STUDIA MATHEMATICA, T. XXX. (1968) @ ©

cm

The sets of convergence of power series in Bj-algebras
. .
7. SAWON (Warszawa)

A Bg-algebra is a completely metrizable, locally convex topological
algebra over real or complex scalars.

We shall also assume that the algebras have the unit element.

The topology in a Byalgebra X may be introduced by means of
a denumerable sequence of pseudonorms satisfying

(1) lels < oo, 2=1,2,...,
and )

(@) eyl < llollilylliss

(see [3]).

A sequence z, —> 0 if and only if lim|w,|; = 0 for ¢ =1, 2, ...
n

A Bj-algebra X is called m-conves if there exists an equivalent system
of pseudonorms satisfying

(3) oyl < Hollellyls, &+ =1,2,...

Let X be a Bg-algebra and let (a,)in, be a sequence of complex
numbers. We write

(4) V{(an) ={meX : Za,,,w" is convergent}.
n=0
This paper contains some theorems on topological properties of
sets Vi, ; some of those theorems are generalizations of the theorems
proved by W. Zelazko in [3]. ‘
For instance, in [3] it is proved that if X is an m-convex Bj-algebra

which is not a @-algebra, then every function } a,4™ convergent for
n=0

every z belonging to a non-void open subset of X converges for every z<X.
In this paper we replace an open set by a set 4 such that int 4 5= @.
It is easy to see that

1. TerorEM. If X is a Bj-algebra with a unit and V) = X, then

Tim Via, = 0.
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2. DEFINITION. Let X be a Bj-algebra and let M(X) be the set of
all continuous, linear and multiplicative functionals on X. If there exigts
an M > 0 and a positive integer ¢ such that for every zeX and m*eim(X)

(5) |2* ()| < M|k,

then X is said to have property (a).

It follows from Michael’s theorem [2] that if X is an m-convex B,-
algebra, then the following conditions are equivalent:

(i) X is a Q-algebra;

(ii) X has the («)-property.

3. TumoreM. If X is an m-comver By-algebra and not a Q-algebra,
then Vi, =X or Vi, i a nowhere-dense set.

Proof. Write

o =Tim V], .
n
It ¢ =0, then V)= X. If ¢ = 4 oo, then
Vg © Hox = {weX: a*(2) = 0},

where o* <M (X). Hence Ve, 18 & nowhere-dense set. Now suppose that
0<o< + o0 and Vi, is not a nowhere-dense set. Thus there exist
an & > 0, a positive integer 4 and an #,¢X such that Ve, is dense in the
the set

K (e, @y, 8) = {weX: |lo—aoll; < e}

Let o WY (X). Then |2* ()| < 1/ for every weK (¢, @y, 1) and |2*(z)|
§ 2|2lls/ ee for every we X, a* ¢ MM (X). Hence X has the (a)-property and X
Is a Q-algebra, which contradicts our assumptions and the proof is
completed.

4. REMARE. If X is a Bj-algebra which does not have the (o)-prop-

—
erty and 0 < UimV|a,| < + oo, then Vi, is a nowheredense set.
"

In the next part of this paper we shall use the following Chebyshev’s
theorem of the approximation theory:

Let
®
| Jwef| <M for —1<o<1,
iz
where a; are complex numbers for i=1,2,...,% Then (see [1])

| < B2E,
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5. LemMA. Let X be o linear complex space with psewdonorm |||
We put

k
w(g)=2w,;gi, where —1<p¢<1, #;,¢X,1=0,1,...,%.
o

If for every o such that —1 < ¢ <1 the inequality [lw( o)l < M holds,
then ||myll < 2%M.

Proof. Let us remark that in the space X* there exists a fune-
tional o* such that: 1° |o* (@) < |lall, 2° |2 (zx)| = |loxll. We write

k
v(e) = D a" (@) "

It is easy to see that for —1 <o <1
[v(e)] = |a (w(e))] < llw(o)ll < M
and from Chebyshev’s theorem we obtain our lemma.
6. TEEOREM. If X is & B,-algebra with unit e and

1'—H—Dnl lan| = + oo,

then Vi, 95 a set of the first category.

Proof. Suppose that ﬁﬁ?/m = + oo and that Vi, is a set of the

k3
second category. Let 2* ¢ X* be a linear functional on X such that #*(e) = 1.
We write

Ay = {BeX: |op| 2" (@")| <k for n=0,1,...}, k=1,2,...

It is trivial that Vi, < (UAx. Thus there exists an ¢>0, an
%

Gp=0,1,..., a k =1,2,..., an #eX such that H(e, o, %) < A
Besides there exists a g, > 0 such that if — g, < o < @, then x4 ¢

eK (&, %y, 1,). Hence
n
NY %, a—iy i
> (3)e e

=0

<k

|l

for every —g, <o <@gy, n=0,1,... o
By Chebyshev’s theorem we obtain |an| < ko'2"ep"(n =0,1,...)

and Til—rl’lb/m< M < + oo, which contradicts our assumptions and the
n

proof is completed.
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7. DEFINITION. Let X be a Bpalgebra. A sequence (o), such
that o, =0, g, — 0, is called the rate of growth of X if

0 = {weX:limo, Vo™s = 0, i =0,1,...}

is a set of the second category.
—_— .
It is eagy to observe that if lim Ve = 0 and Ve = X, then the
n
sequence g, = vi/m is the rate of growth of the algebra X. The converse
is true. We have namely
8. TurnorEM. If the sequence (uy) is the rale of growth of X, then

Vou =2X.

en)

Proof. Let ¢ be a non-negative integer and

| Y ——
A= @eX: o V] <k, m =0,1,...}.
The sets 4y are closed and O = (JA4y. Thus there exist an & > 0,
%

a j;, a k; and an @,;¢X such that
K (e, wo,i,fi) < -Alab--

We may suppose without loss of generality that j; > ¢. If |jafl;, < &,
then for every p such that —1 < ¢ <1 we have %);+ pxeK, whence

S (e

8=0

On < 76?-

1K

From Lemma 5 it follows that g,|2"; < 2"*"'k¢. Because j; > i,
we obtain for every zeX

2-"”) .
&

This implies that for 4 = 0,1, ... there exist an M; > 0 and a j; = ¢
such that

ol < 2 (

onll™le < 2M7 ||, for weX.

Because

oo
| p) = D oh e

N O

is an entire function, we infer that
00
D dilla™ < + oo
n=0

for every ¢ =0,1,...,z¢X and Vi = X.
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Theorem 8 implies the following corollaries.

9. COROLLARY. If ]im’;/m= 0, then Vi y =X or Vg, is a set of
the first category. "

Proof. Suppose that Viey is a set of the second ecategory and

N —— ", —
lim ¥|a,| = 0. Then On = I/loz,,]ss (n=0,1,...) is the rate of growth
n
of X. From Theorem 8 it follows that Vienty = X and Vi, = X.

10. COoROLLARY. X is an m-convewr Bq-algebra if and only if every
sequence (on) such that g, >0, o, — 0, is the rate of growth of X.

The proof is an immediate consequence of the following theorem
of Mitiagin, Rolewicz and Zelazko (see [3]): X is an m-convex By-algebra
if and only if Vi = X for every (a,)7, such that lim?ﬁ: 0.

n

11. CoroLrARY. If there emists a sequence (ay) such that Vi €8 @ set
of the second category, then X has the rate of growth.

Proof. Suppose that Viep 18 a seb of the second category. Repeating
the argument of the proof of Theorem 8, we infer that for every 4 there
exists a j; >4 and an M; > 0 such that

loa] 12" < 237 |l[f,

for every seX and n =0,1,... Putting

1
n = —— |a|'V",

n=20,1,...
n-+1 ] I

we find that
lim o, V[z"l; = 0
n
for every #eX and ¢ = 0,1, ..., whence (g,) is the rate of growth of X,

q.e.d.
Finally we give the following

12. TumoreEM. If hmylb/mz 0>0 and Vi, is a set of the second

category, then X is a Q-algebra.

Proof. Reasoning as before we find that for every 4 there exist
a j; =4 and M;> 0 such that

laal 8"l < 2MZj |2, for every meX, i =0,1,...

Considering the new system of pseudonorms |-||f
llzlly = llll,

lelt = llallyy Yol = Nzl , .o
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we observe that |oul o™l < 2M7(|ali,)" for every zeX,n =0,1,...
From [3] it follows that X is an m-convex By-algebra. By remark 4

we infer that X is a Q-algebra, q.e.d.
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On the generation of tight measures
by

J. KISYNSKI (Warszawa)

A non-negative measure u defined on a o-algebra &/ of subsets of
a topological space is called tight if

u(A) = sup{u(C): 4 > Cesl, C—compact}

for every A esz. The main result of this paper is theorem 2.1 concerning
extiensions to tight measures of some set functions in arbitrary Hausdortf
spaces. This theorem generalizes a theorem given by Bourbaki ([1],
Chap. IV, §4, N° 10, theorem 5) for locally compact spaces. The proof
of theorem 2.1 is based on the idea of Halmos ( [3], § 53 and 54) of exten-
ding to a meagsure a certain ‘“‘semi-regular content” obtained from a given
set function. However, the method of such extension presented here is
different from that of Halmos.

Throughout this paper the Borel subsets of any topological space X
are defined as elements of the smallest c-algebra of subsets of X, con-
taining all the closed subsets of X.

1. Extension of a content to a tight measure. We call a content any
nowu-negative, finite, non-decreasing set function A defined on the class
of all compact subsets of topological space X, such that for every pair
4, B of compact subsets of X we have

A(4d v B) < A(4)+4(B)
and .
A(A U B)y=A4(4)+A(B) it A~B=g.
We say that a content 1 is tight if
MA)~A(B) = sup{A(0): ¢ = A\B, O~ compact}

for every pair 4, B of compacts such that B < A.

We say that a content A is semi-regular, if for every compact 4 and
every ¢ > 0 there is an open set U such that 4 < U and A(B) < A(4)+e&
for every compact B < U.
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