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A theorem of Stone-Cech type, and a theorem
of Tychonoff type, without the axiom of choice;
and their realcompact analogues

by
W. W. Comfort* (Middletown, Conn.)

§ 1. Introduction. It is & hopeless endeavor, doomed to failure,
to attempt to prove either the Stone-Cech compactification theorem or
the Tychonoif product theorem without invoking some form of the axiom
of choice sinece, as is well known (see p. 276 of [5], for example, and [9]),
the latter theorem implies the axiom of choice and the former implies
one of its weaker forms. It is my feeling, however, that the definition
of compactness relative to which the theorems of Stone-Cech and Tycho-
noff are unprovable without the axiom of choice is, from the point of
view of topological analysis and the theory of rings of continuous functions,
unnatural and unsuitable; the Stone-Cech compactification of a completely
regular Hausdorff space, for example, should be obtainable directly from
the ring of real-valued continuous functions on the space. It is the object
of the present paper to propose, for completely regular Hausdorff spaces,
a new definition of compactness, evidently equivalent to the usual one
in the presence of the axiom of choice; and to prove the appropriate
versions of the Stone-Cech and the Tychonoff theorems on the basis of
this definition, without the axiom of choice.

Another argument for the thesis that the definition of compactness
proposed below is a‘ correct” or natural definition stems from the numerous
well-known parallels drawn by Hewitt between his realecompact spaces
(called @-spaces in [7]) and compact spaces. Nearly every realcompact
or “9” theorem given by Hewitt in [7], or by Gillman and Jerison in [5],
admits a compact or “p” analogue. The definition proposed here is, in
this sense, in the spirit of [7] and [5]. It has been generally known for
some time (see [5], p. 158) that the existence of the Hewitt realcompacti-
fication of a given completely regular Hausdorff space does not depend
upon the axiom of choice; it is scarcely surprising, then, that Hewitt’s
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product theorem, to the effect that a produet of realcompact spaces is
realcompact, can likewise be effected without an appeal to the axiom
of choice. A proof of this fact is given in Theorem 4.2 below.

Experience gained presenting the content of this paper before a learned
audience discloses that the wily, attentive listener will expend more
energy searching for the possible hidden presence of the axiom of choice
in the proofs than he will in following the positive, constructive aspects
of these proofs. Guided by this fact and by the fact that most of the
constructions which follow are available in [5] and are in any event
familiar to the educated reader, I have chosen to suppress, in what follows,
many of the difficult but standard arguments, and to explain in some
detail how and why the axiom of choice is unnecessary. The following
worthy principle of exposition is, then, abandoned: An argument or
a proof should be omitted from & manuseript, if it is more easily established,
or logically less essential, than some other argument or proof which has
been omitted.

I am indebted to Arthur Stone and Norman Alling for spirited,
constructive heckling when this paper was presented to a topology seminar
(University of Rochester, Rochester, New York, May, 1967). I am in-
debted also to Robert Solovay for a stimulating, informal lecture on the
relation of the axiom of choice to various other familiar concepts, both
algebraic and topological, and for bringing to my attention the papers [3]
and [10], to which reference will be made later. The helpful interest of
these men should not be constrned, however, as an endorsement on
their part of the value or the validity of the present paper.

§ b diseusses briefly several papers related to this one. It also elaborates
upon the following fact, a defect of our (modified) compact spaces con-
cerning which the reader deserves to be warned at once: Without the
axiom of choice, it cannot be shown that our spaces admit no unbounded
real-valued continuous funetions.

§2. Ordering the quotient fields. The ring of real-valued
continrous functions on the topological space X will be denoted by CX.
The ring of bounded real-valued continuous Junctions on X is denoted
by C*X. The subset ¥ of X is said to be C-embedded in X if each function
in CY is the restriction to ¥ of some function in CX; the expression ¢ ¥ is
C*-embedded in X» is defined analogously. The set F740), for fe OX,
is called the zero-set of f and is usually written Zf. For 4 > 0 and fe0X
we write Z,(f) = {e e X: |f(z)] < 7}. I f belongs to any (proper) ideal I
in C*X, then the sets Z,(f) are nonempty (since otherwise we would have
I1=f(1f)el). It ACCX we write, as in [5], Z[4] = {Zf: feA}; and
we say that 4 is fized if [} Z[4] = 0.

The reader is reminded that when I/ is & maximal ideal in 0X the
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quotient field CX/M is linearly ordered by the relation <, where by de-
finition
f+M<g+M i f<g on Zh for some he M.

The field CX/M contains the real field E under the identiﬁoa;jﬁion 1f—>r-|—M
with 7 ¢ R, and the maximal ideal M in CX is called a real ideal it CX/M
= R. These concepts and many related to them are discussefl and ex-
amined from many points of view in [5], to which the reader is referred
for further background. . o

With the Stone-Cech compactification not at our disposal it is no
longer evident that each ring (*X is isomorphic to a ring of the .form .G X,
so that the definition of < just given does not apply to quotient fields
of the form C*X/M, with M a maximal ideal in *X. (Of.cou.rse, we
expect that each such field will be isomorphie tq R, in lwlpch case an
order can easily be described. It is, in fact, precisely this 1so{norp].nsm
which we seek for use in Theorem 3.2*. Unable to achieve & quick, @ect
proof of this isomorphism, I propose to prove 2.4* below on the basis of
the following definition, suggested by a reading of [7].)

9.1*. DEFINITION. Let 3 be a maximal ideal in C*X. For fe (*X
and ge C*X we write

fHAM < g+ M

provided there exist ¢ >0, >0 and he M such that f+e< g on Zyh.

Tt is not difficult to see that the relation < is well-defined, anti-
symmetric and transitive. (For example: fo fitea<f, on Z,,'1 h12 aI;d
fat &, < foon Zy,ho, then fi 4+ < fyon Zyh, with & = &, -+ &, 7 = min (7, 72),

and h= h3-+ha.) . ‘ .
The f;]lowing statements about arbitrary functions ) f and g in *X
are verified with similar ease, so that in fact the relation < makes of

C*X|M a partially ordered field:

(@) if f+M>M and g+M > M, then (f+9)+M > M and fg+
+M > M;

®) f+M > g+ M if and only if (f—9)+M > M; y

" om R into C*X|M is an order-isomorphism

embeé;%ﬂ:;”};";f (: —;i:z;;fli/ f;rdered subfield o/f the partially ordered field
C*X[M. .

The proof that < linearly orders the field C* X/ requires two lemmas.
For fe C*X and z e X we define

ffe = max(fz,0), [ #=max(—fz,0),

so that [* € C*X, f~ € C*X, f=f"—f, and f* =0, f* > 0.


GUEST


100 W. W. Comfort

9.9%, LEmvA. If fe C*X and M is a maximal ideal in O*X, then the
relations
ff+M>M, [F+M>M,
cannot both hold.

Proof. Otherwise there exist positive numbers ez, 7z, and functions &,
in M (k=1,2) with

ff—e>0 o0 Zyh, [ —&>0o0n Z,h.

Since h2-+h3e M, there exists 2 e Z,(hi-h3), where 7= min(s3, 7).
Then x € Z, by~ Z, by, so that f *z >0 and f 2 > 0, a contradietion.

In the language of [4], the next lemma asserts simply that each
quotient field of the form C*X/M is quasi-real. The axiom of choice
(actually, Zorn’s lemma) is used in 8.5 of [4] to obtain a sharpened form
of the Artin-Schreier theorem, according to which each quasi-real order
on & field extends to a linear order. For our purposes 2.3* alone is not
enough, since we are not content to know that < will extend to a linear
order; we need to know that it is itself a linear order. This is the confent
of 2.4%.

2.3*. LEMMA. If fe C*X and M is a mazimal ideal in C*X, then
either fe M or f*+M > M.

Proof. If f ¢ M, then f*¢ M, so there exists ¢ ¢ C*X and h ¢ M such
that

1=fg+h.

If the relation f*+M > M fails, we can show that ¢ is unbounded on X
by showing that for each positive integer n there is a point x in X such
that gz > n—1. Indeed, if n iy given, we need only choose 2 so that

fr<iin  and 2 eZyh;
for in this ease we have
(go)n = (°n)(ge) = 1—ho > 1-1n = (n—1)fn .

CoROLLARY. If 0 <fe C*X and M is o maximal ideal in C*X, then
either fe M or f+M > AI.

PJ:‘OOf. From the least upper bound property of R it follows without
the axiom of chloéce that f admits a square root f* in ¢*X. Since fe M
if and only if f ¢ M, the lemma above yields the result.

'2.4*‘ TeEOREM. If M is mawimal ideal in C*X, then the relation < is
a Uinear order on the quotient field (*X/M. So ordered, C*X|M is order-
-isomorphic to the real field.
o I.’roof. Aceording to 2.1*(b) the linearity of < will be established
it i is shown that for each fe C*X either f+M > M or f+M < M or

B ‘%%h
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f e . To this end let f be given and write f = f* —f~ as in 2.2*. If both
ffelM and f~ e M, then fe M. Otherwise, according to Corollary 2.3*
and Lemma 2.2%, exactly one of the two relations f*+M > M, f +M > M
is valid. In the former case we have f e M so that

fAM=f"4+M> M,

and in the latter case we have f-+M < M.

The relation <, just shown to be linear on C*X|M, is easily seen
to be Archimedean. (If f< n in C*X, we cannot claim f4+M < nt M.
But the relation f4+M < (n+1)+M is valid, and easily established.)

Thus C*X|M is an Archimedean (linearly) ordered field containing R,
and the theorem follows. (The familiar fact that each Archimedean ordered
field admits an Archimedean completion, which is necessarily order-
isomorphic to R, is proved in detail, for example, on pages 35-45 of [8].
The proof occasionally requires the term-by-term construction of a se-
quence but this procedure, because it can be effected by successive appeals
to the well-ordering of the positive integers, does not require any form
of the axiom of choice.)

§3. The Stone-Cech theorem and its Hewitt analogue.
To avoid confusion we shall permit the word compact to retain its usual
meaning (that is, we say that a space is compact if each of its families
of closed subsets with the finite intersection property has non-void in-
tersection). The spaces we propose to consider will be called compact*,
and (as in § 2 above) statements dealing with them will in general be
adorned by the asterisk *. The definition of realcompactness is the standard
one, due to Hewitt [7].

3.1. DEFINITION. A space X is realcompact if it is a completely re-
gular Hausdorff space for which each real maximal ideal in CX is
fixed.

3.1*. DEFINITION. A space X is compact* if it is a completely regular
Hausdorff space for which each maximal ideal in C*X is fixed.

The reader is now invited, before he reads §§ 3 and 4, to prove for
ihimgelf that the product of compact* spaces is compact*. He is allowed
to use the faet that the product of completely regular Hausdorff spaces
is another such space in the product topology, because this result does
not invoke the axiom of choice; for the same reason he may appeal to the
usual one-to-one correspondence between maximal ideals in CX and
filters of zero-sets in X which are maximal with respect to the finite
intersection property. My own attempts to prove this result “directly”
have been unsuccessful, and this lends some interest to the proof of Theo-
rem 4.2* and the theorem of Stone-Cech type upoen which it depends.
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If the reader can respond successfully to the invitation just offered, he
will probably find little of interest in the rest of this paper.

3.2. THEOREM. For each completely regular Hausdorff space X there
is a realcompact space X in which (a homeomorph of) X is dense and
G- embedded; the space vX may be chosen homeomorphic with a closed subset
of a product of lines.

3.2*, THEOREM. For each completely regular Housdorff space X there
is a compact* space pX in whick (& homeomorph of) X s dense and C*-em-
bedded; the space X may be chosen homeomorphic with a closed subset of
a product of closed intervals [0, 1].

Proof. The proof of 3.2 is considerably simpler than the proof
of 3.2*; we present here only the latter.

Let §=CXA[0, 17° and define (as usual) the evaluation map e
from X into the produet space P = I; [0,1]; as follows: (ex);= fu.
Je.

Because X is a completely regular Hausdorff space, ¢ is & homeomorphism.
Now define, as did Cech in [2], fX = clpeX. Since all else is obvious,
we need cheek only that fX is compact*; this we do, using ideas drawn
from Chapter 11 of [5].

For each fe (*X we denote by f' that unique element of C*(X)
for which f(ex) = fr whenever x ¢ X. The fact that eX is C*-embedded
in fX guarantees that {f': fe C*X} = C*(fX); and the fact that eX is
dense in X guarantees that f'q = ¢; whenever feF and ¢ < fX. Now
let ¥ be a maximal ideal in C*(X), so that M’ has the form M’ = {f":
I € M} for some maximal ideal M in C*X, and let ¢ be the homomorphism
which associates with each f in C*X that real number # for which f+ M
= r+M. Denoting by @ the restriction of ¢ to ¥, we have by 2.4* that
# [0, 1], (Without 2.4* we would be unable to conclude that for each
f e ¥ there exists r [0, 1] for which gf = r+M.) We will show that M’
is fixed by proving that p e fX. To this end, let

U=1{gel0,17: lgn—Fnl<e} (I<k<n)

be a basic neighborhood in [0, 117 of 7 and write

f= D (Fe—Fnlm,
k=1
so_that feF and gf = 0, ie., fe M. It does not follow that Zf + @, but
ewdefxtly Zz, f # Q for each % > 0 (since otherwise f is invertible in C*X .
If z is a point in X for which |fo! < ¥/n, then

ifre—ful<e (I<k<n),
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8o that

Wew)—Frl <e (<k<n),

that is, ex € U ~ eX. Thus each neighborhood of ¢ in [0, 17% nits eX, so
7epX.

Now let ' e I’ (with, say, |'| < 1 on pX). Then 1'(§) = ¢» = ¢h =0,
50 that @ € ) M[M’']. The proof that fX is compact* is complete.

The symbol ¢ having served its purpose, we shall suppress it hence-
forth. We shall, then, regard X itself as a subset of +X and of §X, and
we shall write X CoX and X CfX.

Any worthy treatment of the classical Stone-Cech theory, necessarily -
effected with the aid of the axiom of choice, includes a theorem asserting
that a compact space is its own compactification; and a theorem asserting
that a continuous function into any compact Hausdorff space whatever
extends to a continuous function whose domain is the constructed Stone—
Cech compactification. Likewise Hewitt in [7], and following him Gillman-—
Jerison in [5], show that realcompact spaces are (in our terminology)
their own Hewitt realeompactifications; and that & continuous function
on X to any realcompact space whatever extends to a continuous function
with domain »X. We wish to prove these four theorems (the “compact”
statements modified so that they deal with our compact* spaces) without
the axiom of choice. The desired theorem of Tychonoff type will then
follow with ease.

3.3. THEOREM. (3) If X s realcompact, then X =vX; (b) Bach
realcompact space is (homeomorphic with) a closed subset of a product of
real lines.

3.3*. TaroREM. (a) If X is compact*, then X = BX; (b) Bach compact*
space is (homeomorphic with) a closed subset of a product of intervals
[o, 11.

Proof. In the presence of 3.2 and 3.2% each part (b) will follow
from the corresponding part (a). Again we will prove 3.3*(a), the necessary
modifications for 3.3(a) being straightforward.

Suppose then that p e X\X, and seb

M= {feCXpX): fp=0}.

The map f—], where f denotes the restriction of f to X, is an isomorphism
from O*(8X) onto (*X which associates with I a maximal ideial M in
C*X. Since X is compact*, there is a point z in X with z e (| Z[M]. From
the complete regularity of X there is a function g eNO’*(ﬁX) with gz = 0
and gp — 0. But then § e M (since g e M) and §¢ M (since Jz = 0).
The proof of the familiar assertion that a maximal ideal M in CX
is real if and only if the collection Z[M] has the countable intersection
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property seems to require & weak form of the axiom of choice. The state-
ment can be recast slightly, and the axiom of choice avoided, as follows.

3.4. THEOREM. For a mawimal ideal M in CX the following conditions
are equivalent:

(a) M is real;

(b) 4 {fr)i=1 is a sequence of functions drawn from M, then [\ Z(fi) # 0.
n=1

Proof. (a) = (b). If (b) fails for {fr¥r=1, we let g, = firl, so that

o

Z(gx) = Z(fr) and g« M. With g = 3 '(g:/2") we have, as in 5.14 of [5],

F=1
that ¢ > 0 on X so that g+ M > 0+ M; yet for each & > 0 there is a fune-
tion he M with g< ¢ on Zh, so that g+M =0+ = M if CX/M is
the real field.

(b) = (a). If M is not real, there exists f in CX with f+M > k+M
for each positive integer k, and with f = 0 on X. Defining f; = ( frE)—k
we have f; ¢ M for each positive integer k. (To check this for a given k,
find bz e M with f>k on Z(hy). Then fi =0 on Z(hz).) Then

ﬁZ(fk)z{xeX: fr = for each k} =@ .

3.5. TEROREM. If X is dense and C-embedded in the realcompact
space X', and if f maps X continuously into the realcompact space ¥,
then some continuous functions f from X' into ¥ agrees with f on X.

3.5* THEOREM. If X ds dense and C*-embedded in the compact*
space X', and if [ maps X continuously into the compact* space ¥, then
some continuous function f from X' into ¥ agrees with f on X.

Proof.‘ For the sake of variety, and because it is by a slight margin
the more difficult, we give the proof of 3.5, on the basis of which the
reader can easily prove 3.5* for himself.

Given the continuous function f from X into Y, we associate with

each ge CY that (unique) continuous funetion (¢ of) defined on X’
whose restriction to X is gof.

If p e I\X, we define
Mp)=1{geCT: (g=f)p=0}.
If ;e 0Y and g, CY, we have

{61+ g2) ef=gof+gef and (g12)(g, °f) =(0:18,) o F

on X, 8o thad.; M (}.)) is an ideal in CY. The following computation that
M.(pi) is I‘naxu:nal is routine (though the assertion itself is a trifle sur-
prising, since one is not accustomed to constructing maximal ideals
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without the axiom of choiee): If g ¢ M(p), so that (g of)p = r for some
real number r = 0, then the function 1 can be expressed in the form

=r=9.9.
1= r +r’

thus no (proper) ideal in CY can contain both M (p) and g.
The proof that 3 (p) is real will be based on Theorem 3.4. Let {g:)51
be a sequence of funections in M(p) with, say, 0 < g, < 1/2%. Defining

hy= (gr o f)
and
M” = {he C(X"): hp = 0}

0
we see that each iy e M”, so that ) hy, which we will call &, also lies in 7.
k=1

It follows that Zh ~ X # @ since otherwise the restriction of h to X
has a continuous real-valued reciprocal unbounded on each neighborhood
in X’ of p, contrary to the fact that X is C-embedded in X'. If x € Zh ~ X,

then fx e ﬁ Z(gr)-
k=1

We have shown that for each p ¢ X\ X the ideal M(p) in CY is
maximal and real. Because Y is realcompact the ideal M (p) is fixed
and with y € Z[M(p)] we define Jp = y. (The axiom of choice it not
required in this selection process because, M (p) being maximal in CY,
the set [} Z[M (p)] contains exactly one point.) The continuity of f~is
now easily verified. The reader may achieve it directly, or he may
refer to 6H of [5], according to which any function f continuous on
each set of the form X u {p}, where X is dense in the domain of f; is
automatically continuous at each point of its domain. Our proof is
complete.

The Hewitt realcompactification, and the classical Stone-Cech
compactification, associated with a given completely regular Hausdorff
space are well-known and easily shown to be unique. It is worthy of
formal mention at this point that our spaces vX and fX, which were
constructed without the axiom of choice and which satisfy the hypotheses
of 3.5 and 3.5*, respectively, are likewise unique. The proofs follow from
a familiar application of 3.5 and 3.5* and they are therefore omitted.

3.6. TarOREM. If v'X s a realcompact space in which X is dense and
C-embedded, then there is a homeomorphism from vX onto v'X leaving X
fiwed pointwise.

3.6*. TuEoreM. If f'X is a compact* space in which X is dense and
O*-embedded, then there is a homeomorphism from BX onto f'X leaving X
fiwed pointwise.
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§ 4. A theorem of Tychonoff type and its realecompact
analogue.

4.1. TosoREM. The real line R is realcompact.

4.1*. TamorEM. The closed interval [0,1] is compact*.

Proof of 4.1. It is easy to show that each Lindeldf space is real-
compach, but unfortunately the proof that R is Lindeldt seems to require
the use of & weak form of the axiom of choice. We can, however, establish
the following assertion without using the axiom of choice: Each open
cover of R admits a countable open refinement. To see this, let {Butne1
be any countable base for B and let U be any open cover. Then

{Bn: B,C U for some U in U}

is & refinement of . which, being a subset of the countable family {Bnlme1,
is itself countable.

To complete the proof that R is realcompact, let M be a maximal
ideal in CR. If M) Z[M] = @, then the family {R\Zf: f e M} is an open
cover of R which, by the preceding paragraph, admits a countable open
refinement {4,}n=:. (Our notation indicates that this countable refinement
is countably infinite; if it is not, the notation can be modified appro-
priately.) We claim that for each positive integer » the function f,, defined
explicitly by the relation fa(z) = o (2, R\4x), where p is the usual metric
on R, lies in M. When # is given we have Z(fn) = R\A,D Zf for some

fe M, so that fu ¢ M as desired. From Theorem 3.4 we now see that each

maximal ideal in CR, if not fixed, is not real, i.e., R is realcompact.
Proof of 4.1* Let M be a maximal ideal in C*[0,1]. We must
show (| Z[M] # 0. For each he M and >0 we know that Z,h # @,
and indeed the family {Z.h: he M, s >0} is a family of closed subsets
of [0, 1] with the finite intersection property. Since (| Z[M]= [ {Z.h:
hel,e>0} it will evidently suffice, in order to show that [0, 1] is
compact*, to show that [0,1] is compact (in the usual sense). The usual

proof does not require the axiom of choice: Given an open cover U of [0, 1]
one defines

= {re[0,1]: [0, 7] is covered by finitely many elements of U}
and, with s = sup#S, one shows s =1 and se 8.

The reader may wonder, as he reads the next proof, whether we are
asserting that the product of non-void sets is nonvoid, an assertion
equivalent to the axiom of choice. We certainly do not claim to have
proved such & statement; it seems possible that the product of non-void
compact* spaces considered in the next proof is in fact void; we assert
simply that it is compact*. On the other hand, it is well to remember
that certain product spaces are not empty. If X, = [0,1] for each a
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in the index set A, then the product space [] X, is non-void. It contains,
a€d

for example, the point = defined by the rule #,= 0 for each ae A.

4.2. THEOREM. Let A be a set, let X, be a realcompact space for each
aed, and define X = [] X,. Then X is realcompact.
aed

4.2*, THEOREM. Let A be a set, let X, be a compact® space for each
aed, and define X = [l X,. Then X is compact*.
a€d

Proof. We give only the proof for 4.2*
indeed.

The space X, like every product of completely regular Hausdorff
spaces, is itself completely regular Hausdorff. The space SX has heen
defined in 3.2% and shown to be compact*. Thus it will suffice to show
that X = pX.

As in 6.8 of [3] we denote (for each a) by =, the projection from X
into X, (it is possible that =, X C X.); and we denote by 7, its continuous
extension from X to X,. Now let f be the function defined on fX by
the relation

, the other being very similar

(fP)a = %olp) -

Evidently f maps X into the product space X, and f is continuous be-
cause its composition with each of the projection mappings =, is the
continuous map .. Furthermore, fr =  for each & ¢ X. Thus f retracts X
onto its dense subset X, and therefore X = pX.

The final theorems of this paper characterize the spaces we have
Deen studying. Theorem 4.4 is familar (see [7] or Chapter 11 of [5]) and
Theorem 4.4* is the compact* analogue of a familiar theorem about
compact Hausdorff spaces, evidently equivalent to it in the presence
of the axiom of choice. We need a lemma.

4.3. LEMMA. Let F be a closed subset of the realcompact space X. Then F'
48 realcompact.

4.3*. LeMMA. Let F be o closed subset of the compact* space X. Then F
8 compact*.

Proof. For the realcompact case we construet, jush as in 4.2, a re-
traction f from oF onto F. Its value at p e oF i8 fp = ip, where i is the
extension g'ua.ra,nteed by 3.5 of the identity funection 4 mapping F into X;
the fact that i = F follows from the continuity of 7 and the fact that F
is closed in X.

The proof of 4.3* is similar.

4.4, TaeoreM. Let X be a completely regular Hausdm off space. Then X
is realcompact if and only if X is (homeomorphic to) a closed subset of a pr oduct
of real lines.
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4.4*, THEOREM. Let X be a completely regular Hausdorff space. Then X
is compact* if and only if X is (homeomorphic to) o closed subset of & product
of closed intervals [0,1].

Proof of 4.4. The “if” implication is given by Theorem 4.1 and 4.3.
The “only if”? implication is 3:3(b).

The proof of 4.4* is similar.

§ 5. Concluding remarks. The theorem of Tychonoff type given
above may be viewed as a result provable without the axiom of choice
because we have in effect incorporated one use of this axiom into our
definition and shown that every other use (in the usual proofs) is avoidable.
Another theorem in this same general spirit is offered by Peter A. Loeb
in [11].

I have already alluded to Kelley’s [9], where it is shown that the
axiom of ehoice can be deduced from Tychonoff’s theorem (for compact
spaces in the usual sense). Without the axiom of choice it is impossible
to impose upon each member X, of a set of nonvoid sets {X,: a ¢ A}
a compact Hausdorff topology, although if a distinguished point p, is
given in X, {by an application of the axiom of choice, say) then one can
make X, Alexandroff’s one-point compactification of the discrete space
X\{p.}; Halpern has shown in [6], in effect, that the axiom of choice
does not follow from Tychonoff’s theorem for compact Hausdorff spaces.
(A closely related question had been posed by J. D. Weston in [17].)
J. Zo§ and C. Ryll-Nardzewski observe in [12] that Kelley’s proof shows
that the Tychonoff theorem for compact Hausdorff spaces implies the
axiom of choice for non-void compact Hausdorff spaces.

Conditions equivalent to the axiom of choice are given in the well-
known Rubin-Rubin book [13]; conditions equivalent to one of its weaker
consequences in [1]; see also [18].

Sierpifiski has shown in [15] how one ecan construet without the axiom
of choice, if he is given a free maximal ideal in N (with ¥ the countably
infinite discrete space) a subset of the real line which is not Lebesgue
measurable. A nice exposition of Sierpinski’s argument, and an extension
of his theorem, is given by Semadeni in [14].

The reader probably noticed in passing that an argument contained
in the proof of Theorem 4.1* above shows that in general a completely
regular compact Hausdorff space is compact*. One can also show, again
without the axiom of choice, that a compact Hausdorff space is normal.
(One establishes regularity first, by considering, for a given p e X, the
family

U= {UCX: U is open and p ¢elx U},

which covers each closed set not containing p. A similar gambit now
establishes normality.) Liuchli constructs in [10] a model, in which the
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axiom of choice fails, containing a loeally compact, normal Hausdorft
space With more than one point, each of whose confinuous real-valued
functions is constant. It follows that Urysohn’s lemma cannot be proved
without the axiom of choice, and in fact that a compact Hausdorf space
need not be completely regular.

Feferman in [3] has shown that it is consistent with Zermelo—Fraenkel
set theory that each ultrafilter on N is fixed. Solovay has shown (un-
published) that in Feferman’s model the prineiple of dependent choices
(from which follow both the axiom of choice for eountable families of
non void sets and Urysohn’s lemma) is valid. Feferman’s result, although
it is in consonance with those of the present paper, points up a deficiency
in the concept we have used to replace compactness: Our compaet* spaces
cannot be shown to be pseudocompact (i.e., we cannot show that each
real-valued continuous function on each compact* space is bounded).
For N will be compact* if each ultrafilter on it is fixed, yet there surely
exists an unbounded real-valued continuous funetion on N.
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