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On the semi-groups of isometries
by
I. SUCIU (Bucharest)

Introduction. Let Z be the additive group of integers and Z, the
semi-group of non-negative integers. Let 7' be an isometric operator on
a Hilbert space H and {Tu}nez,, the semi-group of isometries on H defi-
ned by Ty = I™ (neZ,). The well-known theorem of Wold says that the
space H may be decomposed uniquely in the form

H =H,®H,;

in such a way that H, reduces T, to a unitary operator for all neZ + and
each closed subspace of H; with this property is equal to {0}. Moreover,
there exists a Hilbert space N such that the restriction of the semigroup
{Tutnez . to the space H; iy unitarily equivalent to the semi-group of
unilateral translations in H?(¥).

Similar properties hold true also, in the case of a semigroup of iso-
metries {Tg}s.5, where § is a subsemi-group of an abelian group &, such
that § ~ 87! = {1}, with suitable definition of the space H*(N; 8) and
of the semi-group of unilateral translations in H*(¥; 8).

Unlike the classical case there appear three terms in the decompo-
sition formula of Wold; the unitary part of {T'},.s the totally non-unitary
part of {Ts}s.s which is the translation part and once a part which in the
case of semi-group Z, does not appear and which we propose to call the
strange part of {Ts}e.s.

In the section 2 of this paper we shall prove a generalization of the
Wold decomposition theorem (Theorem 3).

Using this theorem we shall give in section 3 an intrinsic characte-
rization of the semi-group of unilateral translations in the space H*(N; S)
(Theorem +4). We shall find also a generalization of Wermer’s result about
double invariant subspaces of translation operator [10] (Theorem 3).

All this facts can be formulated in a function language. In this lan-
guage, in the case when G is totally ordered by S we find the results of
Helson and Lowdeslager [3]. About these and other facts related to [1]
and [7] we shall treat in a next paper.
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1. The basic notation and definitions. Throughout the present paper
@ will be an abelian group and § will be a sub semi-group of & such that
8 ~ 8! = {1}. Without loss of generality we can suppose that G = S8~

Let H be a Hilbert space and B(H) the algebra of all bounded linear
operators on H.

A semi-group of isometries {Ts}es on H is a mapping s — 75 of 8 in
B(H) such that T, is an isometric operator on H for any seS, 1) =1
and T Ts, = Ty, for s, speS.

If 5,07 = 8,07, then we have 5,0, = 8,0y and thus Ty Ty, = L', 1.
Then we have

LY . LI — % %k o
T Ty = 1 T Ty Ty = Tty T Ty Loy = T, T,

Hence, if for g = so™! we put T, = T3T,, then we obtain a well
defined mapping ¢ — 7, of G in B(H) which extends the semi-group
{Ts}ees and verifies

To-1=1T, (ge@).

Using the Ito dilation theorem (see [5]) for a semi-group of isome-
tries, we conclude that there exist a Hilbert space K which contains H
as a subspace and a unitary reprezentation ¢ — U, of G on K such that

T,h =PUsh (heH,ge@),

where P is the orthogonal projection of K on H. The group {Uglse i8
called the wunitary dilation of the semi-group {Ts}ses.

A closed subspace M of H is called invariant under {Ts}seg 0f, shortly,
invariant, it TsM < M for seS. A closed subspace M of H is called doudly
invariant if ToM < M and TiM = M for seS. If M is doubly invariant,
then we denote by T¢|M the restriction of T to M and by {T's|M}s.s the
corresponding semi-group of isometries on M.

If A is a subset of a Hilbert space H, we denote by c¢lm [4] the
closed linear manifold spanned by 4 in H.

The semi-group {Zs}s.s is called unitary if T, is a unitary operator
on H for every sed.

The semi-group {T}ss 18 called completely non-unitary if for any
doubly invariant subspace M for which {T,|M}.g is unitary, we have
M = {0}.

The semi-group {Zs}ss is called quasi-unitary if
(1.1) em[ (J T;T.H|=H.

o~ lgg§—1

The semi-group {T}s.s is called totally non-unitary if for any doubly
invariant subspace M for which {7T's|M}.g is quasi-unitary we have
M = {0}.
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The semi-group {T}e.sis called strange if it is completely non-unitary

and guasi-unitary.
. It is clear that if the semi-group {T,}sg is unitary, then it is quasi-
unitary, and that if {T,},s is totally non-unitary, then it is completely

non-unitary.
1f the semi-group {Ts}ess is quasi-unitary and M is a doubly invariant
subspace, then the semi-group {Ts|Mles 48 quasi-unitory.
Indeed, since M is doubly invariant, we have
cm| U TTM] < M.

o~ lggg—1

Let now meM be orthogonal to chnb[ U TiT.M]. T h=h,+h,
with e and h,eML is an element of E;,—lgf; we have, for so~' ¢S,
(my L5 Teh) = (m, TaTsh))+(m, TEThy) = (T Tom, hy) = 0

b

Thus, m is orthogonal to e¢lm| (J 7T;T.H|= H, i.e. m = 0.

o lggg—1

Now, it is clear that if {Ty}.g 4 unitary (completely non-unitary,
quasi-unitary, totally non-unitary, strange) and M is a doubly invariants
then {T's|M}sg has the same property.

If & is the additive group of integers, § the semi-group of non-ne-
gative integers and T, = T™ for all » > 0 where T is an isometrie opera-
tor on H, then

clm| ) T;T.H|=TH
o™ lys—1
and thus the quasi-unitary property is the same as the unitary one, the
totally non-unitary property is the same as the completely non-unitary
one and the strange property does not appear.

If G is the additive group of real numbers, § the semi-group of non-
negative real numers and {7}.s is a strongly continuous semi-group
of isometries on H, then it is clear that

clm| | TiT.H|=H
o~ leeg—1
and thus every such semi-group is quasi-unitary.

2. The Wold decomposition. In this section we shall prove het Wold’s
decomposition theorem in the form announced in Introduction.

THEOREM 1. Let {Ts}ey be a semi-group of isometries on a Hilbert
space H. The the space H may be decomposed in the form

(2.1) H=H,0H,
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in such a way that H, and H, arve doubly snvariant subspaces, {Ts|H,}ss
is unitary and {Ts|Hjes s completely non-unitary. The decomposition
is unique ond we have
(2.2) Hy, = {h; heH : |[T5h]| = |[h]| for all se8}.
Proof. Let {U,},e be the unitary dilation of {T,}sy and

H, = {h: heH, UsheH, geG}.

Then H = H,®DH, is the desired decomposition and it is unique.
The proof of this fact is essentially the same as the proof of Theorem 5.1

from [6] and we omit it.
Let us prove formula (2.2). Let heH,. We have

Tl = |PUS k|| = || US b = |h]
for every seS. Conversely, if | T3 k[l = ||h|| for all se8, we have
|PUsA| = |Tshll = [i3]l = | Uahl| 1PU, ikl = TSRl = ||l = | U,-.h]|
for seS. Thus UsheH, U,_heH for seS. Then, if g6, g = so™" we have
PUM = |PU,, ikl = 1PUU, .. b
= |PUPU,_, b = |\TsT5hl| = |[B]| = [|Ughll.

Thus UyheH for geG. Hence heH,.
This completes the proof of formula (2.2) and of the theorem.
THEOREM 2. Let {T's}es be a semi group of isometries on H. The space H
may be decomposed uniguely in the form
(2.4) H = H,®H,
in such a way that H, and Hy are doubly invariant subspaces, {TLs|Hg}ss
is quasi-unitary and {Ts| Hiles 18 totally non-unitary.
Proof. Let us put

(2.5) N=[_U

o 1ggg

(2.3)

and

£
TS TH].

For nelN, heH and so™* ¢S we have
(TETen, h) = (n, TeT,h) = 0.
Hence
(2.6)

TiTen =0 (neN;sa™¢8).

The cloged subspaces 73N are mutually orthogonal. Indeed, since
8 ~ 87" = {1}, we have
(Tsm, Tom) = (n, Ts Tym) = (TeTyn, m) = 0

for n,meN,s,0e8,8 % o.

icm°®
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Let us put
(2.7) H=@TXN
88
and write H = H, @ H;.
o The subspaces H, and H, are doubly invariant. Indeed, obviously H;
is invariant. If meH, and se§, then
(Lam, Tsn) = (m, TeTyn) = 0

for all oef for which o0=*5¢8 and for every neN because of (2.6). Tf o~ s
= §;¢8, then s = os; and we have

(Toem, Tsn) = (m, T; T, Ty n) = (m, Tsn) =0
for all neN, because of definition of H, Thus T,m is orthogonal to Hj,
ie. T,meH,. It results that both H, and H, are doubly invariant.

The semi-group {Zs|Hgles is quasi-unitary. Indeed, since H, is
doubly invariant, we have

%

elm[a_an)S_lT,Tqu] c H,.

Let meH, be orthogonal to elm | U lTﬁTquI and let heH be of
o 1848

the form h = h,~+h, with kyeH, h,eH; We have
(m, T:Tsh’) = (m, T:Tshl)’i'(m’ T:Tshz) = (Tom, Tshy) =0
for s,0ef, so™'¢S~'. Thus m is othogonal to

clm| |J

o lgg—1

T:T,H] > H,,
ie.m = 0. Hence

_ ok
Hy=cm[_|)  Ti7,H]

and thus {T|Hg}.s is quasi-unitary.
Le I be a doubly invariant subspace included in H,; and such that
{Ts| M}ss is quasi-unitary. Since

M=cm| \J TiTM],

o~ lgg8”
M is orthogonal to N. Then, for melM ,ne¥N and seS we have
(m, Ten) = (Tem,n) = 0.

Hence M is orthogonal to H; > M, i.e. M = {0}. Thus {Ts]|H}ss
is totally non-unitary. Let now

H=H®®H,
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be another decomposition of H such that H, and H, are doubly invariant
subspaces, {Ts|Hi}ss 18 quasi-unitary and {7s|H,}ss is totally non-
unitary. Since

Hy=clm| U 11':1’51{1],

o lsgS—
we have H, = H, Let us put
H,=H,®M.

Then it is clear that M is a doubly invariant subspace and thus {T| M }e.
is quasi-unitary. But I < H,, thus M = {0} and we conclude that
H,=H, H, = H;

This completes the proof of the theorem.

TaEorREM 3 (Wold, Helson-Lowdenslager). Let {Tsles be @ semi-
group of isometries on o Hilbert space H. The space H may be decomposed
uniquely in the form
(2.8) H=H,®HDH,

in such o way that H,, Hy and H; are doubly invariant subspaces, {L's| Hyloes
is unitary, {Ts|Hg}ses 18 strange and {T's|Hy}sg 95 totally non-unitary.

Proof. The decomposition may be obtained by applying succes-
sively the preceding theorems. When considering the uniqueness, we
remark, for example, that M = H,@®H, is doubly invariant subspace
and {Ts|M}ss is quasi-unitary.

3. Unilateral translations. Let N be a Hilbert space. Denote by
I*(N; @) the Hilbert space of all families b= (hg), ge@, with h,eN, for
which

B = 7 Il < oo,
g<G
with the scalar product

(hy k) = D) (hg, Ty),
g6
where I = (h,), k& = (k).

By H?(N; 8) we denote the closed subspace of I*(N; () of clements
of the form & = (k;) with h, = 0 for g¢§.

If we denote by P the orthogonal projection of L*(N; @) on H*(N; 8),
we have P(h,) = (h;), where hy = h, if geS and hy = 0 if g¢8.

The mapping of N into H*(N; §) defined by n > (n,), where n = n,
and n, = 0 for g 7 1 is one-to-one and isometric so that N may be embe-
ded isometrically in H*(N; S).

For any sl let us define on H*(NV; §) the operator

(3.1) Ts(hg) = (h_1,).

@ © '
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. It is easy to see that {Ty}es is a semi-group of isometries on H*(N; S).
f[l‘lu&r S(:,Sn)n-g:roup Is called the semi-group of wwilateral tramslations n
; S).

. (;\To;(; z}ﬁa’; i {T}es is the semi-group of unilateral translationsw in
3 &), the.

(3.2) T2 (hy) = P(hsy)

for seS and

(3.3) HYN;8) = @ T.N.
8l

. If @ is the group of integers and § the semi-group of non-negative
integers, then we write H*(N) instead of H*(N; 8). If N is one-dimensio-
nal space, then we write H?(S) instead of H*(¥; 8) and H*instead of H>(N).
TerporEM 4. Let {To}sg be a semi-group of isometries on the Hilbert
space H. The following conditions are equivalent;
(a) There emists a Hilbert space N such that the semi-group {Tilees
18 unitarily equivalent to the semi-group of unilateral translations in H*(N; S).
(b) The semi-group {Ts}ss 48 totally non-unitary.
(¢) If M s doudbly imvariant subspace of H such that
Mcem| U T;T.H|,
a-l“s-—l
hen M = {0}.
(d) If M is doubly tnvariant subspace of H such that
M~ U TT.H* = {0},
c_lsfs—l
then M = {0}.
Proof. The implications (d) — (¢), (¢) - (b) are obvious. If {T}s.s
is totally non-unitary, then by Theorem 2 we have

(3.4) H=H= @IV,
88

where
N=| U TTH".
o lsgg—1

Now, it is clear that H is unitarily isomorphic to H*(N; 8) and the
semi-group {T,}ss is unitarily equivalent to the semi-group of unilateral
translations in H*(N; §8). Thus the implication (b) — (a) is proved.

Let us prove now the implication (a) - (¢). Let N be a Hilbert space
and {T,}ss the semi-group of unilateral translations in H*(N; 8).

Firstly we shall prove relation ~
(3.5) N=| U T T.H ;8"

o lepg—1
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where N is embeded in H*(N; 8) as above. For this purpose let neN,
n = (n,) with n, = 0 for g # 1. Using (3.2) we have

THTgn = TiT(ny) = Ty (n,_y,) = P(n,_y ) = (ng),

where
fg-ly,  if g8,
0 it g4¢8.

l...
fy ==

1

But n = 0 for g % 1, whence n, = 0 for g s ¢™'s. Hence we have

for neN and so~' ¢S
(3.6) TiTen = 0. ‘
Thus (n, TT,h) = (T% Ten, h) = 0 for so~'¢S. Henco
N < TeT HY(N; 8))*.
o lggg -l

Conversely, if

= (ny)E[ U

o~ lgys—1

T8 T HA (N5 )]+

then .
(T3 T, h) = (i, T3 T,h) = 0

for all he HA(V; §) and so~'¢8. Hence T% Ty% = 0 for any s, oed, so ¢8.
In particular, T%% = 0 for all gefS, o # 1. If Teft = (ny), then n, =0
for all ge@. But n, = n, = 0. Thus #, = 0 for all ¢ 1 and thus nel.
This completes the proof of (3.5).

Let M be a doubly invariant subspace included in clml T,,><

~1575—1
x T HY(N; 8)]. On account of (3.5) we have M = N+ and thu%

(Tsn, m) = (n, Tim) =0

becanse M is doubly invariant. Thus M is orthogonal to T, N for any seS
and using (3.2) we conclude that N = {0}.

This completes the proof of the implication (a) — ().

To finish the proof of the theorem we shall prove the implication

— (d).

For this purpose let M be a doubly invariant subspace of H such
that

MA| TT H*Y = {0}.
o~ lggs+1
We have
M =clm| \J T,T.M]|.
o~ lggg—1

icm°®
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Indeed, if meM is orthogonal to cm[ \J TiT,M| and heH,
o~ Iggg—1
then putting h = h,+7,, with hyed, hye ML we have

(m, T3 Tsh) = (m, T Tshy)+(m, TET hy) =

for s,0e¢8, o7's¢87Y, becaunse M is doubly invariant. Hence
mel Lé I’TH],le m—O
o= a¢ -

Using (b) we conclude that M = {0} and the implication (b) - (d)

" is proved.

This completes the proof of the theorem.

The following theorem is a completion of Theorem 4 in the case
when N is a 1-dimensional space.

TuroREM 5. Let {To}ss be a semi-group of isometries on a Hilbert
space H. Then {Tg}ss is unitary equivalent to the semi-group of unilateral
translations in H*(8) if and only 4f it is mot quasi-unitary and has no
proper doubly invariant subspaces.

Proof. Let {T,}ss be the semigroup of unilateral translation in
H*(S) = H*(N; 8) with N 1-dimensional. Let M < H*(S) be a doubly
invariant subspace. If

Mal NN TLTHN(N; S)|* = {0},

then, from Theorem 4, we obtain M = {0}. Suppose now that

M~ U T;7.H(8) 0.
o~ 1sgg—1

From (3.5) it results that M N N = 0. Since N is a 1-dimensional space,
we have M ~ N = N and consequently

H(S) = @?gTs(N) c M.

Let now {T}.s be a semi-group of isometries on H for which the
condition of Theorem 35 is fulfilled. We have
Hr‘\[ U I TH}* =] 1us T H[Y #0
oTors-
becanse {Ts}sy is not quasi-unitary. Hence it is clear that {Ts}ss verifies
assertion (d) of Theorem 4. It results from Theorem 4 that there exists
an N such that {Ts}ss is unitarily equivalent to the semigroup of uni-
lateral translations in H*(N; S). Let nyeN, n, # 0 and let us denote by N,
the 1-dimensional space spanned by n, Let us put

M =@ TN,
8eS
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The subspace M is doubly invariant. Indeed, it

m = 2 Temg  with  ngelN,

8eS
we infer by (3.6) that
T,m = Zl’sgnselll, T%m = 2 T myel.

SeS al=-a“‘]8

Since M ~ N = N, = {0}, we obtain H = M and thuy N =N,
ig a 1-dimensional space. This completes the proof of the theorem.

COROLLARY (Wermer). An isometric non-unitary operator 1I' on a Hil-
bert space H is unitarily equivalent to the tramslation operator on H* if and
only if T has mo proper doubly invariant subspaces.
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On multipliers preserving convergence
of trigonometric series almost everywhere

by

[MARY WEISS| and ANTONI ZYGMUND (Chicago)

. . . 3 fe ¥
L. Consider a trigonometric series D ¢,6™, which in the case
—00

C.n =70, can also be written in the form

oo

1 <F
£ ay—+ Z (ancosnb-+b,sinnb) = ZA"(O)’
n=1 [}
say. Its conjugate is

400 0o hd
2 (—isignn)e,e™ = 2 (@SN 00— by cOsMO) = ZB,,(O),
—00 1 0

say (with By = 0).

Omne of the topics of the theory of trigonometric series that enjoyed
popularity a few decades ago was the problem of the behavior (convergence
or summability, at individual points or almost everywhere) of the geries
2 4.(8)n, 3B, (6)n", where a is a constant. The problem has obvious
connections with differentiability or integrability (in general, of fractional
order) of functions, and « was almost exclusively real. In this note we
consider complex values of o, a = g4y, but in view of the fact that
the case of real o has been exhaustively dealt with we limit ourselves
to o purely imaginary, a = iy, which shows some novel features. The
problem we are discussing here arose out of some concrete applications but
the latter are not considered here.

The main result of the paper is the following

o0
THEOREM. If the series ) A,(6) is summable (C, %), k> —1, at
N=0 oo
each point of a set B of positive measure, then the series ) A,(6) ¥ gs
[]
summable (C, k) almost everywhere in . In particular, the convergence of

S A,(0) in B implies the convergence of 3 A, (0)n™ almost everywhere in B.
[]
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