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Symmetric bases of locally convex spaces
by
D.J.H. GARLING (Cambridge)

§ 1. Introduction. Let B be a Hausdorff locally convex space, with
Schauder basis {#,}, and let {f,} be the sequence of continuous linear
functionals biorthogonal to {#,}. In the case where E is a Banach space,
Singer [9] introduced the following notion of symmeiric basis: {z,} is
a symmetric basis if .

n
(8B,) sup sup | 3 8ifi(@)as|| < oo for all z in E.
T=1

aeP(N) 131<1
l<n<oo

P(N) denotes the set of all permutations of N ={1,2,3,...}.-As
far as locally convex spaces are concerned, the condition (SB,) has the
following mnatural analogue:

n

(SB) { X 8:fi(#)2ue: 18] <1, neN, oeP(N)} is bounded in B for
=1

each # in B.

In [10], Singer investigated the relationship between (SB,) and six
other conditions ((8B,)-(SB;)). In this paper we consider the rela-
tionship between (SB;) and six other conditions ((SBs), (SB)), (SBj),
(Cy), (O,) and (Cy)). Of these (SB,) is identieal to Singer’s (SB,), (SBy)
and (SBj) are analogous to Singer’s (S8B,) and (8B;), and (Cy)-(Cs) are
new. In detail, these conditions are:

(SB,;) Every permutation {z,m} of the basis {,} is a basis of the
space E; equivalent to the basis {m,}.

(If {z,} is a basis of a space E, the sequence space assoctated with
{,} is defined to be the linear space of all sequences a = (a;) for which
¥ ay@; is convergent. A basis {w,} of a space B is egquivalent to a basis

i=1
{yn} of a space F if the sequence space associated with {,} is the same
as the sequence space associated with {y.}.)

(SB) | Xfi(@)osy : neN, ceP(N)} is bounded in E for each zin B.
=1

(SBi) {3 fi(#) @ : neN} is bounded in E, for each # in B and
i=1
each ¢ in P(XN).
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(C,) The sequence space associated with {#,} is symmetric.
(A sequence space u is symmetric if the sequence ¢,ex whenever
aep and oeP(N), where o, is defined by (a)i = dogy-)

n
(0g) { D) forpy(@w) @iz melN, oeP(N)} is bounded in E for each & in I.
=1

n
(C) { 3 foy(@) @i meN} is bounded in E for each # in E and
%=1

each o in P(N). )
A little thought shows that the following pattern of implications
always holds:

(SBy) = (3By)

y t
(C)  (8By)
4 n

(C2) = (C5) = (8B

Notice also that (SB,) implies that {z,} is an unconditional basis,
and that if {z,} is an unconditional basis, then (C,) implies (SBs). In §3
we congider the cireumstances under which (C,) implies (SBy). It will
be seen that this depends to a large extent upon the size of the sequence
space associated with {#,}. In § 4 we consider the other conditions men-
tioned above. :

In [10], Singer asserted that (3B,)-(SB,) are all equivalent. In § 5,
however, we give an example of a Banach space B with a Schauder basis
{®,} which does not satisfy (SB,), but which does satisfy.

(SB,) {x,} is an unconditional basis, and for every increasing sequence
of positive integers (n;) the basis {m,} of the space [®,] is equivalent
to the basis {w.}.

([#a;] is the closed linear subspace of E spanned by the sequence
(#n;).)

§ 2. Preliminaries. We denote by 1 the sequence space associated
with {z;}. 4 is naturally algebraically isomorphic to H, and we give 4 the
topology induced by thig isomorphism from the topology of E. It then
follows that properties of E are reflected in properties of 4, and con-
versely, and many of the results established belong properly to the theory
of topological sequence spaces. A, with the induced topology, is an AK-
space (1) and {e;} is a Schauder basis for 2 (where (¢;); = 6;). We can,

(1) A sequence space F with a locally convex topolugy v is called an AK-space
if the inclusion. map (E, t) - o is continuous and for each » in E, Py (x) — x, where
Py (x) has the first n coordinates the same as » and the others equal to zero (cf. [5]
and [117).

icm

Locally convew spaces 165

-and shall, identify 2’, the topological dual of 4, with@a linear subspace of

o0
P = {y: Yew, Zm"y" is convergent for each z in A}
i=1
(o denotes the linear space of all sequences, ¢ the linear subspace of
sequences with finitely many non-zero terms, e the sequence (1,1,...);
otherwise we use the terminology of [3]).

We shall also use the following terminology. If m and » are positive
integers, with m <n, [m,n]=1{i:9eN,m <i<n}, and [m,o0)=
= {i:ieN,i>m}. £ denotes the collection of all finite subsets of N,
and Z, the collection of all finite subsets of [r, co). By a dyadic complex
number we mean a complex number of the form (p +ig)2~¥, where p, ¢
and & are integers. Finally we use “weaker than” and “finer than” in the
broad sense (weaker than or equal to, finer than or equal to).

§ 3. The conditions (SB,) and (C,). Suppose that (C;) is satisfied. If

r = Zfi(w)mieE

and ceP(N), let *

To(@) = D fos (@) .
q=1
T, is clearly a linear map of B onto itself.
ProrosITION 1. If (C,) is satisfied and each map T, 4s continuous,
then (SBg) holds.
Suppose that # ¢ E and that ¢eP (N). Let v = ¢~*. Then T (#)) = @), -

8o that
T, (Zfi(m)mi) = Zfi(w)m,(i).

i=1

But

n
gfi(m)miﬁ-m in B,
oo
so that the continuity of 7, implies that Z fi(®)#, is convergent;
from this, (SB;) follows easily. =t
COROLLARY. If E is barrelled and fully complete, then (C,) implies
(SBy).
For each map T, has a closed graph. Note that this corollary applies
in particular to Banach spaces and Fréchet spaces. In fact, the full
completeness condition is redundant (Theorem 35). ‘
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PROPOSITION 2. If (C,) is satisfied and A & 1™, then the topology
on A is the product topology.

Suppose that there exists a continuous gemi-norm p on A such that
K = {i: p(e;) # 0} is infinite. Let J be an infinite subset of K with an
infinite complement, and let acA\I*. Then there exists o in P(N) such

that |a.ml > (p(ey))™ for j in J, so that Za‘,@)e{’is not convergent,
) =1

giving a contradiction. Thus any continuous semi-norm on 4 vanishes

on all but finitely many e;, and the topology of 4 is the product topology.

TEEoREM 1. Suppose that 4 < ¢ and that A & ¢. {@;} is an uncondi-

tional basis if and only if the topology of A is weaker than the topology of
uniform convergence on the compact sets of T

T ek, oeP(N), and A is relatively compact in I,

< [(fi@)lssup 3 lacl-

Since the right-hand side of this inequality tends to 0 as n — oo ([3],
p. 338), the eondition is sufficient. Suppose conversely that A is an
equicontinuous subset of A’ which is not relatively compaect in 7%, so that
there exists &, > 0 such that

o0
sU o) () G
mﬁ).,;,‘fm( ) @iy

o

sup sup Z
MN>r ded f=n

|a;] =& for all » in N.

Tt easily follows from this that there exists s > 0 such that, given 7
in N, there exists a finite subset J of [r, co) and an element a of A for

which
PEEPITES
deJ JeJ

We can therefore find a sequence (J;) in X and a sequence (a)

in A such that
| 3 of?
JeJy

sup(j) < inf (j)+2
fel; Jedip

3
= (%)
= 41(; 6% > ¢
1]

and

for i =1,2,...

Let & = ) |J;|. There exists ¢ in P(XN) such that o([1, k.]) = Jy,
j=1

i=
and o[k +1, ks+i—1]) =J; for ¢ =2,3,... It follows from the
conditions on A and the fact that A 2 ¢ that there exists « in 4 such that

. 1
limg =y %0 and  Ju—yl <>l fori=1,2,...
—»00 4
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Now
kyyi—1
D) dmntay = s
Jski_1+1, A
so that

kpi-1- )
l< D awitoys ¥ >! = | D) gad
J=ky_1+1i jeJg

3 . 1 . 1
==yl D) 1aPI— =1yl Y 16f] = < Iyle.
4 4 2
jel; jeJj

=|7(> a) + ) (w—)af
jeJi

e

(==}
Thus 12 o) 6oy 18 Mot comvergent, and the basis is conditional.
=1

TuroreEM 2. If 2 = 1°, 4 & ¢, and (C,) is satisfied, then the topology
of A is weaker than the topology of uniform convergence on the compact
sets of 1L

Tf A is not relatively compact in I, there exists ¢ > 0 such that

igﬁlgaiize for all » in N

(cf. Theorem 1). Using this fact we can construct inductively sequences
(mg), (m;) of positive integers, sequences (J3), (K;) in 2, and a sequence
(™) in A for which

(1) m; < n < mit-2,

(i) J; = [mi, ne), Ki = [myg, m]N\Js,
and ]

(i) | 3 o) > ef2

JeJ;

for i =1,2,... Suppose that meiNe¢. There exist distinct numbers a
and B, and disjoint increasing sequences (p;) and (g;) of positive integers
such that @, —a and x4 — B )

Let P = {p;} and let @ = {g;}. Let o be a permutation for which
o(p;) = ¢; and o(g) =psfor i =1,2,... Let y; = &), and let ¥ = (yy).
Then z = aw— fyel, and 2, — a®— p* =y (say) # 0, and 2, — 0. There
exists a permutation = for which

T(Qwo) =p, (UE) <0,

ni

ey — ¥l < g[8 ) 1o

==

tor j in J;
and

ny
el < lvlef8 D) 1ol for j in K.

Koty
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Then
‘"'1: ” - < ., ..
' ()
[ Y 2 | = | Dagald+ X apaf?|
Fe=my jeJy jeKy
=y Y afd| = leg—rllaf|— 3 legyaf)
: gedy jeJj JeKy

= ylef2— [y e/8—ly|e[8 = |y|e/4.

o0
But ) 'z, is convergent, so that A cannot be equicontinuous.
f=1 .

THEOREM 3. Suppose that (C,) is satisfied. If A < ¢, or if A & ¢, (SBy)
is satisfied. If A < ¢ and A & ¢y, (SB) 18 satisfied if and only if the topology
of A is weaker than the topology of uwiform convergence on the compact sets
of Tt

If 4 = 1%, 4 has the product topology (Proposition 2) for which (SBg)
is certainly satisfied. I 4 < I® and A & ¢, the topology of 1 is weaker
than the topology of uniform convergence on the compact sets of It
(Theorem 2); under this finer topology (SB;) is satisfied, so that (SBj)
ig satisfied for the original topology. If 4 = ¢ and 4 & ¢, the required
result follows from Theorem 1.

Suppose finally that 2 = ¢, and that {»;} is not an unconditional

basis. There exists # in ¥ and o in P(W) for which 3 fy(#)o.q 18 not
i=1

convergent to 2. There therefore exists a continuous semi-norm p on F
and an increasing sequence (n;) of positive integers such that

nj
p(m——Zfam(w)maﬁ)) =1 forj=1,2,...

=1

Since # = D fi(»)w;, there exists g, such that
i=1

p(m—— Zfi(w)wi) <1/4  for » = q,.
=

We show inductively that there exist increasing sequences (j;), (my),
(p:) and (g;) of positive integers, sequences (J;) and (K;) in X, and a
sequence (f;) of maps, each 6; mapping K, into N, for which

() Ji=0'[1y'”‘7‘1;] 201, ¢,
(i) my = sup (j)-+1,

jeJ;
(1.11) H; = [q'i—l; m‘t]\Jh

icm
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(iv) ful@)] < ( Zp(m, ) for k=i,
=1
(V) Pi > My,
(vi) 6; is a 1-1 map of K; into [p;, o0),
and
(vii) ¢ = sup (j)+1

Feb;(K5)
for i =1,2,... Suppose that all terms have been defined for <7
Since ¢ maps N onto N, we can find j, for which (i) holds. J, m, and K,
are then defined immediately. Since A < ¢,, we can find p, for which (iv)
and (v) hold; since K, is non-empty, (vi) and (vii) follows easily. Now
define v as follows:

(1) 7(f) = 6:(j) if jeK,
(i) ' T(f) = 0 i jebi(EKY)
-and

(iid) 7(j) = j, otherwise.

It is easy to see that 7 is a properly defined element of P(N). Now
consider

my
2 fi ) (%) @5

7=gj_1+1
Qi1
= D fi(@a+ Zf,(,,m)w, Zf, o)
]EJ,L JeK; F=

-1

@) + Zf,m @) a5+ w—j_Z fi(@)@).

( Zfa(]) () Wa(a)

Thus

2| i% Fay®) > 1 (qul)ffx(n ])(21’(“’) —ig=1-

i:qi_“-l JeKy

1/4—1/4 =1/2.

So Z fun; 15 not convergent, contradicting (C,).

We now consider the effect of imposing simple topological conditions.

THEOREM 4. If B is sequentially complete and (Cy) is satisfied, either
Acgord=cor A=1010or A =o.
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If 2 ¢ 1%®, A has the product topology (Proposition 2). Since F is
sequentially complete, 4 = w. If A < 1° and A & ¢, the topology of 4
is weaker than the topology of uniform convergence on the compact
sets of I* (Theorem 2). Since A 2 ¢, and since I° is an AK-space under
the topology of uniform convergence on the compact subsets of 1%, it
follows from the sequential completeness of B that 2 = 1°. There remains
the case where 4 < ¢ and A ¢ ¢,. We shall show that if 4 is an equicon-
tinuous subset of A’, 4 is bounded in I!. 4, being equicontinuous, is coor-
dinatewise bounded. Let

By = sup Dl
i=1

As in Theorem 2, there exists o in 1 such that

for n =1,2,...

las—y] < %yl fori=1,2,...

lima; = y #0 and

iro0
Suppose that A is not bounded in I*. Then if » is any integer and
M > 0, there exists a finite subset J of [n, co) and an element & of 4

for which
PXIES: 2 lay| >

75]
Using this fact, it is possible to find inductively a sequence (a®¥)
in A4, an increasing sequence (n;) of positive integers and a sequence
(J;) in X satisfying

@) Ji < [1, nl,
(i) PXCUES DHTHEST
jeJy
(1ii) Ji < [2n_,+1, 'n,i] for i =2,3,...

and
(iv) | 3o =84 3 1afP) = 2B,

jeJy jeJg

Let K; = [1, n,]\Jy, and let A; = [
Now let

for ¢ =2,3,...

29 +1, m]\Jiford = 2,8, ...

ny My

Yy = ya]el+ Z ‘)hmBnl 1 ( 2 aﬂf)-

y=1 =2 ;i:n,j_lﬁ—l

n
(Since {] Zl‘ a;¢;} is bounded in A, and ¥ is sequentially complete, this

sum is convergent in 1. Since {z;} is a Schauder basis, the values of y,
are what one would expect.)

icm°®
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Now construet inductively a permutation ¢ for which

(v) a([1,2n;]) = [1,2n] fori=1,2,...,
(vi) if jelJ(J;), then o(j) =
i=1
and
(vil) o(K;) € [m+1,2n] fori=1,2,..

Now if 7 > 2,-
|Z”'a)?/u(7) —12“()?!‘

iZa‘i" a,-i (by the construction of )

(by (vi))

— -)—WB—

-1

>27 Byt |y Y af| - >“ a1y — w

j:]

)___ i)
i 3 1= 1 3 )

e

>27'B (

(by (iv)).
Also
(by (vii)) <27"']yl,

Hialle

| > %a| < BuSuplyey] <27
iE jeK;

so that
@/3—2""Yyl.

7'1: 2
1)
| D )=

J=2m;_1+1

But
o0
2 Yo(i)€i € Ay
=1

so that A is not equicontinuous, giving the required contradiction.

If now feco, (Zﬁ,el) is a Cauchy sequence in A in the I*-norm
topology. From Whad; has just been proved, this is finer than the original
topology. Thus (Z ﬁ.e,) is a Cauchy sequence in 1 in the original

topology; since E is sequentially complete, it is convergent, and
since {w;} is a Schauder basis, it must converge to f. Hence A2 ¢

sinee A & ¢, 4 = ¢.
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CororrARY 1. If F is sequentially complete and (C,) is -satisfied,
(8B,) is satisfied if and only if A +# c.

If (SB,) is satisfied, {»,} is an unconditional basis, so that F is bounded-
multiplier convergent ([2], p. 59); that is, 4 is solid. Since ¢ is not solid,
A # ¢. The converse follows from Theorems 3 and 4. Interpreting this
result in terms of sequence spaces, we obtain :

COROLLARY 2. If u is a sequentially complete symmetric AI-space,
either u =c¢ or u s solid.

Let us now- give some examples to show that all the possibilities
mentioned in Theorem 4 can occur. There are clearly plenty of spaces
with Schauder bases satisfying the hypotheses of the theorem, for which
A <S¢ If B =17 with any locally convex topology between the weak
topology o (i, 1) and the Mackey topology z(I*,1"), ¥ is sequentially
complete, and {e;} is a Schander basis for which 1 =1*. If ¥ = o with
the produet topology, B is complete; again {¢;} is a Schauder basis for
which 4 = w. Finally let # =¢ and let

D = {D D is bounded in I*

‘D'Ln }

B is an AK-space under the topology of Z-convergence, so that
{e;} is a Schauder basis for H, and A = ¢. We show that F is complete
under this topology. We can give 1 the topology of Z-convergence;
since there is a base of = (I°, I")-closed neighbourhoods of 0 for this topo-
logy, since the topology of Z-convergence is finer than »(I®,7'), and
since I iy 7(I®, I*)-complete, I® is complete under the topology of 2-
convergence ([1], p. 11, Proposition 8). It therefore suffices to show
that ¢ is closed in I in this topology. Suppose that yel®\e. There exish
distinet numbers « and g, and increasing sequences (ng), (m;) of positive
integers such that Yn, > a a0d ¥, — B. By taking subsequences if neces-

sary, we may suppose that n; < m; < my,, that [Yn,— a| < $la—p)
and thab [ym,—pB| < tla—p| for ¢ =1,2,... Now let
21‘
o =27 3 (6y,—¢tm),
f=gr—14
and let D = {a®:reN}. Clearly De2.
Further if wec, there exists ¢ such that o;— ;] < }|a— ] for i, =

If, then, ny—13 g,

of

<y_m,a(r)>=2_r 2 (?/ni_‘?/mi—mn,;‘l‘wmi)
i=27—‘:+1
=27 3 (a—p)+ 2 = @) (B )+ (2 — 02

i=gf—lyg i= 2"-—1+1

icm°®
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8o that
IKy—2, a" > Ha— pl—}la—fl —}la—pl ~}la— Bl = }la—fl.
Hence
sup|<y—ax, dy| > }la—p| for any x in ¢,
deD

so that y ¢¢, and ¢ is closed in I*.

TeEEOREM b. If B s barrelled and (C,) is satisﬁed either A < ¢, or
A & 1% In either case, (SBj) s satisfied.

If A = 1®, then ¥ = ()’ =1 But A’ = 4* ([6], Theorem 2, Cor-
ollary), so that any norm-bounded subset of I* is weakly bounded in A/,
and is therefore equicontinuous. The topology of A is thus finer than the
I®-norm topology. Since A is an AK-space, it follows that A < ¢,. The
final result follows from Theorem 3.

§ 4. Further conditions. In this section we consider the relationship
between the conditions (SBj), (SB,), (SBy), (SB;) and (C,), (Cs) and (Cs).
If B is given the weak topology o(E', B), {fi} is a Schauder basis
for F'. The next proposition follows from the deflmtlons, and the fact
that a subset of a locally convex space is bounded if and only if it is
weakly bounded.
Proposirion 3. Consider (B, o(H , E)), with Schauder basis {f3}.
(i) (Cy) is satisfied for B if and only if (SBy) 4s satisfied for E'.
(i) (SBy) is satisfied for B if and only if (C,) is satisfied for E'.
(ifl) (C,) 4s satisfied for B if and only if (SBs) is satisfied for H'.
(iv) (SB;) is satisfied for B if and only if (Cy) s satisfied for E'.
(v) (SB)) is satisfied for B if any only if it is satisfied for H'.
PROPOSITION 4. If A # @ and either (O3) or (SBg) is satisfied, {a:}
is bounded in H.
Suppose that i + ¢, and that {x;} is unbounded. Let aei\ ¢, and
let p be a continuous semi-norm on F which is unbounded on {x;}.
Let J = {jy, jay ...}, With j; < j5.<<..., be an infinite set with an
infinite complement with the property that oy, # 0 for any 4. Let o be

a permutation for which
7i—1

P (%) = |%](}7 ( Z ak!ﬂa(k)) —l—i),

k=1

for ¢ =1,2,...,and let v = o~*. Then

f3—1

7
P (2 akm‘,(k))' = P(%‘ima(f«;)) s (Z

akma(k)) =1
© k=1 k=1
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, 8o that (SB;) is not satistied. Also
a(is) “(’!'1);1

i < plagangy) = (Y wlme— ) apm]

’ k=1 fe=1

a(dy) a(ig)—1

<o(Y wea) +2( 3 o),

k=1

for i=1,2,...

so that (O, is not satistied.

THEOREM 6. Suppose that {x;} is bounded in B and A < 1° If (Cy)
is satisfied, so is (Cp). If (SB;) is satisfied, so is (SBy).

Suppose that (0,) is not satisfied. There exists an element x of W
and a continuous semi-norm p on B such that

b e\ (Z foy(@)a) = oo.

We shall show that it is possible to find a sequence (o;) in P(N)
and an increasing sequence (n;) of positive integers such that

() p(Zfa(j)(w)mi)>i for i=1,2,...,
=1
(ii) deo;[1,my] fori=1,2,...
and
(iif) o () = oiy(j) for 1<j<m, and for i =2,3,...

We can find ¢ in P(N) and a positive integer m such that

p(Zfaa)(w)m/) 1+ (@) 510 (2)-

Tt o='(1) < m, We can take o, = o and n; = m. If ¢7 (1) > m, we
define a new permutation v by setting v(m—+1) =1, ¢ ~1(1) = e(m-1)
and 7(i) = o(i), otherwise. Then putting ¢, =7, and ny = m+1, (i) is
satisfied and

i gfw-)(m)mj)

m

=P (Z f"(j) (m) @y _|_f1 (“") mm.pl)

=P (j;f"(ﬂ (@) m}') ’fl ]T) L3 =1,

Suppose now that oy, ..., 0,y and ny, ..., N_; have been defined
to satisty conditions (i), (ii) and (iii). We can find ¢ in P(N) and a positive
integer % > m,_, such that

k
P (g;fem ()

@) = 1+ (4n,, 1) i 0)) | 50D ().
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Let .
B = 9_1‘71'—-1([15 o IN[L, 2p1],
8 = o([1, 1 )N or_1([1, 7p_y]),
IT'=(RE~[1,Ek])v[1,n]
Then |R| = |8], so that there exists a 1-1 map 6 of R onto S.

Now let
oy (2)  for 1 <4 << Ny,
(i) = { 0(4) for ¢ in R,
e() otherwise.

A straightforward verification shows that meP(N). Further

k k
2 @3 = X fap(@)ar— D) fup(@y+ 3 ()
so that - o e
k k
p (j;:f”(f)(m)m") =D (g{‘fa(i)(m)“f) —p (2 Tot (1’)937') —p (Zf,,(f)(m) 'x',)
= v+ (dn,_ +1)||(fi(2) )Hmsupp (’1'1)"9|T|“( )

= r+|[(fu@)osupp (@),

Yo ()

since |T| < 20,_,. If 2~ () < k, we can take ¢, = & and n, = k. Otherwise
we take n, = k41, and alter m on k+1 and =~'(r), as before. This com-
pletes the proof of the induction. Now let

N 0, (%)
uli) = ‘0,- Q)

#is a 1-1 map of N into itself (by (iii)), and condition (ii) ensures
that x4 maps N onto N, so that geP(N). Since

n
p(Zf,,mwj)) =t fori=1,2,...,
=1

(Cy) is not satisfied.
The proof that (SBj;) implies (SB;) is extremely similar, and the
details are omitted.
THEOREM 7. If 2 = ¢y and (C,) is satisfied, then (SB;) is satisfied.
Let weF, and let p be a continuous semi-norm on F. Let

it 4 < ny,

it mp_,<i < my.

n

M = sup su
nd{’j asP(p p (7=1f5 @ (03 T’)
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Suppose that oeP(N) and that JeX. Let m =njl%xcr(j), and let

= [1, m]\o(J). Bince A < ¢, there exists n, such that

NE]

o) < (3 pla+1)"  for i m.

7

I
-

There exists 7 in P(N) such that 7o (j) = j for j in J and (4} =y

if {eL. Then
m
Zf’l-(w Bogiy = Zf'r(k) () g, = fo(k)(w)wk— Zfr(lc)(w) Ly
=1 kel

jed
so that

(3 filmays) < M+1.

e

Now suppose that geP(N), that neN and that 6 = (6, ..., 8y) 18
an n-tuple of complex numbers, with |d; <1 for 1 <7 < n. We can
find an n-buple (vy,..., ys) of dyadic complex numbers, with |y <1
for 1 <4 < n, for which

P (Zn‘ (5= 89 (2)0y) < 1

We can also write

Z 117 (@) Bay)
= (2 fi(@) Zfi ) @ogsy 6 Zfi ) Doy — b ny mc(y))
=0 jedy jeDpg

where the Ay, By, O and Dy are suitable subsets of [1,n].

Thus
( Z yify(@ w,,(,,)

=1

8(M+1),

80 that

P (Z 61f¢(m)w,(j)) < 8M+9.
F=1
OOROLTARY. If A S ¢, A & ¢, and (SBy) is satisfied, then (SBj) is
satisfied.
It follows from the eonditions on A.that. A’ = ¢,. The result follows
from the theorem and Proposition 3.
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THEOREM 8. If A = 1% and 1 & ¢, the following are equivalent:

(i) (8By) is satisfied;

(ii) (SB,) s satisfied;

(iii) (C,) 48 satisfied;

(iv) A 1%

It is clear that (iv) implies (ii), and (i) implies both (ii) and (iii).
‘We show that (ii) implies (iv) and that (iii) implies (iv).

Suppose that a = (a;) ¢1*. Let b = (b;)eAN\e¢; so that there exist
distinet numbers o and $, and disjoint increasing sequences (n;) and (m;)
of pasitive integers such that b,, — ¢ and by, — f.

Suppose first that (C,) is satisfied. Since a ¢I!, given M > 0 there
exigts a finite set J for which

DS ONUES ~

Let m = sup (j), and let K =
jeJ
and 7 such that

[1, m]\J. There exist permutations o

1 1 ..
oy —al S la—fFl, by —fl < pla—pl  for jin J

and o(j) = 7(j) for j in K. Then

\; ba(f)a’f_’g; bém“il = t;‘; (ba('i)_br(i))ail
=3 (e—pray| — 2 1ty = allarl— 3 1oy = Bl
jeJ jeJ
>3 |a—ﬂ|Zia,l——}a~ﬁ|Zlafl——sa—ﬂlz‘lan

jel feJ
It therefore follows that a4¢A’.
Suppose next that (SB;) is satisfied. If a ¢¢, there exist distinet num-
bers y and ¢ and disjoint increasing sequences (p;) and (g;) of positive
integers such that a,, — y and a,, — 6. We can suppose that N\({m;}

w {n}) and NN\({p;} v {¢:}) are both infinite; let ¢ and = be permuta-
tions such that

o(m;) = P, ) = Pq

and such that o(j) = 7(j) otherwise. Then a straightforward ealculation

gshows that
n n
S‘lp‘zbi“c(f)_zbl“r(i)t = o0,
n Je=1 Faml

8tudia Mathematica, t. XXX, z. 2 12

T(mg) = qi, o) =4q; 7 fori=1,2,...
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[o)
so that a¢A’. Tf, next, aec\ey, Y bia; is not convergent, so that ag¢d’.
=1

Thus ' < ¢,. But since (SB}) is satistied, (C,) is satistied for (B', o(¥', B))
(Proposition 3), (SB}) is satistied for (B', o(E', B)) (Theorem 7) and (SB;)
is satisfied for E (Proposition 3). :

Let us now relate the various implications as the size of i varies,
and give some examples. In the diagrams which follows, arrows denote
implications, and conditions included in a bracket are equivalent.

Ouse 1. 4 = ¢. In this case (SB), (SB;), (Cy) and (C,) are always
satistied. When A is given the direet sum topology nome of (SB3), (3Bj)
or (C,) is satisfied. .

Case 2. 2 < ¢, and A # ¢

[(8B5), (C)] = [(SB1), (Ca), (0s)] = [(SBy), (SB)].

Let B =cs, let F = ¢ @span (¢), and give F the weak topology
o(B, F) (for the natural duality between E and F). {¢} is a Schauder
basis for B for which 4 = ¢s < ¢,, and for which (SB;) is satisfied, while
(C,) is not satisfied.

Case 3. 2 < ¢ and A & ¢.

(SBy) = [(SBy), (SBy), (SB;)]
¥ 4
(Cy) = 1(Ca), (Cs)]

Give the space F of the preceding example the weak topology o (F, ).
{e;} is a Schavder basis for F' which satisfies (0;) and not (SB,), and for
which the conditions on A are satisfied.

Consider next ¥ = ¢, with the topology of 2-convergence, as described
in § 3. Under the Schauder basis {¢;}, (0;) and (SB;) are satisfied, whereas
(SB,) is not (Theorem 4, Corollary 1). Thus (C,) and (SBy) do not together
imply (SBj;).

Case 4. A = 1° and. 2 & c.

[(8By), (011 = [(SB1), (SBy), (8Bj), (Ca), (€y)].
Case 5. A& 1™

[(SBy), (C1)] = [(SBy), (Cy)].

In this case, if (8Bg) or (C,) is satistied, the topology on A must be
the produet topology (arguing as in Proposition 2); in particular (8B;)
or (C,) can never be satisfied.

We end this section with a theorem in which topological conditions
are imposed.
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TuEoREM 9. If B is sequentially complete and barrelled, then (SBs)
is satisfied if either (SBy) or (C,) is satisfied.
The proof follows the proof of the Corollary to the Theorem of [10].
Suppose that (SB;) is satisfied. Let P be a colleetion of continuous semi-
norms on F which defines the topology of E. For each p in P, let

n
%) = Sup sup 1 (9) Boiy) -
g(@) ngﬂ;ﬁp(;lf( )ugh)

Each such ¢ is a semi-norm on FE (gince (3B,) is satisfied) which is
lower semi-continuous, and therefore continuous (since E is barrelled —
cf. [6], §2).

Further

a(@) > swp ( 3 fi(e)m) > p (@),

=1

g0 that the collection § of semi-norms defined in this way defines the
topology of E. Now if zeE, ceP(N) and ¢<@,

q (_Zﬂ: film) %’u(i)) =q (Zn: fi(x) (1,',;),

00
so that 3 fi(w)a,q is convergent (since E is sequentially complete).
i=1

The fact that (SB,) is satisfied now follows easily. The proof is very sim-
lar when (C,) is satisfied, and is omitted.

Notice also that when the hypotheses of the theorem are satisfied,
{T:}epv) 18 an equicontinuous group of linear operators from E into
itself (ef. [5], Theorem 2). :

The condition that E is barrelled cannot be relaxed in this theorem
(consider ¢, with the topology of Z-convergence). Nor can the condition
that B is sequentially complete be relaxed, as the following example
shows. Let A be the set

£

{a: aew,q; =0 or 1 and (
7

a,,-)/n —0 as n — oo}

I
-

and let I = {z:z = a-y, where acA and yel'}. Ty is o linear subspace
of 1! which is barrelled under the I'-norm topology ([7], p- 372). {es} is
a Schauder basis for 7y, for which (SB;) is satisfied, whereas (C,) is not.

§5. A counterexample. We give an example of a’ Banach space
with a Schauder basis which satisties (SB,), but not (SB,), contradieting
an assertion of Singer [10].
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Tet O be the collection of all increasing sequences of elements of I.
For each m = (m;) in 0, let a, be the sequence defined by (am) = ke
if ¢ = my, and (am); = 0 otherwise, and let 4 = {an: me0}. Let

Ay = {fr Lew, i\ﬁ)éjlwiai[ < oo},
and let
lella = sup > jocail.

€L qml
|l |« is & norm on i, under which A4 is a Banach space (ef. [8], or [4]:
Proposition 3). Let B be the closure of ¢ in A4. It is clear that {e;} is an
unconditional basis for B, and that (SB,) is satistied. If (SB;) were satis-
tied, {T,: 0P (N)} would be equicontinuous (see the remark after Theorem
9)-that is there would exist M such that [T, < M for all o in P(N).
We shall show that this is not so.
Let ™ be the sequence defined by of? = (r+1—4)7*, for 1 <i <,
and of) — 0 otherwise. We shall show first that the sequence {a:r
=1,2,...} is bounded in K. For fixed r, there exists a finite seb
fy < ... < ng <r of integers such that
8
le®le = ) {i(r+1—na)) ™"
i=1
Let m; =n; for 1 <i < s, and let m; = ». Then
0 < laLa— D (itr+1—mg) " = (s(r+1—ng)|— s~
i=1
This implies that #, =r. A similar argument then shows that
n; =r+i—s, for 1 <4 <s, so that '

8

o = D (ils1— )

-1
@12
2 du §—1
<—-——‘+2 pr———— <\;l+23in"l(——'~) 1:/;;]"‘71"
T ostl Vo (s41—a) 8--1 |

Now let o, be defined by o,(¢) = r+1—i for 1 <4 <7, and a,(4) = 4
otherwigse. Then

To(a") = (1,277, ..,271%,0,0,...)

and

r

ITo, (@)la = Y57

=]
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Sinee Y (57! is divergent, it follows that {T,: ceP(N)} is mnot
i=1

uniformly bounded.
The error in Singer’s argument lies in asserting that his inequality
(21) follows from (SB,) and his Lemma 2.
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