

The sets of convergence of power series in B_0 -algebras

bν

Z. SAWOŃ (Warszawa)

A B_0 -algebra is a completely metrizable, locally convex topological algebra over real or complex scalars.

We shall also assume that the algebras have the unit element.

The topology in a B_0 -algebra X may be introduced by means of a denumerable sequence of pseudonorms satisfying

(1)
$$||x||_i \leq ||x||_{i+1}, \quad i = 1, 2, ...,$$

and

$$||xy||_i \le ||x||_{i+1} ||y||_{i+1}$$

(see [3]).

A sequence $x_n \to 0$ if and only if $\lim ||x_n||_i = 0$ for i = 1, 2, ...

A B_0 -algebra X is called *m-convex* if there exists an equivalent system of pseudonorms satisfying

(3)
$$||xy||_i \leqslant ||x||_i ||y||_i, \quad i = 1, 2, ...$$

Let X be a B_0 -algebra and let $(a_n)_{n=0}^{\infty}$ be a sequence of complex numbers. We write

(4)
$$V(a_n) = \{x \in X : \sum_{n=0}^{\infty} a_n x^n \text{ is convergent}\}.$$

This paper contains some theorems on topological properties of sets $V_{(a_n)}$; some of those theorems are generalizations of the theorems proved by W. Zelazko in [3].

For instance, in [3] it is proved that if X is an m-convex B_0 -algebra which is not a Q-algebra, then every function $\sum_{n=0}^{\infty} a_n x^n$ convergent for every x belonging to a non-void open subset of X converges for every $x \in X$.

In this paper we replace an open set by a set A such that int $\overline{A} \neq \emptyset$.

It is easy to see that

1. THEOREM. If X is a B_0 -algebra with a unit and $V_{(a_n)}=X$, then

$$\overline{\lim_{n}} \sqrt[n]{|a_n|} = 0.$$

2. DEFINITION. Let X be a B_0 -algebra and let $\mathfrak{M}(X)$ be the set of all continuous, linear and multiplicative functionals on X. If there exists an M>0 and a positive integer i such that for every $x \in X$ and $x^* \in \mathfrak{M}(X)$

$$|x^*(x)| \leqslant M ||x||_i,$$

then X is said to have property (α) .

It follows from Michael's theorem [2] that if X is an m-convex B_0 algebra, then the following conditions are equivalent:

- (i) X is a Q-algebra;
- (ii) X has the (α) -property.
- 3. THEOREM. If X is an m-convex Bo-algebra and not a Q-algebra, then $V_{(a_n)} = X$ or $V_{(a_n)}$ is a nowhere-dense set.

Proof. Write

$$\varrho = \overline{\lim_{n} \sqrt[n]{|\alpha_n|}}.$$

If $\varrho = 0$, then $V_{(\alpha_m)} = X$. If $\varrho = +\infty$, then

$$V_{(a_n)} \subset H_{x^*} = \{x \in X : x^*(x) = 0\},$$

where $x^* \in \mathfrak{M}(X)$. Hence $V_{(a_n)}$ is a nowhere-dense set. Now suppose that $0<\varrho<+\infty$ and $V_{(a_n)}$ is not a nowhere-dense set. Thus there exist an $\varepsilon > 0$, a positive integer i and an $x_0 \in X$ such that $V_{(a_n)}$ is dense in the the set

$$K(\varepsilon, x_0, i) = \{x \in X : \|x - x_0\|_i < \varepsilon\}.$$

Let $x^* \in \mathfrak{M}(X)$. Then $|x^*(x)| \leq 1/\varrho$ for every $x \in \overline{K(\varepsilon, x_0, i)}$ and $|x^*(x)|$ $\leq 2||x||_i/\varrho\varepsilon$ for every $x \in X$, $x^* \in \mathfrak{M}(X)$. Hence X has the (α) -property and X is a Q-algebra, which contradicts our assumptions and the proof is completed.

4. Remark. If X is a B_0 -algebra which does not have the (α) -property and $0 < \overline{\lim}_{n}^{n} V|\alpha_{n}| < +\infty$, then $V_{(\alpha_{n})}$ is a nowheredense set.

In the next part of this paper we shall use the following Chebyshev's theorem of the approximation theory:

Let

$$\left|\sum_{i=0}^k a_i \varrho^i\right| \leqslant M \quad for \quad -1 \leqslant \varrho \leqslant 1,$$

where a_i are complex numbers for i = 1, 2, ..., k. Then (see [1])

$$|a_k| \leqslant M2^k$$
.

5. Lemma. Let X be a linear complex space with pseudonorm $\|\cdot\|$. We put

$$w(arrho) = \sum_{i=0}^k x_i arrho^i, \quad ext{where} \quad -1 \leqslant arrho \leqslant 1, \; x_i \epsilon X, \; i=0,1,...,k.$$

If for every ϱ such that $-1\leqslant \varrho\leqslant 1$ the inequality $\|w(\varrho)\|\leqslant M$ holds, then $||x_k|| \leq 2^k M$.

Proof. Let us remark that in the space X^* there exists a functional x^* such that: $1^{\circ} |x^*(x)| \leq ||x||, 2^{\circ} |x^*(x_k)| = ||x_k||$. We write

$$v(\varrho) = \sum_{i=0}^k x^*(x_i) \, \varrho^i.$$

It is easy to see that for $-1 \le \varrho \le 1$

$$|v(\varrho)| = |x^*(w(\varrho))| \le ||w(\varrho)|| \le M$$

and from Chebyshev's theorem we obtain our lemma.

6. THEOREM. If X is a B_0 -algebra with unit e and

$$\overline{\lim}_{n} \sqrt[n]{|a_{n}|} = + \infty,$$

then $V_{(a_n)}$ is a set of the first category.

Proof. Suppose that $\overline{\lim} \sqrt[n]{|a_n|} = +\infty$ and that $V_{(a_n)}$ is a set of the second category. Let $x^* \in X^*$ be a linear functional on X such that $x^*(e) = 1$. We write

$$A_k = \{x \in X : |\alpha_n| |x^*(x^n)| \le k \text{ for } n = 0, 1, ...\}, \quad k = 1, 2, ...$$

It is trivial that $V_{(a_n)} \subset \bigcup_{k} A_k$. Thus there exists an $\epsilon > 0$, an $i_0=0,1,\ldots,$ a $k_0=1,2,\ldots,$ an $x_0\epsilon X$ such that $K(\epsilon,x_0,i_0)\subset A_{k_0}$ Besides there exists a $\varrho_0 > 0$ such that if $-\varrho_0 \leqslant \varrho \leqslant \varrho_0$, then $x_0 + \varrho e$ $\epsilon K(\epsilon, x_0, i_0)$. Hence

$$|a_n| \left| \sum_{i=0}^n \binom{n}{i} x^* (x_0^{n-i}) \varrho^i \right| \leqslant k_0$$

for every $-\varrho_0\leqslant \varrho\leqslant \varrho_0$, $n=0,1,\ldots$ By Chebyshev's theorem we obtain $|\alpha_n|\leqslant k_0\cdot 2^n\varrho_0^{-n}(n=0,1,\ldots)$ and $\overline{\lim}^n \sqrt[n]{|a_n|} \leqslant M < +\infty$, which contradicts our assumptions and the proof is completed.

7. Definition. Let X be a B_0 -algebra. A sequence $(\varrho_n)_{n=0}^{\infty}$ such that $\varrho_n \geqslant 0$, $\varrho_n \rightarrow 0$, is called the rate of growth of X if

$$O = \{x \in X : \lim_{n} \varrho_n \sqrt[n]{\|x^n\|_i} = 0, \ i = 0, 1, \ldots \}$$

is a set of the second category.

It is easy to observe that if $\overline{\lim} \sqrt[n]{|a_n|} = 0$ and $V_{(a_n)} = X$, then the sequence $\varrho_n = \sqrt[n]{|a_n|}$ is the rate of growth of the algebra X. The converse is true. We have namely

8. THEOREM. If the sequence (a_n) is the rate of growth of X, then

Proof. Let i be a non-negative integer and

$$A_k = \{x \in X : \varrho_n \sqrt[n]{\|x^n\|_i} \leqslant k, \ n = 0, 1, \ldots\}.$$

The sets A_k are closed and $O \subset \bigcup A_k$. Thus there exist an $\varepsilon_i > 0$, a j_i , a k_i and an $x_{0,i} \in X$ such that

$$K(\varepsilon_i, x_{0,i}, j_i) \subset A_{k_i}$$

We may suppose without loss of generality that $j_i \geqslant i$. If $||x||_{j_i} < \varepsilon_i$, then for every ϱ such that $-1 \leqslant \varrho \leqslant 1$ we have $x_{0,i} + \varrho x \in K$, whence

$$\varrho_n \left\| \sum_{s=0}^n \binom{n}{s} (x_{0,i}^{n-s} x^s) \varrho^s \right\|_i \leqslant k_i^n.$$

From Lemma 5 it follows that $\varrho_n ||x^n||_i \leqslant 2^{n+1} k_i^n$. Because $j_i \geqslant i$, we obtain for every $x \in X$

$$\varrho_n ||x^n||_i \leqslant 2 \left(\frac{2k_i}{\varepsilon}\right)^n ||x||_{j_i}^n.$$

This implies that for $i=0,1,\ldots$ there exist an $M_i>0$ and a $j_i\geqslant i$ such that

$$\varrho_n ||x^n||_i \leqslant 2 M_i^n ||x||_{i}^n \quad \text{for} \quad x \in X.$$

Весалье

$$\varphi(z) = \sum_{n=0}^{\infty} \varrho_n^{n-1} z^n$$

is an entire function, we infer that

$$\sum_{n=0}^{\infty} \varrho_n^n \|x^n\|_i < + \infty$$

for every $i = 0, 1, ..., x \in X$ and $V_{(a_n)} = X$.

Theorem 8 implies the following corollaries.

9. Corollary. If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 0$, then $V_{(a_n)} = X$ or $V_{(a_n)}$ is a set of the first category.

Proof. Suppose that $V_{(a_n)}$ is a set of the second category and $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 0$. Then $\varrho_n = \sqrt[n]{|a_n|^2}$ (n = 0, 1, ...) is the rate of growth of X. From Theorem 8 it follows that $V_{(|a_n|^2)} = X$ and $V_{(a_n)} = X$.

10. COROLLARY. X is an m-convex Bo-algebra if and only if every sequence (ϱ_n) such that $\varrho_n \geqslant 0$, $\varrho_n \to 0$, is the rate of growth of X.

The proof is an immediate consequence of the following theorem of Mitiagin, Rolewicz and Żelazko (see [3]): X is an m-convex B_0 -algebra if and only if $V_{(a_n)}=X$ for every $(a_n)_{n=0}^\infty$ such that $\lim_n \sqrt[n]{|a_n|}=0$.

11. COROLLARY. If there exists a sequence (a_n) such that $V_{(a_n)}$ is a set of the second category, then X has the rate of growth.

Proof. Suppose that $V_{(a_n)}$ is a set of the second category. Repeating the argument of the proof of Theorem 8, we infer that for every i there exists a $j_i \geqslant i$ and an $M_i > 0$ such that

$$|a_n| ||x^n||_i \leq 2 M_i^n ||x||_{j_i}^n$$

for every $x \in X$ and n = 0, 1, ... Putting

$$\varrho_n = \frac{1}{n+1} |a_n|^{1/n}, \quad n = 0, 1, ...,$$

we find that

$$\lim_{n} \varrho_n \sqrt[n]{\|x^n\|_i} = 0$$

for every $x \in X$ and i = 0, 1, ..., whence (ϱ_n) is the rate of growth of X, q.e.d.

Finally we give the following

12. THEOREM. If $\underline{\lim}_{n} \sqrt[n]{|a_{n}|} = \delta > 0$ and $V_{(a_{n})}$ is a set of the second category, then X is a Q-algebra.

Proof. Reasoning as before we find that for every i there exist a $j_i \geqslant i$ and $M_i > 0$ such that

$$|a_n| \|x^n\|_i \leq 2 M_i^n \|\|x\|_{i}^n$$
 for every $x \in X$, $i = 0, 1, ...$

Considering the new system of pseudonorms $\|\cdot\|_{m}^{*}$

$$||x||_0^* = ||x||_0, \quad ||x||_1^* = ||x||_{j_0}, \quad ||x||_2^* = ||x||_{j_{j_0}}, \quad \dots,$$

icm©

we observe that $|a_n| ||x^n||_i \leq 2M_i^n(||x||_{i+1}^*)^n$ for every $x \in X$, n = 0, 1, ... From [3] it follows that X is an m-convex B_0 -algebra. By remark 4 we infer that X is a Q-algebra, q.e.d.

References

[1] Н. И. Ахиезер, Лекции по теории аппроксимации, Москва 1965.

[2] E. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).

[3] W. Zelazko, Metric generalization of Banach algebras, Rozprawy Matematyczne 47, Warszawa 1965.

Reçu par la Rédaction le 4. 7. 1967

On the generation of tight measures

STUDIA MATHEMATICA, T. XXX. (1968)

by

J. KISYŃSKI (Warszawa)

A non-negative measure μ defined on a σ -algebra $\mathscr A$ of subsets of a topological space is called tight if

$$\mu(A) = \sup \{ \mu(C) : A \supset C \in \mathcal{A}, C - \text{compact} \}$$

for every $A \in \mathscr{A}$. The main result of this paper is theorem 2.1 concerning extensions to tight measures of some set functions in arbitrary Hausdorff spaces. This theorem generalizes a theorem given by Bourbaki ([1], Chap. IV, § 4, N° 10, theorem 5) for locally compact spaces. The proof of theorem 2.1 is based on the idea of Halmos ([3], § 53 and 54) of extending to a measure a certain "semi-regular content" obtained from a given set function. However, the method of such extension presented here is different from that of Halmos.

Throughout this paper the Borel subsets of any topological space X are defined as elements of the smallest σ -algebra of subsets of X, containing all the closed subsets of X.

1. Extension of a content to a tight measure. We call a content any non-negative, finite, non-decreasing set function λ defined on the class of all compact subsets of topological space X, such that for every pair A, B of compact subsets of X we have

$$\lambda(A \cup B) \leqslant \lambda(A) + \lambda(B)$$

and

$$\lambda(A \cup B) = \lambda(A) + \lambda(B)$$
 if $A \cap B = \emptyset$.

We say that a content λ is tight if

$$\lambda(A) - \lambda(B) = \sup{\{\lambda(C) : C \subset A \setminus B, C - \text{compact}\}}$$

for every pair A, B of compacts such that $B \subset A$.

We say that a content λ is *semi-regular*, if for every compact A and every $\varepsilon > 0$ there is an open set U such that $A \subset U$ and $\lambda(B) < \lambda(A) + \varepsilon$ for every compact $B \subset U$.