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STUDIA MATHEMATICA, T. XXIX. (1968)

On Peano derivatives in I”(H,)
by

S. LASHER (Chicago)

1. It is known ([2], p. 270) that if a finite-valued function f on the
real line has everywhere on a set B a one-sided derivative, then f has
a finite two-sided derivative almost everywhere on E. Some analogous
results are here obtained for Peano derivatives in the metric IP in n-
-dimensional Fuclidean space.

NOTATION AND DEFINITIONS. By #,%¢,... we denote respectively
POINtS (21, ¥ay -vvy @n)y (B1y tay oy ), ... of the (real) n-dimensional Eueli-
dean space F,,n =1,2,... As usual

[#] = (@ +a3+...+a)", a4t = (@t atta, ..y Batt),
Ap = (A2, A®s, ..., Awn), A a scalar.

The functions f = f(#) we deal with are real-valued and measurable.
Extensions of results to complex-valued functions are immediate. If
p = oo and D is a subset of &,,

{17 aaf

denotes esssup{|f(z)|: zeD}. By I?(E,),1 < p < oo, we denote the class
of functions f such that

um=gm%W<w

(dz denoting, for 1 < » < oo, the element of volume in H,).

Let a = (a;, 0y, ..., a,), the a;’s being non-negative integers. Let k,
be a real number. The degree of the term k2% = k,aflag? ... zpr is defined
to be a;+u,+...+a, if &, #0, and —co if &, = 0. The degree of a poly-
nomial P = P(z) is now defined in the usual way.

By a cone we mean a union of rays issuing from a point (the vertex).
‘We require that this union be a measurable set with non-void interior,
C = (O(x) denotes a cone with vertex a; By = By (#) denotes the (closed)
ball with center # and radius & (h > 0); €y, = On(@) denotes the conical
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sector formed by the intersection of C(x) and By(®). By a right circular
cone of angular magnitude § we mean a cone ¢ = ((») consisting of the
union of all rays issuing from # and forming an angle < 0 with a fixed
ray (the axis of the cone). We require that 0 < 0 < =/2. A right circular

cone (' = (' () is characterized by its vertex # and the vector » whose di- -

rection is that of the axis of the cone and whose magnitude || is equal
to the angular magnitude of the cone. By the direction of a right circular
cone we mean the direction of its axis.

For m =1 the cone ¢ = O(x) iz either the half-line {¢: ¢ > »},with
associated vector v = (1); or the half-line {: ¢ << «}, with associated vector
v = (—1). The cone C, thus defined for » = 1, is, for convenience, con-
sidered to be a right circular cone, coinciding with its axis, with non-
-void interior, and angular magnitude 1 (= [v]).

For 1 <p <co let u> —mn/p, with the last inequality denoting
% 2 0if p = co. Given a point # in B,, a function f is said to belong to
the olass 15(x) if f is in IP(B,) and there exists a polynomial P = P, ()
of degree equal to or less than » such that for the balls B; = By (s) we
have

=~L flf-—P]”dt}W =o(h* ay h—0
1) B = .

Analogously, a function f is said to belong to T%(w) if f is in LP(H,)
and there exists a polynomial P = P,(t) of degree less than u such that

1 up
(2) {—lBhlr'fIFPl“’dt} < AR (0 < h < o),
By,

with 4 independent of .

These definitions — of #(#) and T%(2) — were introduced by OCal-
derén and Zygmund [1] and the purpose of this paper is to extend one
of their regults concerning these clagses of functions.

REMARKS. Since #(#) < I?(BE,), condition (1) implies condition (2)
for an fef}(x). Hence #(x) = Th(x). Let feil(®); Pu(f) be its approxi-

mating polynomial satistying (1); @ = @, () = Py(e-+1); K,1°, a term of

the polynomial @; and a! = a,! a,!...
vative in IP of order a of f at x.

In what follows n,p,u(n =1, 2, a3l <p S ooju = —nfp) are
fixed.

TeEOREM 1. Let f be a function in IP(B,) and let B be any subset
(meaw:mble or not) of Ey,. Suppose that for each point m in B there is a po-
ly'nomwl P = P,(t) of degree less than or equal to u and & cone O = O(w)
with vertew at » such that for the conical sectors Oy = Oy (z) we have

op!. Then a! K, is a Peano deri-
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1 1w
3) {— lf—P["dt} =o(k*) as h-—>0.
Cal g,

Then f is in 15 (x) for almost every x in B.

A gimilar result holds with O instead of o:

THEOREM 2. Let feI”(E,) and let B < B,. Suppose that for each
in B ihere is a polynomial P = P, (1) of degree less than u, and a cone ¢ = C(x)
such that for the conical sectors Oy = On(w), we have

L - ’”}llp— h* h-;
(4) {]Oh]c‘{lf P = 0O(k") as 0.

Then feT%(x) for almost all x in B.

If for a given p (1 < p < oo) and positive integer «, f is in TZ(x)
for all # in a measurable set B, then f is in #%(z) for almost every z in B
(see [1], p. 175). In view of this we obtain the following corollary of
Theorem 2:

CororrArY 1. Suppose that in Theorem 2:1 < p < oo, B is a meas-
urable set, u is a positive integer — and (4) holds for all » in B. Then f
is in 1(x) for almost every = in E.

If (3) holds for a cone O (with non-void interior), then (3) also holds
for some right circular cone ¢ = ¢ with the same vertex as C. A similar
statement holds for (4). We may therefore limit consideration to right
circular cones and in the sequel cones are understood to be right circular
cones. We proceed with the proofs of Theorems 1 and 2.

2. TLeMwmA 1. Given the cone O = C(x). For the corresponding ball
By, = By(m) and conical sector Cy, = Cy(w), and any polynomial P = P(t)
of degree not emceeding u, we have

{ 1 Pv’dt}”p <A{ 1 IP”’dt}”p (0 < I < o)
= . < — 00},
® g Bf | 101.1,5{ |

where A is a constant independent of P, b, and z (but depending upon n, p, u,
and the angular magnitude of the cone C).
Proof. We may assume that P £ 0. Let

1 ijp 1 1fp
e ={ [wral /fL [eral”.
) anlji" /Ioﬂc{l]

Multiplying P by a constant, we may further assume that the sum
of the absolute values of the coefficients of P equals 1. If we identify
each polynomial P with the (appropriately ordered) set of its coefficients,
our collection of polynomials forms a compact set §. For fixed % > 0,
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g(P, k) is a continnous function on § and assumes a maximum, say

k
A=A(h)>0. Let k>0 and Q(2) :P(%-t). Then

1/p 1 yp
” d —— ’”dt} < A(h).
9P, H) = {thth ora /{W({!m Q)

Thus A (k) < A(h); and by symmetry, A (%) = A (k). THence 4 is
independent of A (and P). Similarly, we may show that 4 is also inde-
pendent of 2 and the direction of the cone C.

3. Lemma 2. Let feIP (B,). Consider cones O = C,(®), @B, where v
is a vector giving the common ol'wecno% and angular magnitude of the cones.
Let m and 1 be positive numbers. Fiz v, m, 1 and let B(v, m,1) denote the
set of all x in By, for which there ewists some polynomial P = P,(t) of degree
not ewceeding u, such that for the comical sector Oy = Cy(x) ~ By(w) we
have

1 o1,
(6) {!Olflf—Plpdt} <~y—n—h, 0<h /L.

Then E(v,m,1l) is a measurable set.

Proof. Let k& be a temporarily fixed positive integer and let I
= H(v,m,1, k) be defined in the same way as K (v, m,l) except that
the polynomials P are further restricted so that their coefficients do not
exceed k& in absolute value. Suppose that z;eHy,¢ =1,2,..., and that
the @; form a convergent sequence with limit # = x,. For each i let P = P;
be a polynomial satisfying condition (6) with # == ;. The sequence of
polynomials P;, ¢ =1,2,..., containg a (coefficient-wise) convergent
subsequence to which we now confine ourselves and which we again
denote by P;, 4 =1, 2,... Let the polynomial P, be the limit of the P;’s.
We may assume that @, = 0; and we write (), for C»(0) and P for P,.

Fix b (0 <k <1fl). Let 1 < p < co. Using Minkowski’s inequality,
we obtain

e 7 [ vzl

»

~{lolf‘f(t) f(w,+t|'°d;} .
{IGl f (ot Pf<mt+t)1”d’}w+
1/p
{|0 !uf[P wf'l”t)“P(wrl-t)P"di} +

1 1/
+{10 I 1P (2 4-1) ——P(t)]pdt}

< 0(1)+m"1hu+0(1)+o(1) as @ — 0(=m,).
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Now let p = oo. Let Cp(2;) = Cp(@:) A By(w;). Denote by C,—Cy ()
the set of points which arein ¢, but notin Gy, (z;). We have |Cy— 0y (2;)| — 0
as @; — 0. Hence,
esssup{]f(t)—P(t)[: teCy}

<hmsupesssup{!f(t)—P ()] teCp(m)} < —h“.
Thus # = 0 is in Dk,Ek is closed, and the set Z(v,m,l) = U Ey, is
measurable (1 < p < oo).

4. Proof of Theorem 1. Almost every point of the (measurable)
set B (v, m, I) defined as in Lemma 2 is a point of linear density of E(v, m, 1)
in the direction of v ([2], p. 298). Suppose for convenience that the origin
@ = 0 i3 such a point of density. Let ¢ = C,(0), By = B;(0), O, = C5(0)
= 0y(0) ~ B(0), P =P,(t) as in (6). Let 4 be a constant greater
than csefv|, say 4 = 1+-csclv]. There is then a positive constant
W =h(v,m,l,x), x =0, such that for every h, 0 <h <»’, we may
choose a point y = y(h) satisfying the following conditions:
(7 (@) 9 is in E(v,m,1);
(b) y is outside the cone ¢ and lies on the line containing the
axis of C;
(¢) the comical sector Cf = Cy1n(y) of radius |y[+k, vertex y,
and angular magnitude and direction v contains the ball B,
(of radius % and center » = 0);

(d) Iyl < 4h;
(e)  lyl+h <1/

Let the restriction 0 < b <<k’ remain. Let A now denote a positive
congtant, not necessarily the same from one occurrence to the next,
independent of #, h, m and 7 (and depending at most upon », %, p and [v|).

‘We obtain (see (7c¢), (7d)),

(8) 03] < AIChl < A|By).

We denote by P = Py(t) a polynomial of degree not exceeding u
agsociated with the point y = y(%) such that (6) holds, that is (see (7e),
(7e), (7d)), w g .

(9) {l;h! f lf—Phlpdt} < (iR <
o .
In view of the inclusions C’h < By < Oy, we obtain from (8) and (9)

1 0a] 1 v 4

[Cnl 1Cal 4,
Cp
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1 yp IOII’L | .1 p A
(11 {——— —P, ”dt} <{— e ——P,”dt} < Zh¥
) Bﬂiv o B 1071 5 I SR
Ch
‘We now obtain from (7e), (6), (10) and Minkowski’s inequality
1 Yp
(12) {~—- IP——P;,I”dt} < ii—h“.
. ) lohl n m

It follows from Lemma 1 that

, |
(13) {—- IP—-PhI”dt} < —h
|Bal B, m
We obtain from (11) and (13), again using Minkowski’s inequality,
1 A
14 {—— —P "dt} < =m )
1) |m4v Pay <ZH 0 <h<h.

Thus, for almost every « in B (v, I, m), (14) holds with P = P,(¢) as in (6)
By, = By(w), the Dball with center » and radins h, and ' = h(v, I, m, w).’
. By appropriately shrinking, if need be, the cones ¢ = C(w) asso-
ciated with the points #, #¢¥, we may confine ourselves to an at most
denumerable set ¥ of direction and angular magnitude vectors v, Since

(15) BeyU A UBwo,m,0,

VY M=l Il

?ral the polynomials P in (14) do not depend upon m and I, Theorem 1
olows.

5. The proof of Theorem 2 iy similar to that of Theorem 1 and we
Dbresent it in outline. We use notation based upon that contained in the
statement and proof of Theorem 1. We consider now polynomials P. of
degree less tha,p %. Lemmas 1 and 2 and their proofs remain valid with
such polynomials P. Since T4(w) = IP(H,), the definition of 77(z)
Termaing unchanged if (2) is replaced by

. ) 1 ip
@) {mﬁlf:lf—l’i”dt} =00 as h-o0.

Replacing m by 1/l in E(v; m, 1), we obtai . e
rem 1 that (wim, ), btain as in the proof of Theo-

©

e B,

veV l=1

from which Theorem 2 follows.

©
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6. Analogues of Theorems 1, 2 and Corollary 1 hold for the case
p = oo, with sup replacing ess sup in the definition of [|fll.. With
B, Py(t), On(w), By(®), v defined as in Theorem 1 we have respectively:

TuroREM 3. Let f be a measurable function and B a subset (measu-
rable or not) of B,. Suppose that for each x in H

(16) sup {|f (1) —Pu(f)|: teCp(@)} = 0(h*) as Bk —0.
Then for almost every « in B
) sup {|f(t) —Py(t)|: teBu(w)} = 0(*) as h—0.

THEOREM 4. Theorem 3 holds with O replacing o in both hypothesis
and conclusion.

COROLLARY 2. For u a positive integer and E a measurable set, The-
orem 3 holds with O replacing o in the hypothesis.

The proofs of Theorems 3 and 4 are essentially the same as those
for Theorems 1 and 2 (except that Lemma 2 is proved now for open
conical sectors and f measurable).

Corollary 2 immediately follows from Theorem 4 and the following
result: If in (17) u is a positive integer and the estimate holds with O
on a measurable set B, then it holds with o almost everywhere on E
(see [3], Theorem 4.24, p. 76, for the case n =1, and [1], see. 3, for the

case n = 1).
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