2, \dots, k$). Let us define the map $\varphi_a \colon T_a \to Y^k$ by the formula

$$\varphi_{\alpha}(x) = (\varphi_{1\alpha}(x), \varphi_{2\alpha}(x), \ldots, \varphi_{k\alpha}(x)).$$

Let $g_a = \vartheta \varphi_a \iota_a$: $X_a \to Y$. Since $f \simeq \vartheta \varphi$, we have $g_a \simeq f_a \iota_a$. Let us observe that

$$arphi_{lpha}\iota_{a}(x)=ig(arphi_{1a}\iota_{a}(x)\,,\,...,\,arphi_{ka}\iota_{a}(x)ig) \quad ext{ and } \quad \{[arphi_{ia}\iota_{a}]\}=oldsymbol{arPhi}([arphi_{ia}\overline{\pi}_{a}])=oldsymbol{arPhi}([arphi_{i}])$$

and since $\varphi_i \in \mathcal{M}$, then $[\varphi_i] \in A$, therefore $\{[\varphi_{ia}\iota_a]\} \in \Phi(A)$. Hence $[\varphi_{ia}\iota_a]$ $\in (\Phi(A))_a$, thus $\varphi_{ia}\iota_a \in M_a$. Therefore $[g_a] \in \lambda_a([\Phi(A))_a]$, and since $g_a \simeq f_a\iota_a$, we have $[f_a\iota_a] \in \lambda_a([\Phi(A))_a)$, thus $\{[f_a\iota_a]\} \in \lambda^{\#}[\Phi(A)]$. Then we have $\Phi([f]) = \{[f_a\iota_a]\} \in \lambda^{\#}[\Phi(A)]$, therefore

$$\Phi(\lambda(A)) \subset \lambda^{\#}(\Phi(A))$$
.

Now, suppose that $\{[\varphi_a]\}$ $\in \lambda^{\sharp}(\Phi(A))$. Then $\varphi_a \in \omega(M_a)$. It follows that there exist maps $\vartheta \colon Y^k \to Y$ and $\psi \colon X_a \to Y^k$ such that $\psi(x) = (\psi_1(x), \dots, \dots, \psi_k(x))$, $\psi_i \in M_a$ (for $i = 1, 2, \dots, k$) and $\varphi_a \simeq \vartheta \psi$. If we set $\chi_i = \psi_i r_a \overline{\pi}_a \colon X \to Y$ (for $i = 1, 2, \dots, k$) and define $\chi \colon X \to Y^k$ by the formula $\chi(x) = (\chi_1(x), \dots, \chi_k(x))$; then

$$\vartheta \chi = \vartheta \psi r_a \overline{\pi}_a \simeq \varphi_a r_a \overline{\pi}_a$$

Since $\psi_i \in M_\alpha$, we have $\{[\psi_i]\} \in \Phi(A)$. On the other hand,

$$\{[\psi_i]\} = \{[\psi_i r_a \iota_a]\} = \varPhi([\psi_i r_a \overline{\pi}_a]) = \varPhi([\chi_i])$$

Hence $\chi_i \in M$, therefore $[\varphi_a r_a \overline{\pi}_a] \in \lambda(A)$, but since $\Phi([\varphi_a r_a \overline{\pi}_a]) = \{[\varphi_a]\}$, we have $\{[\varphi_a]\} \in \Phi(\lambda(A))$. Therefore $\lambda^{\#}(\Phi(A)) \subset \Phi(\lambda(A))$. Thus $\Phi(\lambda(A)) = \lambda^{\#}(\Phi(A))$. This completes the proof of theorem 1.

Now, let Y be a topological group. In the sets $[\varprojlim \{X_a, \pi_a^{\beta}\}, Y]$ and $\varprojlim \{[X_a, Y], \pi_a^{\beta \ddagger}\}$ there is given the group operation as usual. Then it is easy to see that the natural transformation is a homomorphism, and since it is one-to-one function, therefore it is an isomorphism. Hence, we obtain the next

Theorem 2. If Y is a topological group, then the natural transformation Φ is an isomorphism.

Example. Let S_i (for i=1,2,...) be a circle considered as the set of all complex numbers z with |z|=1. Let $\pi_i^j\colon S_j\to S_i$ (for $i\leqslant j$) be a map given by the formula $\pi_i^j(z)=z^{p^{j-i}}$, where p is a fixed natural number. The space $X=\varinjlim\{S_i,\pi_i^j\}$ is called the p-adic solenoid (see [2], p. 230). Applying theorem 2 we can easily calculate the first cohomotopy group $\pi^i(X)$ of the p-adic solenoid, for it is isomorphic with the group $\liminf_i \pi^i(S_i),\pi_i^{j\#}$. If $\pi^i(S_i)$ is considered as the group of integers, then $\pi_i^{j\#}\colon \pi^i(S_i)\to \pi^i(S_i)$ (for $i\leqslant j$) is given by the formula $\pi_i^{j\#}(c_i)=p^{j-i}\cdot c_i$, where $c_i\in\pi^i(S_i)$. Let G(p) be the group of all rational numbers of the form $m|p^i$, where $m=0,\pm 1,\pm 2,...,\ i=1,2,...$ It is easy to see that the group $\liminf_i \pi^i(S_i),\pi_i^{j\#}$ is isomorphic with the group G(p), namely the function $\Psi\colon \varinjlim \pi^i(S_i),\pi_i^{j\#}\to G(p)$ given by the formula $\Psi(\{e_i\})=c_i|p^i$, where $c_i\in\pi^i(S_i)$, is an isomorphism.

Theorem 3. If for each $a \in \Gamma$ dim $X_a \leq 2n-1$, then the natural transformation

$$\Phi: \pi^{n}(\lim_{n \to \infty} \{X_{n}, \pi_{n}^{\beta}\}) \to \lim_{n \to \infty} \{\pi^{n}(X_{n}), \pi_{n}^{\beta \ddagger}\}$$

is an isomorphism.

Proof. Take two arbitrary maps $f,g\colon X\to S^n$, where $X=\varprojlim\{X_\alpha,\pi_\alpha^\beta\}$ and S^n is n-dimensional sphere. Since $\dim X_\alpha \leqslant 2n-1$ and X_α are compact, then $\dim X \leqslant 2n-1$. Let $F\colon X\times \langle 0,1\rangle \to S^n\times S^n$ be a normalizing homotopy for f and g, and let $h\colon X\to S^n\vee S^n=(S^n\times (s))\cup((s)\times S^n)$ be a normalization of them (see [4], p. 210). Then F(x,0)=(f(x),g(x)) and F(x,1)=h(x) for $x\in X$. Let there be given the map $\Omega\colon S^n\vee S^n\to S^n$ defined by the formula $\Omega(y,s)=\Omega(s,y)=y$. Then $[f]+[g]=[\Omega h]$ (see [4], p. 210). Take $\gamma\in \Gamma$ such that for each $\alpha\geqslant \gamma$ there exist $f_\alpha,g_\alpha\colon T_\alpha\to S^n$ and $h_\alpha\colon T_\alpha\to S^n\vee S^n$ such that $f=f_\alpha\overline{\pi}_\alpha,g=g_\alpha\overline{\pi}_\alpha,h=h_\alpha\overline{\pi}_\alpha$ and,

moreover, if $\alpha \leqslant \beta$ then $f_{\alpha}|T_{\beta} = f_{\beta}$, $g_{\alpha}|T_{\beta} = g_{\beta}$, $h_{\alpha}|T_{\beta} = h_{\beta}$ (see lemma 1). For each $\alpha \geqslant \nu$, let us define the function

$$F_{\sigma}: X \times \langle 0, 1 \rangle \cup T_{\sigma} \times \langle 0 \rangle \cup T_{\sigma} \times \langle 1 \rangle \rightarrow S^{n} \times S^{n}$$

by the formula

$$F_a(x,\,t) = egin{cases} F(x,\,t) & ext{for} & x\,\epsilon\,X ext{ and } 0\leqslant t\leqslant 1 \ ig(f_a(x)\,,\,g_a(x)ig) & ext{for} & x\,\epsilon\,T_a ext{ and } t=0 \ ight. \ h_a(x) & ext{for} & x\,\epsilon\,T_a ext{ and } t=1 \ ; \end{cases}$$

then if $a \leqslant \beta$ then $F_a|X \times \langle 0,1 \rangle \cup T_{\beta} \times \langle 0 \rangle \cup T_{\beta} \times \langle 1 \rangle = F_{\beta}$. Let $\widetilde{F} \colon V \to S^n \times S^n$ be an extension of F on some neighborhood V in P $Q_a \times \langle 0,1 \rangle$.

Take $\beta \geqslant \alpha$ such that $X_{\beta} \times \langle 0, 1 \rangle \subset T_{\beta} \times \langle 0, 1 \rangle \subset V$. Setting $H = \widetilde{F}|X_{\beta} \times \langle 0, 1 \rangle$ we obtain a normalizing homotopy $H: X_{\beta} \times \langle 0, 1 \rangle \to S^n \times S^n$ for maps $f_{\beta}\iota_{\beta}$ and $g_{\beta}\iota_{\beta}$ and then $h_{\beta}\iota_{\beta}$ is a normalization of them. Hence, by the definition of the natural transformation, we conclude that Φ is a homomorphism, and since it is a one-to-one function, then it is an isomorphism.

References

[1] K. Borsuk, Theory of retracts, Monografie Matematyczne 44, Warszawa 1967.

[2] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, New Jersey 1952.

[3] O. Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Math. 2 (1959), pp. 315-360.

[4] E. Spanier, Borsuk's cohomotopy groups, Annals of Math. 50 (1949), pp. 203-245.

Reçu par la Rédaction le 26. 5. 1967