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Posons
{40) F'i,c (CTRIR )

=fk..fK(il——sl, st Su) Fi(81, .1y 8p)ds dsy. . . ds,.
n

On tire de 10, 20 et 30

(41) 68=s}lp]li’l-’,(tl,...,tn)—lh(tl,.‘.,tn)l-—)-0 (e = 0).
T

En appliquant & (38) et (39) lopération X,, définic par (40), on
vérifie que les fonetions ¥, satisfont aussi & (38) et (39) ; par congéquent,
les F;, étant de classe 0y, elles satisfont & (26) et (27). Définissons Yo (u, h)
comme la fonctionnelle gui résulte de ¥(u,h), si 'on remplace dang
la formule (22) les fonctions F; par F,;,; définizsons ensuite Dopération I,
par Pidentité (F,(u), ), = ¥,(u, k), pour £ > 0. Bn vertu de (41) on a

(42) [# (w0, ) =W, (u, B)| < &l
par conséquent, pour wel,
(43) I (w)—F,(u)ll, <6, >0 (e 0)

vu que (Fy(u), h) = P,(u, h), (F(u), h) = ¥(u, h). Or, les fonctions F;,
satisfalsant aux hypothéses de 3.1, Popération F, satisfait aux indgalités (4),
(8) et (6) du moins pour @, yeM; en vertu de (43) il en est de méme de I
pour &, y e M, d’ol1 'on conclut, en suivant la démonstration du théoréme 1,
qu’il existe un seul %eH, tel que F(%) = 0. Un remarque analogue sera.
vraie aussi pour 3.2.
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On the spectrum of finitely-generated locally m-convex algebras *
by

R.M. BROOKS (Minneapolis)

If 4 is a commutative complete locally m-convex algebra with
identity, then there is a natural map m — (dy(m), ..., ay(m)) of the
spectrum M of 4 onto the joint spectrum of any generating family
{ay, ..., ay} for 4. If A is a Banach algebra, then the mapping is topolo-
gical. We ghall show that for non-Banach algebras one can make only
the obvious statement that the map is a continuous injection, even in
the simplest case (an F-algebra with one generator). We demonstrate
this with a series of examples and show (i) it may oceur that one gener-
ating family yields a topological map, while a second fails to, (ii) it may
be that no generating family induces a homeomorphism, (iii) the joint
spectrum of a generating family need not be polynomially convex (con-
trary to the Banach algebra results).

We show that while o(ay, ..., ay) need not be polynomially convex,
it is polynomially convex with respect to a certain family of compact
subsets determined by the algebra, and we give conditions in terms of
the family {a,,..., ax} and its action on the equicontinuouns subsets
of M in order that the natural map be topological. These conditions are
necessary and sufficient in case 4 is an F-algebra, sufficient but not
necessary for more general algebras.

If § is a compact subspace of C¥, then there exists an N-generated
Banach algebra 4 such that § is the spectrum of A if, and only if, § is
polynomially convex. We consider this question for locally m-convex
algebras and show (i) if § is a subspace of €V, then § is the spectrum of
an N-generated F-algebra if, and only if, 8 is hemi-compact and poly-
nomially convex, (ii) every subspace of CV is the spectrum of an
N-generated locally m-convex algebra.

1. The natural maps of the spectrum. In this paper we shall consider
only commutative complete locally m-convex algebras with identity and
shall write ‘“locally m-convex algebra” rather than the longer, more com-
plete, description. A locally m-convex algebra is a locally convex (Haus-

* The research for this paper was supported in part by NSF Grant 5707.
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dorft) topological algebra 4 whose topology is given by a directed family
{Iln: neD} of pseudonorms (submultiplicative convex symmetric func-
tionals), where (D, <) is a directed set and » < m if, and only if, el
< |lalln for each acA. Bach ||, determines a Banach algebra 4,, the
completion of A/{z: |#]l, = 0} with respect to the norm [{7wn, ]| == llelt,
(7, being the natural homomorphism). If n < m, then =, and s, induce
a norm-decreasing homomorphism m,, of A, onto a dense subalgebra of
Ay. The resulting family of Banach algebras and homomorphisms is an
inverse limit system and liminv{4,} is (topologically and algebraically)
the completion of A. For details of this construction and the basic
properties of these algebras the reader is referred to [6].

The spectrum of 4 is the space M of all non-zero continuous complex-
-valued homomorphisms on 4 endowed with the Gelfand (relative w*-)
topology. For each aed, the function a: M — C defined by a(m) = m(a)
is continnous and the map a — d is & homomorphism of 4 onto 4" < ¢ ().
For each neD the map m, induces a homeomorphism | M (Ay) of M (4n)
onfo a compact subset M, of M (w7 is the dual map of 4 to A*), and
M= J{M,: neD}, where n < m implies M, = M,,. The family {M,,:
neD} covers every equicontinuous subset of M (cf. [1], Lemma 5.1.1),
where by “covers’’ we mean that if & is equicontinuous, then there exists
neD such that B < M,.

An F-algebra is a complete locally m-convex algebra, whose topology
is given by a countable (ascending) sequence of pseudonorms. Tn thig
case, M is g-compact and every compact subset of M ig equicontinuous
(cf. [6], Proposition 4.2). Thus, {M,:n =1,2, .} 8 a E-covering se-
quence for M (““k-covering” means that the family covers every compact
subset). If a topological space has a k-covering sequence of compact sub-
sets, we shall say that the space is hemicompact.

It {ay,..., ay} < A, then the joint spectrum of{ay, ..., ay) of this
tamily is {{a;(m), ..., G (m)): mell} (o4(ay, ..., ay) if we wish to specify
the algebra with respect to which we consider the spectrum); and for
eachneD,

On(B1y ...y ay) = {(&1(”’)7 sy &N(m)) m‘-"ﬂ[n} = O'A"(”na'.n ey Tply) .

If{a;, ..., oy} < A4, then P(ay, ..., ay) is the clogure in 4 of {p(ay, ...
-5 ax): p e PV}, where PV is the family of all polynomials in N variables
with complex coefficients. In order that a family {a,,..., ay} generate 4
it is necessary and sufficient that for each neD the family {m,a,, ..., m, ay}
generate A,. This lagt statement ig easily verified ; see, for example, ([4],
D. 334-340) for the cage N = 1.

We begin with a series of examples which show the nature and
extent of the pathology involved. We note that anything that goes awry
does so for singly-generated F-algebras.
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Exampre 1.1. We let 4 = ([0, 27) with the pointwige operations
and the compact-open topology, and define a,bin 4 by a(t) =+t and
b(t) = exp(it) for each ¢¢[0, 2z). From Example 7.6 of [6] it follows
that M = [0, 27) = o(a), and it is clear that g generates 4. An ascend-
ing sequence of pseudonorms for 4 is obtained by taking an ascending
sequence {t,:n =1,2,...} of positive numbers satisfying limt, — 2=,
and defining

llafl = sup {la(t)]: 0 < ¢ <t}

In this case 4, = C[0, #,] and s, is the restriction mapping. Since 5[0, 1,]
generates 4, for each %, we see that b generates 4. But o(b) is the unit
circle. Hence, it may occur that one generator induces a topological map-
ping while another doesn’t. Also, we see that the spectrum of a generator
need not be polynomially convex. We shall define this below.

We give two examples to show that it is possible to have no homeo-
morphism-inducing generators; the first is extremely simple, while the
second (for F-algebras) is somewhat more complicated.

Exampre 1.2. Let T = R with the discrete topology and 4 = O(T)
with the compact-open topology (topology of pointwise convergence).
Then 4 is a complete locally m-convex algebra and is generated by a(t) = t.
However, if b is any generator of 4, then ¢(b) = 5(]1[) =0T) (M =T
as in Example 1.1) and ¢ — b(t) cannot be topological, since T is an un-
countable discrete space and cannot be embedded in C-.

Suppose (T, 7) is a completely regular Hausdorft space and A" = {K,:
n=1,2,...}i8 a sequence of compact subsets of T, nested upward,
which covers T Let & denote the weak topology generated by the family o
and let T denote 7' with the k-topology. Then ¢ < k and the topology %
is generated by the family #™ (" as family of subspaces of T*) in the
sense of Michael (U < T* is k-open if, and only if, U A K, is relatively
k-open for each n). Thus, ¢ (T*) with the topology of uniform convergence
on members of #™ is an F-algebra and M = T*. Moreover, every compact
subset of 7™ (i.e., of M) is equicontinuous and contained in some K,.(= M,)
(ef. [8], Proposition 4.2, Lemma D.5, and BExample 7.6, and [1], Temma
5.1.1).

Exavern 1.3. We fix a decreasing sequence {f,:n =1,2,...} of
positive numbers such that 6, < = and lim6, = 0, let L, denote the
segment [0, exp(¢6,)] in the plane and set K, = (J {Li:é=1,2, ..., nh
We let T = J {Ky:n=1,2, ...}, let %, denote the common point (0)
of the segments L,, and let » denote the relative plane topology on 7.
The space (T, =) and the sequence " == {K,} satisfy the requirements
of our discussion above, and 4 = O(T™) with the topology of uniform
convergence on members of 4 iy an F-algebra, and every k-compact
subset of 7™ is contained in some X,.

10 — Studia Mathematica
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‘We now show that 7™ is not metrizable. Suppose d is a metric on T
which defines the topology k; then d|(K,>.I,) must be equivalent to
the usual metric of the plane restricted to K, X K,, since & and » Agreo
on each K, . Therefore, we can chooso for each n an clement t,¢L, < K,
such that d(t,, %) < 27" But then {f,:n =1,2,...} converges to 1y in
the k-topology; henee, I = {t,: n = 0,1, ...} is k-corpact. But K & K,,
for each n, a contradiction.

‘We complete the example by showing that A is singly-genorated.
From the non-metrizability of 7™ it is clear that there is no homeomor-
phism-inducing generator. The function a(f) == 1 generatex A since 4,
= ((K,) for each n and a|K, generates O(I(,). This last fact follows
from Mergelyan’s theorem [5], since cach I, is & compact polynomially
convex subset of C* with no interior. We note here that this also yields
a gimple example of a separable F-algebra with non-metrizable spoctrum.

Definition 1.1. Xf K is a compact subset of CV, the polynomially
convew hull H(K) of K is the set of all eCY such. that

()] < lplx = max {lp(&)]: £ X},

for every pePY (polynomials in N variables). A compact set K is
called polynomially convew provided H(K) = I.

Definition 1.2. If §is a gubset of CY and & is a family of compact
subsets of § which covers § we define H(S, %) == U {H(K): Kex}
and say that 8 is o -polynomially conves it H (S, A) = 8 (hence, H (8, H)
= §). If § is o -polynomially convex for # = the family of all compact
subgets of § we shall say that § ig polynomially convesn.

We state, for completeness, the following theorem without proof:

TEROREM 1.1 Let A be a commutative complete locally m-conver
algebra with identity. Suppose A is finitely-gencrated and {ay, ..., ay} @
a generating family for A. Then the mapping m = (@ (1m) 5 2vny Ay (m)
of M onto olay,...,ay) is o continuous injection.

TemorEM 1.2. Let 4 be o Jindtely-genorated locally m-convem algebra
and {ay, ..., ay} o generating famsly Jor AL If {lllla: e} is any directed
family of pseudonorms for A, then (1) for cach neD the compact sel Onlthyy .o
veey ox) in O s polynomially convem; thus, (ii) 0(yy oey ) B8 {onlty, ...
<oy @) }polynomially conves.

Proof. (i) is an immediate congequence of (i), and (i) follows from.
the fact that for each meD the family {mu(a), ..., m(ay)} gonerates
the Banach algebra 4, and o,(a,, ..., ay) is exactly the joint spectrum
of this family.

Lewwa 1.3. If X is o topological space, ¥ is a l-space (B < Y is
closed if, and only if, ¥ ~ K is compaot for each compact subset K of Y),

©
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and f: X — Y is a continuous bijection, then f is & topological map if, and
only if, the inverse image of each compact subset of Y 4s compact.

Proof. It is clear that the condition is necessary (even for ¥ not
a k-space). For the sufficiency we fix a closed subset § of X. Then f(8) = ¥
and f(8) ~ K =f[8 ~ f*(K)] for each compact K = ¥. But FUE)
is compact. Therefore, § ~ f~'(K) and f(8) ~ K are also compact. Thus,
f(8) is closed and f is a homeomorphism.

TunoruM 1.3. Let A be a finitely-generated locally m-convex algebra
with generating family {ay,..., ax} and let p: M = o(ay, ..., ay) be the
natural mapping. A sufficient condition in order that p be o topological
map is that there exisis a directed family {||-|l.} of pseudonorms for 4 such
that the family {on(ay, ..., an)} 18 a k-covering family for o(ay, ..., ay).
If A is an F-algebra, then this condition is also necessary, where ‘‘directed
family” is replaced by ‘“‘ascending sequence.”

Proof. Let 4, {a,..., ay}, and {|-|.: neD} be as in the statement
of the theorem. We fix a compact set K in o(ay,..., ay). Then K
€ on(ay, ..., ay) for some neD and ¢~ (K) € M,. But ¢ *(K) is closed
and M, is compact. Thus, ¢~'(K) is compact and ¢ is topological by
Lemma 1.3, since every metric space is a k-space (cf. [6], Example D.2).

It 4 is an F-algebra with generating family {ay,..., ay} and ¢ is
a topological map, then ¢~'(X) is compact for each compact K in
o(@yy ..., ay) and ¢ *(K) c M, for some integer n. Bui then, K
S op(tyy .eny an).

We now give an example to show that the condition is not necessary
for non-F-algebras.

Examprm 1.4. We let I denote the unit interval [0, 1], o the family
of all compact and countable subsets of I, and A denotes C'(I) with the
topology of uniform convergence on members of #". Then A is a complete
locally m-convex algebra and the family {||:|x = max|-| on K:KeX}
defines the topology of 4. Moreover, M (4) is homeomorphic to I (cf. [6],
Examples 3.8 and 7.6). If K e, then Ax = O(K), and nx is the restriction
map. The algebra A is generated by the function a(f) =i, since a|K
generates C(I0) for each K e’ Thus M - o(a) == I is topological. But,
I'& ox(a) for cach K e . Tt is then easily verified that no family of pseu-
donorms for 4 will yield a k-covering family for I

Remarks. Admittedly, the condition in Theorem 1.3 is not a pleas-
ing one because of the clumbsiness involved in stating it. However, the
examples above indicate that any such condition must contain statements
concerning the action of the generating family (i.e., of ¢) on the building
blocks M, of M. Also, the last example shows that the general algebras
do not behave nearly as nicely as the F-algebras. Theorem 2.1 (below)
will indicate this fact even more strongly.
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2, Spectra in C". In his notes on Banach algebras ILoffman [3]
gives a succint description of those (necessarily) compact subsets of OV
which may be the spectrum. of an N-generated Banach algebra with iden-
tity. The description depends on a proper interpretation of the word
“be”. For Banach algebras one says that a compact subset 8 of ¢V ig
the spectrum of an N-generated Banach algebra A if, and only if, there
exists o generating family {a,, ..., ay} for 4 such that § == o (ay, ..., ay).
The result is that a compact set § < €V ix the gpectruan of an N-gonerated
Banach algebra if, and only if, § is polynomially convex.

Definition 2.1, If 8 is a subset of €V, then we way that & iy the
spectrum of an N-generated locally m-convex algebra 4, provided there
exighs a generating family {a,, ..., ay} for A such thati (1) § == o(a,, ..., ay)
and (i) m —(a@y(m), ..., dy(m)) is a homeomorphism.

We now show that general locally m-convex algebras differ radically
from Banach algebras with respect to this problem.

LemMa 2.1. If K < OV is compact and countable, then ('(I) = P(I),
the uniform closure on K of the algebra of all polynomials 4 N variables.

Proof. We first show that if K is any countable subset of ¢V, then
there exists a linear polynomial ¢ in P¥ such that ¢|X is one-to-one.
In fact, enumerating K = {', £%,...} the problem is equivalent to find-
ing aeCV such that if i+ j, then

kit n
D ap(th—2h) #0.
k=1

A simple way of showing the existence of such an « is the following.

Let Ay = ¢'—¢7 for ¢ s j. Then g3, =1,2,...,4 #3} is a sequence

Pf vectors in €V (considered as an N-dimensional Hilbert s!pmze' with

mner product <, ), and we want a vector acCY such that (2,;,, ay #0

for each pair (4, ), ¢ # j. A category arguement shows that | {&: Ay,
i

> = 0} is not 01;’; since {4;} is countable. Ghoose an « not in the union
and let ¢(&) = kZ: o lx. Then ¢|K is one-to-one.

_ If K is compact and countable and we choose ¢ as above, then ¢(K)
18 a compact and countable subset of Ot Therefore gv(K) does not Heparate
the plane and Ofg(K)) = P(g(K)). Fix feC(K) and &> 0, and define
9: 4(K) > C by g(q(£)) =f(Z). Such a definition is possible since ¢ is
on.e-to-one, and g is continuous since f is continuous and q is cloged. There
exists p <P* such that [lg—pllym < & Then po gePY and ||[f—p o gllx < &

” §1;EOREM 2.1. If 8 4s any subset of CV, then there emists an N-gen-
erated looally m-convew algebra A such that 8 is the spectrum of 4.

icm
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Proof. Let 2 be the family of all compact and countable subsets
of 8, and let A = C(8) with the topology of uniform convergence on
members of #. Then 2 generates the relative Huclidean topology of S
and 4 is complete (cf. [6], Lemma D.5). Moreover, if for each KeX we
define |jollz = sup{la({)|: Lk}, then {||-|g: KeX'} is a directed family
of pseudeonorms defining the topology of 4 and Agx = O(K) for each
KeX'. The N functions 2,(1) = 4,, ..., 2x(4) = Ay generate 4 since for
each K e% the algebra gencrated by the family {#;|K:¢=1,2,..., N}
is just P(XK) which we have shown to be C(K). Moreover, ¢(#:, ..., 2x)
is exactly S which is homeomorphic to M(4) by Example 7.6
of [6].

We congider now F-algebras. If § = C¥ is to he the spectrum of
an F-algebra, then § must be hemi-compact, 50 we can restrict our atten-
tion to such subspaces of C¥.

TreoREM 2.2. If 8 is a hemi-compact subspace of C~, then there exists
an N-generated F-alyebra A such that S is the spectrum of A if, and only
if, 8 is polynomially comves.

Proof. Sufficiency. Let § be a polynomially convex hemi-compact
subset of OV and let {8,:n =1,2,...} be an ascending %-covering se-
quence for 8. Since, for each n, we have H(S,) < 8, we may assume that
each S, is polynomially convex. Since § is a first countable space, S
is a k-space and O(8) with the compact-open topology is an F-algebra.
Moreover, the family {||‘|.:n =1,2,...} of pseudonorms defines the
topology of O(8), where ||aly, = sup{[a(¢)|: {8y}, since the family {8.}
is k-covering. The functions #z;(4) = Ay, ..., 2,(4) = Ay generate a closed
subalgebra A of ¢(8), which is necessarily an F-algebra. Also, og(2; ...
ooy 2y) = 8 and o, (2q, ..., 2y) = Sy (spectrum with regpect to O(8)) for
each n. Since o4(21, ..., 2y) is the {o4(2q, ..., 2n)}-polynomically convex
hull of o (2y, ..., 2y) == S and § is polynomially convex, we have o4(2, ...
.oy 2y) = 8. In view of Theorem 1.3, we have only to show that
{04m(@1y .-, 2n)}t I8 & L-covering sequnce of 8. But oyn(e, ey 2N)
= ogu (% ..., 2y) = N, and the conclusion follows.

Neceggity. Suppose § is a hemi-compact subset of C¥ which is
the gpectram of some N-generated F-algebra A. Let {ay,...,anx} be
o generating family for 4 such that § = o(a, ..., ay} and the natural
map @ of M onto S is topological. By Theorem 1.3, {on(@yy ..., an} i8
a k-covering sequence for 8, where {o,(ay, ..., an)} is determined by some
sequence of psendonorms for A. If K is any compact subset of S,
then K < o4(ay,...,ay) for some n, and H(K) < H(on(ay, ..., ay))
= H(oy, (tnttyy rey TnOy)) = Oty (Tinlly; -y Tnlyy) = Onllyy ...y ay) = 8,
since {myty, ..., wpay} generates the Banach algebra Ay. Thus, S ig
polynomially convex.
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Sequential theory of the convolution of distributions
by

J. MIKUSINSKI (Katowice)

1. In [3], a concept of regular operations hag been introduced. Such
operations extend automatically from functions to distributions and
retain their properties. Operations which are not regular, are called
irregular. Irregular operations can not be extended on arbitrary distri-
butions. However, there exists a general method which permits, in cases
where it is possible, to perform such an extension (see [2]).

COonwolution is one of the most important irregular operations. Its
extension on distributions was largely investigated by Laurent Schwartz [4]
and other authors. The sequential approach which is the gsubject of the
present paper makes use of the general method of defining irregular oper-
ations so that the definition of the convolution is nothing else but a par-
ticular case of it. It turns out that this definition embraces all cases in
which the convolution was defined previously by other methods. This
uniform. approach can also be considered as more elementary, because
it does not need any concepts of functional analysis or topology.

Beside the new approach to known facts, there is also a number of
theorems which are stated, in this paper, for the first time.

In what follows we shall use the notation and the terminology of [3].

2. If ¢ i3 a smooth function of bounded carrier, then the convolu-
tions

oo

1) fre= [flo—tpma and exf= [p—t)fHat

-—00

are defined for every distribution f, as regular operations, performed
on f. (It should be emphasized that the convolution is an irregular opera-
tion only if it is considered as an operation on two functions or distri-
butions. Otherwise it is regular.) Such convolutions preserve, for any
distribution f, their ordinary properties:

(2) o = o*f,
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