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A characterization of maximal ideals in commutative Banach algebras
by

J.-P. KAHANE (Orsay) and W. ZELAZKO (Warszawa)

Let 4 be a commutative complex Banach algebra with unit element e.
We give the following characterization of maximal ideals in A:

TusoreM 1. 4 subspace X < A of codimension 1 is a maximal ideal
in A if and only if it consists of non-invertible elements.

Clearly any maximal ideal satisfies the above condition, so it is
sufficient to show that if codim X = 1, and if X consists of non-invertible
elements, then X is a maximal ideal in 4. In order to show this we shall
reformulate our problem. Clearly X, as a subspace of codimension 1,
is @ zero set for some linear functional f. Since X contains no invertible
elements, it cannot be dense in 4, so f is continuous, and since e¢X, we
may take f in such a way that,

(1) fle) =1.
Such a functional f may be characterized by
(2) f(@)eo(w)

for every wed, where o(x) denotes the spectrum of ». In fact, if we have
a functional f satisfying (2), then it also satisfies (1), and its zero set consists
by (2), of non-invertible elements. On the other hand, if f satisfies (1), and
its zero set consists of non-invertible elements, then for any wed the

element y = o—f(@)s
is non-invertible in 4, since f(y) = 0. Consequently
Oco(z—f(n)e) = o(a)—f(x)

and so (2) holds.

Thus theorem 1 is equivalent with the following

THEOREM 2 (). Let A be a commutative complex Banach algebra with
unit element. Then a functional feA* is o multiplicative linear functional
if and only if (2) holds.

(*) This theorem is also true for mon-commutative complex Banach algebras,
cf. [4] (added in proof).
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Proof. If f is a multiplicative and linear (non-zero) functional, then
clearly (2) holds. Suppose now that (2) holds. We have then also (1). Let
sed and consider the element exp(Az), where 2 is & complex variable,
We put

(3) @(4) = flexp(iz)].

It may be easily verified that ¢(4) is an entire function. Since, by (2),
@(4) # 0, it may be written in the form

p(4) == oxp[yp(4)

for some entire function y(A).

We have also the following estimation:

M < Iflexp (4] )5

t}?is implies (cf. [2], p. 250) that ¢ () = ad-+§ for some complex « and ﬁ
Since, by (1), ¢(0) = f(exp0) =1, we have y(1) = al and so

X

(4) p(A) = exp(ah) = Z%A

N==0

On the other hand, by formula (3)

bl

(5) mm=d2ﬂ%ﬂ:32%?wa

=0 el
By comparising coefficients in expanygion (4) and (5) we obtain

fl@®) = o* = f(a)"
and, in particular,
(6) f@?) = f(a)
for any wed. We have then

Flay) = F(3l(@+y)*— 22— y2) = }[f(o-+y)1— ~—f@/
= H{Uf(@)+F W) —f(@)2— f(y)?) = f(w)f

which shows that f is a multiplicative and linear fumtwlml in 4.

Remark. Theorem 2 is clearly false for real Banach algebras. E.g. for
= (0, 1) the functional
1
f@) = [ awd
[
satisfies (2), but is non-multiplicative.

As a corollary we obtain a theorem on multiphicativity of measures

possessing mean-value Pproperty. bl
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TueOREM 3. Lot X be o compact Hausdorff space, let A be an ulgebra
of comples-valued continuous functions defined on X, and let u be a Radon
measure on X such that for any function wed we have

(6) J wdu = wip.),

where p. 18 6 point tn X depending on the function x, end the integral is
taken over the space X. Then the measure u is multiplicative with respect
to A, i.c.

N j afdp = ] ady [ W

for every w, yed.

Proof. Let 4 denote the completion of 4 in the Sup-norm ||-|| on X.
By formula (6) the functional

fl) = | wdu

is continuous with respect to the Sup-norm in 4, and so it may be extended
onto 4. The set 4 is clearly a Sup-norm algebra. We show that f satisties
on A condition (2). For any xeA formula (2) is satistied by condition (6).
It @, > @ in 4, a,ed, then fla,) —» f(x), and f(2,) = @,(p,), 50 We have

[ (Pn) —F (@) << 10 (D) — @ (Pu) | - | f (@00) — f ()] > 0
which means, by the compactness of X, that there is a point pe.X such
that
w(p) = flw).

So formula (2) holds. The conclusion is now a consequence of Theo-
rem. 2.

Remark. The above result is not obvious even. in the case when X
is the unit dise on the complex plane and A is the algebra of all functions
continunous on the dise and holomorphie in its interior.

We prove now a generalization of & part of Theorem 2 replacing
there the complex plane by an mbitrary commutative semi-gimple Banach
algebra with unit element.

THEOREM 4. Let A, and ., be two commutative Banach algebras, with
wnit elements, and suppose that A, is semi-simple. Tf T 48 o linear mapping
of Ay into A, such that
(8) o(Ta) < o(x)
for any med,, then it is « mulliplicative mapping, i.e.

(9) Tuwy == TaTy

for evcry m,yed,.
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Proof. Let f be a multiplicative and linear functional on 4, and
put
F(z) = f(T»)
for any wed,. So F iy a linear functional on 4,. We have also
F(z) = f(Tw)eo(L2) < o),

and 8o, by Theorem 2, F is a multiplicative and linear functional in the
algebra 4,. It follows that

Flwy) = F{o)F(y),
or

(10) f(Iwy) = f(Ta)f(Ly) = f(TuTy).

Formula (9) is now a consequence of the fact that (10) holds for any
multiplicative and linear functional f on 4,, and that 4, is semi-simple.

Remark. Theorem 4 does not remain true if 4, fails to be semi-simple.
In faet, it 4; = 4, = 4 and if 4 iy direct sum of a radical algebra and
the complex plane, then any mapping T of 4 into A, satisfying

Te = e,

satisfies formula (8), but not necessarily formula (9).

The reciproque theorem of Theorem 4 is true under an additional
condition that T' sends the unit element of 4, on the unit of 4,. We may
omit, however, the assumption that 4, is a semi-simple algebra.

TEEOREM 8. Let A,, A, be commutative Banach algebras with wnit
elements denoted respectively by e, and e,. Let T be o multiplicative linear
mapping of A, into A,, i.e. o linear mapping satisfying condition (9). Then,
Jor any weA,, relation (8) is satisfied provided that

(10)
. Proof. We have

6y = Tey = Taw™ = TwTa*

Te, = ¢,.

for any element » which is invertible in A,. This implies that for any such
# the element Tz iy invertible in 4, and
(11) T(@™Y) = (Tw)™".

If A¢o(x), then @— le; is invertible in A; and so is the element
T(w—2e,) = Tw—e, in A,. Therefore Ado(T») and formula (8) holds.

Remark. The assumption that Te, = e, is essential here. For, if
we take the natural imbedding

T: 4, > 4,04,

icm
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then it clearly satisfies (9), but neither (8) nor (10). In this case, however,
we have .

(12) o(2) = o(Ta).

But we can produce also an example non satisfying this condition.
If 4 is the algebra of all continnous functions defined on the unit dise,
holomorphic in its interior, then the mapping T': 4 > A®A, given by
the formula
2(1) — [#(21), 0],

is clearly a multiplicative mapping satisfying neither (8) nor (12).

Concerning generalizations, it is obvious that the results given here
are also true for complete locally bounded, or p-normed algebras (for
the definition cf. e.g. [3]).

Theorem 2 is also true for complete multiplicatively convex locally
convex algebras, provided the functional f is continnous. It is, however,
false without an assumption of m-convexity. In paper [1], p. 301 (cf.
remark 3.6), there is given an example of a commutative, locally convex,
complete metric algebra A, consisting of entire functions of one complex
variable, such that only invertible elements of 4 are scalar multiples
of the unit element. Any functional in this algebra which satisfies con-
difion (1) satisfies also condition (2), but it must not be a multiplicative
funetional. N
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