100010

75.00

Literaturnachweis

- [1] N. Bourbaki, Intégration, chap. 1-4, Paris 1965.
- [2] Intégration, chap. 5, Paris 1956.
- [3] I. M. Gelfand und N. J. Wilenkin, Verallgemeinerte Funktionen IV, Berlin 1964.
- [4] A. N. Kolmogorov, A note on the papers of R. A. Minlos and V. Sazonov, Theory of Prob. 4 (1959), S. 221-223.
- [5] E. Nelson, Regular probability measures on function space, Ann. Math. 69 (1959), S. 630-643.
- [6] V. Sazonov, A remark on characteristic functionals, Theory of Prob. 3 (1958), S. 188-192.
- [7] W. v. Waldenfels, Zur mathematischen Theorie der Druckverbreiterung von Spektrallinien, Z. Wahrscheinlichkeitstheorie 6 (1966), S. 65-112.

Reçu par la Rédaction le 1. 8. 1967

Symmetric bases of locally convex spaces

b:

D. J. H. GARLING (Cambridge)

§ 1. Introduction. Let E be a Hausdorff locally convex space, with Schauder basis $\{x_n\}$, and let $\{f_n\}$ be the sequence of continuous linear functionals biorthogonal to $\{x_n\}$. In the case where E is a Banach space, Singer [9] introduced the following notion of symmetric basis: $\{x_n\}$ is a symmetric basis if

$$(\mathrm{SB}_1) \sup_{\sigma \in \mathcal{P}(N)} \sup_{\substack{|b| < 1 \\ |b| < \infty}} \left\| \sum_{i=1}^n \delta_i f_i(x) x_{\sigma(i)} \right\| < \infty \quad \text{ for all } x \text{ in } E.$$

P(N) denotes the set of all permutations of $N = \{1, 2, 3, ...\}$. As far as locally convex spaces are concerned, the condition (SB_1) has the following natural analogue:

$$(\operatorname{SB}_1')\left\{\sum_{i=1}^n \delta_i f_i(x) x_{\sigma(i)} \colon |\delta_i| \leqslant 1, \ n \in N, \ \sigma \in P(N)\right\} \text{ is bounded} \quad \text{in} \quad E \quad \text{for each } x \text{ in } E.$$

In [10], Singer investigated the relationship between (SB_1) and six other conditions $((SB_2)-(SB_7))$. In this paper we consider the relationship between (SB_1') and six other conditions $((SB_3), (SB_4'), (SB_5'), (C_1), (C_2)$ and (C_3) . Of these (SB_3) is identical to Singer's $(SB_3), (SB_4')$ and (SB_5') are analogous to Singer's (SB_4) and (SB_5) , and $(C_1)-(C_3)$ are new. In detail, these conditions are:

(SB₃) Every permutation $\{x_{\sigma(n)}\}$ of the basis $\{x_n\}$ is a basis of the space E; equivalent to the basis $\{x_n\}$.

(If $\{x_n\}$ is a basis of a space E, the sequence space associated with $\{x_n\}$ is defined to be the linear space of all sequences $a=(a_i)$ for which $\sum_{i=1}^{\infty} a_i x_i$ is convergent. A basis $\{x_n\}$ of a space E is equivalent to a basis $\{y_n\}$ of a space F if the sequence space associated with $\{x_n\}$ is the same as the sequence space associated with $\{y_n\}$.)

$$(\operatorname{SB}_4') \quad \left\{ \sum_{i=1}^n f_i(x) x_{\sigma(i)} : n \in N, \ \sigma \in P(N) \right\} \text{ is bounded in } E \text{ for each } x \text{ in } E.$$

$$(\operatorname{SB}_5') \quad \left\{ \sum_{i=1}^n f_i(x) x_{\sigma(i)} : n \in N \right\} \text{ is bounded in } E, \text{ for each } x \text{ in } E \text{ and each } \sigma \text{ in } P(N).$$

Locally convex spaces

(C₁) The sequence space associated with $\{x_n\}$ is symmetric.

(A sequence space μ is *symmetric* if the sequence $a_{\sigma} \in \mu$ whenever $a \in \mu$ and $\sigma \in P(N)$, where a_{σ} is defined by $(a_{\sigma})_i = a_{\sigma(i)}$.)

$$(\mathrm{C}_2)\ \big\{\sum_{i=1}^n f_{\sigma(i)}(x)x_i\colon\ n\,\epsilon N,\,\sigma\,\epsilon P(N)\big\}\ \text{is bounded in E for each x in E}.$$

(C₃) $\left\{\sum_{i=1}^{n} f_{\sigma(i)}(x) x_{i} : n \in N\right\}$ is bounded in E for each x in E and each σ in P(N).

A little thought shows that the following pattern of implications always holds:

$$\begin{array}{ccc} (\operatorname{SB}_3) \Rightarrow (\operatorname{SB}_5') \\ & & & \uparrow \\ (\operatorname{C}_1) & & (\operatorname{SB}_4') \\ & & & \uparrow \\ (\operatorname{C}_2) \Rightarrow (\operatorname{C}_3) & \Leftarrow & (\operatorname{SB}_1') \end{array}$$

Notice also that (SB_3) implies that $\{x_n\}$ is an unconditional basis, and that if $\{x_n\}$ is an unconditional basis, then (C_1) implies (SB_3) . In § 3 we consider the circumstances under which (C_1) implies (SB_3) . It will be seen that this depends to a large extent upon the size of the sequence space associated with $\{x_n\}$. In § 4 we consider the other conditions mentioned above.

In [10], Singer asserted that (SB_1) - (SB_7) are all equivalent. In § 5, however, we give an example of a Banach space E with a Schauder basis $\{x_n\}$ which does not satisfy (SB_3) , but which does satisfy.

 (SB_2) $\{x_n\}$ is an unconditional basis, and for every increasing sequence of positive integers (n_i) the basis $\{x_{n_i}\}$ of the space $[x_{n_i}]$ is equivalent to the basis $\{x_n\}$.

([x_{n_i}] is the closed linear subspace of E spanned by the sequence (x_{n_i}).)

§ 2. Preliminaries. We denote by λ the sequence space associated with $\{x_i\}$. λ is naturally algebraically isomorphic to E, and we give λ the topology induced by this isomorphism from the topology of E. It then follows that properties of E are reflected in properties of λ , and conversely, and many of the results established belong properly to the theory of topological sequence spaces. λ , with the induced topology, is an AK-space (1) and $\{e_i\}$ is a Schauder basis for λ (where $(e_i)_j = \delta_{ij}$). We can,

and shall, identify λ' , the topological dual of λ , with a linear subspace of

$$\lambda^{\beta} = \left\{ y \colon y \in \omega, \sum_{i=1}^{\infty} x_i y_i \text{ is convergent for each } x \text{ in } \lambda \right\}$$

(ω denotes the linear space of all sequences, φ the linear subspace of sequences with finitely many non-zero terms, e the sequence $(1, 1, \ldots)$; otherwise we use the terminology of [3]).

We shall also use the following terminology. If m and n are positive integers, with $m \le n$, $[m,n] = \{i : i \in N, m \le i \le n\}$, and $[m,\infty) = \{i : i \in N, i \ge m\}$. Σ denotes the collection of all finite subsets of N, and Σ_r the collection of all finite subsets of $[r,\infty)$. By a *dyadic* complex number we mean a complex number of the form $(p+iq)2^{-k}$, where p,q and k are integers. Finally we use "weaker than" and "finer than" in the broad sense (weaker than or equal to, finer than or equal to).

§ 3. The conditions (SB₃) and (C₁). Suppose that (C₁) is satisfied. If

$$x = \sum_{i=1}^{\infty} f_i(x) x_i \epsilon E$$

and $\sigma \in P(N)$, let

$$T_{\sigma}(x) = \sum_{i=1}^{\infty} f_{\sigma(i)}(x) x_i.$$

 T_{σ} is clearly a linear map of E onto itself.

Proposition 1. If (C_1) is satisfied and each map T_σ is continuous, then (SB_0) holds.

Suppose that $x \in E$ and that $\sigma \in P(N)$. Let $\tau = \sigma^{-1}$. Then $T_{\tau}(x_j) = x_{\sigma(j)}$, so that

$$T_{\tau}\left(\sum_{i=1}^n f_i(x)x_i\right) = \sum_{i=1}^n f_i(x)x_{\sigma(i)}.$$

But

$$\sum_{i=1}^n f_i(x) x_i \to x \quad \text{in } E,$$

so that the continuity of T_{τ} implies that $\sum_{i=1}^{\infty} f_i(x) x_{\sigma(i)}$ is convergent; from this, (SB₃) follows easily.

COROLLARY. If E is barrelled and fully complete, then (C_1) implies (SB_3) .

For each map T_{σ} has a closed graph. Note that this corollary applies in particular to Banach spaces and Fréchet spaces. In fact, the full completeness condition is redundant (Theorem 5).

⁽¹⁾ A sequence space E with a locally convex topology τ is called an AK-space if the inclusion map $(E, \tau) \to \omega$ is continuous and for each x in $E, P_n(x) \to x$, where $P_n(x)$ has the first n coordinates the same as x and the others equal to zero (cf. [5] and [11]).

Locally convex spaces

167

PROPOSITION 2. If (C_1) is satisfied and $\lambda \not\equiv l^{\infty}$, then the topology on λ is the product topology.

Suppose that there exists a continuous semi-norm p on λ such that $K = \{i \colon p(e_i) \neq 0\}$ is infinite. Let J be an infinite subset of K with an infinite complement, and let $\alpha \in \lambda \setminus l^{\infty}$. Then there exists σ in P(N) such that $|\alpha_{\sigma(i)}| \geqslant (p(e_i))^{-1}$ for j in J, so that $\sum_{i=1}^{\infty} \alpha_{\sigma(i)} e_i$ is not convergent, giving a contradiction. Thus any continuous semi-norm on λ vanishes on all but finitely many e_i , and the topology of λ is the product topology.

THEOREM 1. Suppose that $\lambda \subseteq c$ and that $\lambda \not\subseteq c_0$. $\{x_i\}$ is an unconditional basis if and only if the topology of λ is weaker than the topology of uniform convergence on the compact sets of l^1 .

If $x \in E$, $\sigma \in P(N)$, and A is relatively compact in l^1 ,

$$\sup_{a\in\mathcal{A}} \Big| \sum_{i=n}^{\infty} f_{\sigma(i)}(x) \, a_{\sigma(i)} \Big| \leqslant \| \big(f_i(x) \big) \|_{\infty} \sup_{a\in\mathcal{A}} \sum_{j=n}^{\infty} |a_{\sigma(j)}|.$$

Since the right-hand side of this inequality tends to 0 as $n \to \infty$ ([3], p. 338), the condition is sufficient. Suppose conversely that A is an equicontinuous subset of λ' which is not relatively compact in l^1 , so that there exists $\varepsilon_1 > 0$ such that

$$\sup_{m \geqslant n \geqslant r} \sup_{a \in \mathcal{A}} \sum_{i=n}^{\infty} |a_i| \geqslant \varepsilon_1 \quad \text{ for all } r \text{ in } N.$$

It easily follows from this that there exists $\varepsilon>0$ such that, given r in N, there exists a finite subset J of $[r,\infty)$ and an element a of A for which

$$\Big|\sum_{j\in J}a_j\Big|\geqslant rac{3}{4}\sum_{j\in J}|a_j|\geqslant arepsilon.$$

We can therefore find a sequence (J_i) in Σ and a sequence $(a^{(i)})$ in A such that

$$\left|\sum_{i \in I_i} a_j^{(i)} \right| \geqslant \frac{3}{4} \sum_{i \in I_i} |a_j^{(i)}| \geqslant \varepsilon$$

and

$$\sup_{i \in J_i}(j) \leqslant \inf_{i \in J_{i+1}}(j) + 2 \quad \text{ for } i = 1, 2, \dots$$

Let $k_i = \sum_{j=1}^i |J_j|$. There exists σ in P(N) such that $\sigma([1, k_1]) = J_1$, and $\sigma([k_{i-1}+i, k_i+i-1]) = J_i$ for $i=2,3,\ldots$ It follows from the conditions on λ and the fact that $\lambda \supseteq \varphi$ that there exists α in λ such that

$$\lim_{i \to \infty} a_i = \gamma \neq 0 \quad \text{ and } \quad |a_i - \gamma| \leqslant \frac{1}{4} |\gamma| \quad \text{ for } i = 1, 2, \dots$$

Now

$$\sum_{j=k_{i-1}+i}^{k_i+i-1} lpha_{\sigma(j)} e_{\sigma(j)} = \sum_{j \in J_i} lpha_j e_j,$$

so that

$$\begin{split} \left| \left\langle \sum_{j=k_{i-1}+i}^{k_i+i-1} a_{\sigma(j)} e_{\sigma(j)}, \, a^{(i)} \right\rangle \right| &= \left| \sum_{j \in \mathcal{J}_i} a_j a_j^{(i)} \right| = \left| \gamma \left(\sum_{j \in \mathcal{J}_i} a_j^{(i)} \right) + \sum_{j \in \mathcal{J}_i} \left(a_j - \gamma \right) a_j^{(i)} \right| \\ &\geqslant \frac{3}{4} \left| \gamma \right| \sum_{j \in \mathcal{J}_i} \left| a_j^{(i)} \right| - \frac{1}{4} \left| \gamma \right| \sum_{j \in \mathcal{J}_i} \left| a_j^{(i)} \right| \geqslant \frac{1}{2} \left| \gamma \right| \varepsilon. \end{split}$$

Thus $\sum_{i=1}^{\infty} a_{\sigma(i)} e_{\sigma(i)}$ is not convergent, and the basis is conditional.

THEOREM 2. If $\lambda \subseteq l^{\infty}$, $\lambda \not= c$, and (C_1) is satisfied, then the topology of λ is weaker than the topology of uniform convergence on the compact sets of l^{1} .

If A is not relatively compact in l^1 , there exists $\varepsilon > 0$ such that

$$\sup_{J \in \mathcal{E}_r} \sup_{a \in \mathcal{A}} \Big| \sum_{j \in J} a_j \Big| \geqslant \varepsilon \quad ext{ for all } r ext{ in } N$$

(cf. Theorem 1). Using this fact we can construct inductively sequences (m_i) , (n_i) of positive integers, sequences (J_i) , (K_i) in Σ , and a sequence $(a^{(i)})$ in A for which

(i)
$$m_i \leqslant n_i \leqslant m_i + 2$$
,

(ii)
$$J_i \subseteq [m_i, n_i], K_i = [m_i, n_i] \setminus J_i$$

and

(iii)
$$\left|\sum_{i\in\mathcal{I}_i} a_i^{(i)}\right| \geqslant \varepsilon/2$$

for $i=1,2,\ldots$ Suppose that $x \in \lambda \setminus c$. There exist distinct numbers α and β , and disjoint increasing sequences (p_i) and (q_i) of positive integers such that $x_{p_i} \to \alpha$ and $x_{q_i} \to \beta$.

Let $P=\{p_i\}$ and let $Q=\{q_i\}$. Let σ be a permutation for which $\sigma(p_i)=q_i$ and $\sigma(q_i)=p_i$ for $i=1,2,\ldots$ Let $y_i=x_{\sigma(i)}$, and let $y=(y_i)$. Then $z=\alpha x-\beta y\in\lambda$, and $z_{p_i}\to\alpha^2-\beta^2=\gamma$ (say) $\neq 0$, and $z_{q_i}\to 0$. There exists a permutation τ for which

$$\tau\bigl(\bigcup_{i=1}^\infty (J_i)\bigr)\subseteq P\,, \qquad \tau\bigl(\bigcup_{i=1}^\infty (K_i)\bigr)\subseteq Q\,,$$

$$|z_{r(j)} - \gamma| \leqslant |\gamma| \varepsilon / 8 \sum_{k=m}^{n_i} |a_k^{(i)}| \quad \text{ for } j \text{ in } J_i$$

and

$$|z_{r(j)}| \leqslant |\gamma| \varepsilon \left| 8 \sum_{k=m_i}^{n_i} |a_k^{(i)}| \quad \text{ for } j \text{ in } K_i. \right|$$

Then

$$\begin{split} \left| \left\langle \sum_{j=m_i}^{n_i} z_{\tau(j)} e_j, \, a^{(i)} \right\rangle \right| &= \left| \sum_{j \in J_i} z_{\tau(j)} \, a_j^{(i)} + \sum_{j \in K_i} z_{\tau(j)} \, a_j^{(i)} \right| \\ &\geqslant \left| \gamma \sum_{j \in J_i} a_j^{(i)} \right| - \sum_{j \in J_i} \left| z_{\tau(j)} - \gamma \right| \left| a_j^{(i)} \right| - \sum_{j \in K_i} \left| z_{\tau(j)} \, a_j^{(i)} \right| \\ &\geqslant \left| \gamma \right| \varepsilon / 2 - \left| \gamma \right| \varepsilon / 8 - \left| \gamma \right| \varepsilon / 8 = \left| \gamma \right| \varepsilon / 4 \,. \end{split}$$

But $\sum_{j=1}^{\infty} z_{\tau(j)} e_j$ is convergent, so that A cannot be equicontinuous.

THEOREM 3. Suppose that (C_1) is satisfied. If $\lambda \subseteq c_0$ or if $\lambda \nsubseteq c$, (SB_3) is satisfied. If $\lambda \subseteq c$ and $\lambda \nsubseteq c_0$, (SB_3) is satisfied if and only if the topology of λ is weaker than the topology of uniform convergence on the compact sets of l^1 .

If $\lambda \subseteq l^{\infty}$, λ has the product topology (Proposition 2) for which (SB₃) is certainly satisfied. If $\lambda \subseteq l^{\infty}$ and $\lambda \nsubseteq c$, the topology of λ is weaker than the topology of uniform convergence on the compact sets of l^1 (Theorem 2); under this finer topology (SB₃) is satisfied, so that (SB₃) is satisfied for the original topology. If $\lambda \subseteq c$ and $\lambda \nsubseteq c_0$, the required result follows from Theorem 1.

Suppose finally that $\lambda \subseteq c_0$, and that $\{x_i\}$ is not an unconditional basis. There exists x in E and σ in P(N) for which $\sum_{i=1}^{\infty} f_{\sigma(i)}(x) x_{\sigma(i)}$ is not convergent to x. There therefore exists a continuous semi-norm p on E and an increasing sequence (n_i) of positive integers such that

$$p\left(x-\sum_{i=1}^{n_j}f_{\sigma(i)}\left(x
ight)x_{\sigma(i)}
ight)\geqslant 1 \quad ext{ for } j=1,2,\ldots$$

Since $x = \sum_{i=1}^{\infty} f_i(x) x_i$, there exists q_0 such that

$$p\left(x-\sum_{i=1}^n f_i(x)x_i\right) \leqslant 1/4$$
 for $n \geqslant q_0$.

We show inductively that there exist increasing sequences (j_i) , (m_i) , (p_i) and (q_i) of positive integers, sequences (J_i) and (K_i) in Σ , and a sequence (θ_i) of maps, each θ_i mapping K_i into N, for which

(i)
$$J_i = \sigma[1, n_{i_i}] \supseteq [1, q_{i-1}],$$

$$m_i = \sup_{j \in J_i} (j) + 1,$$

$$(iii) K_i = [q_{i-1}, m_i] \setminus J_i,$$

$$|f_k(x)|\leqslant \frac{1}{4}\Bigl(\sum_{i=1}^{m_i}p\left(x_i\right)\Bigr)\quad \text{ for } k\geqslant p_i,$$

$$(\mathbf{v})$$
 $p_i > m_i,$

(vi)
$$\theta_i$$
 is a 1-1 map of K_i into $[p_i, \infty)$,

and

(vii)
$$q_i = \sup_{j \in \theta_i(K_i)} (j) + 1$$

for $i=1,2,\ldots$ Suppose that all terms have been defined for i< r. Since σ maps N onto N, we can find j_r for which (i) holds. J_r , m_r and K_r are then defined immediately. Since $\lambda \subseteq c_0$, we can find p_r for which (iv) and (v) hold; since K_r is non-empty, (vi) and (vii) follows easily. Now define τ as follows:

(i)
$$\tau(j) = \theta_i(j) \quad \text{if } j \in K_i,$$

(ii)
$$\tau(j) = \theta_i^{-1}(j) \quad \text{if } j \in \theta_i(K_i)$$

and

(iii)
$$\tau(j) = j$$
, otherwise.

It is easy to see that τ is a properly defined element of P(N). Now consider

$$\begin{split} &\sum_{j=q_{j-1}+1}^{m_i} f_{\tau(i)}(x) x_j \\ &= \sum_{j \in J_i} f_j(x) x_j + \sum_{j \in K_i} f_{\tau(j)}(x) x_j - \sum_{j=1}^{q_{i-1}} f_j(x) x_j \\ &= \Big(\Big(\sum_{j=1}^{n_{j_i}} f_{\sigma(j)}(x) x_{\sigma(j)} \Big) - x \Big) + \sum_{j \in K_i} f_{\tau(j)}(x) x_j + \Big(x - \sum_{j=1}^{q_{i-1}} f_j(x) x_j \Big) \,. \end{split}$$

Thus

$$p\left(\sum_{j=q_{i-1}+1}^{m_i} f_{\tau(j)}x_j\right) \geqslant 1 - \left(\sup_{j \in K_i} |f_{\tau(j)}(x)|\right) \left(\sum_{j \in K_i} p(x_j)\right) - 1/4 \geqslant 1 - 1/4 - 1/4 = 1/2.$$

So $\sum_{i=0}^{\infty} f_{\tau(i)} x_i$ is not convergent, contradicting (C_1) .

We now consider the effect of imposing simple topological conditions. Theorem 4. If E is sequentially complete and (C_1) is satisfied, either $\lambda \subseteq c_0$ or $\lambda = c$ or $\lambda = l^{\infty}$ or $\lambda = \omega$.

Locally convex spaces

If $\lambda \not\equiv l^{\infty}$, λ has the product topology (Proposition 2). Since E is sequentially complete, $\lambda = \omega$. If $\lambda \subseteq l^{\infty}$ and $\lambda \not\equiv c$, the topology of λ is weaker than the topology of uniform convergence on the compact sets of l^{1} (Theorem 2). Since $\lambda \supseteq \varphi$, and since l^{∞} is an AK-space under the topology of uniform convergence on the compact subsets of l^{1} , it follows from the sequential completeness of E that $\lambda = l^{\infty}$. There remains the case where $\lambda \subseteq c$ and $\lambda \not\equiv c_{0}$. We shall show that if A is an equicontinuous subset of λ' , A is bounded in l^{1} . A, being equicontinuous, is coordinatewise bounded. Let

$$B_n = \sup \sum_{i=1}^n |a_i| \quad \text{ for } n=1,2,\ldots$$

As in Theorem 2, there exists α in λ such that

$$\lim_{i o \infty} a_i = \gamma \neq 0$$
 and $|a_i - \gamma| \leqslant \frac{1}{4} |\gamma|$ for $i = 1, 2, ...$

Suppose that A is not bounded in l^1 . Then if n is any integer and M>0, there exists a finite subset J of $[n,\infty)$ and an element a of A for which

$$\Big|\sum_{j\in J}a_j\Big|\geqslant rac{3}{4}\sum_{j\in J}|a_j|\geqslant M$$
 .

Using this fact, it is possible to find inductively a sequence $(a^{(i)})$ in A, an increasing sequence (n_i) of positive integers and a sequence (J_i) in Σ satisfying

$$(i) J_1 \subseteq [1, n_1],$$

(ii)
$$\left|\sum_{j\in J_1}a_j^{(1)}\right|\geqslant \frac{3}{4}\sum_{j\in J_1}|a_j^{(1)}|\geqslant 1$$
,

(iii)
$$J_i \subseteq [2n_{i-1}+1, n_i]$$
 for $i = 2, 3, ...$

and

(iv)
$$\left| \sum_{j \in J_i} a_j^{(i)} \right| \geqslant 3/4 \sum_{j \in J_i} |a_j^{(i)}| \geqslant 2^i B_{n_{i-1}}$$
 for $i = 2, 3, ...$

Let $K_1=[1,n_1]\diagdown J_1,$ and let $K_i=[2n_{i-1}+1,n_i]\diagdown J_i$ for $i=2,3,\dots$ Now let

$$y = \sum_{j=1}^{n_1} a_j e_j + \sum_{i=2}^{\infty} 2^{-i} B_{n_{i-1}}^{-1} \left(\sum_{j=n_{i-1}+1}^{n_i} a_j e_j \right).$$

(Since $\{\sum_{j=1}^{n} a_j e_j\}$ is bounded in λ , and E is sequentially complete, this sum is convergent in λ . Since $\{x_j\}$ is a Schauder basis, the values of y_j are what one would expect.)

Now construct inductively a permutation σ for which

(v)
$$\sigma([1, 2n_i]) \subseteq [1, 2n_i]$$
 for $i = 1, 2, ...,$

(vi) if
$$j \in \bigcup_{i=1}^{\infty} (J_i)$$
, then $\sigma(j) = j$

and

(vii)
$$\sigma(K_i) \subseteq [n_i+1, 2n_i]$$
 for $i = 1, 2, ...$

Now if $i \ge 2$,

$$\begin{split} \left| \sum_{j \in J_i} a_j^{(i)} y_{\sigma(j)} \right| &= \left| \sum_{j \in J_i} a_j^{(i)} y_j \right| \quad \text{(by (vi))} \\ &= 2^{-i} B_{n_{i-1}}^{-1} \left| \sum_{j \in J_i} a_j^{(i)} a_j \right| \quad \text{(by the construction of } y) \\ &\geqslant 2^{-i} B_{n_{i-1}}^{-1} \left| \gamma \sum_{j \in J_i} a_j^{(i)} \right| - \sum_{j \in J_i} |a_j^{(i)}| |\gamma - a_j| \\ &\geqslant 2^{-i} B_{n_{i-1}}^{-1} \left(\frac{3}{4} |\gamma| \sum_{j \in J_i} |a_j^{(i)}| - \frac{1}{4} |\gamma| \sum_{j \in J_i} |a_j^{(i)}| \right) \\ &\geqslant \frac{2}{3} |\gamma| \quad \text{(by (iv))} \,. \end{split}$$

Also

$$\Big|\sum_{i \notin K_i} a_i^{(i)} y_{\sigma(i)}\Big| \leqslant B_{n_i} \sup_{i \notin K_i} |y_{\sigma(i)}| \leqslant 2^{-i-1} \|a\|_{\infty} \quad \text{ (by (vii))} \leqslant 2^{-i+1} |\gamma|,$$

so that

$$\Big| \sum_{j=2n_{i-1}+1}^{n_i} a_j^{(i)} y_{\sigma(j)} \Big| \geqslant (2/3 - 2^{-i-1}) \, |\gamma| \, .$$

But

$$\sum_{i=0}^{\infty} y_{\sigma(i)} e_i \, \epsilon \, \lambda,$$

so that A is not equicontinuous, giving the required contradiction.

If now $\beta \in c_0$, $(\sum_{i=1}^n \beta_i e_i)$ is a Cauchy sequence in λ in the l^{∞} -norm topology. From what has just been proved, this is finer than the original topology. Thus $(\sum_{i=1}^n \beta_i e_i)$ is a Cauchy sequence in λ in the original topology; since E is sequentially complete, it is convergent, and since $\{x_j\}$ is a Schauder basis, it must converge to β . Hence $\lambda \supseteq c_0$; since $\lambda \not \sqsubseteq c_0$, $\lambda = c$.

COROLLARY 1. If E is sequentially complete and (C_1) is satisfied, (SB_3) is satisfied if and only if $\lambda \neq c$.

If (SB_3) is satisfied, $\{x_i\}$ is an unconditional basis, so that E is bounded-multiplier convergent ([2], p. 59); that is, λ is solid. Since c is not solid, $\lambda \neq c$. The converse follows from Theorems 3 and 4. Interpreting this result in terms of sequence spaces, we obtain

COROLLARY 2. If μ is a sequentially complete symmetric AK-space, either $\mu=c$ or μ is solid.

Let us now give some examples to show that all the possibilities mentioned in Theorem 4 can occur. There are clearly plenty of spaces with Schauder bases satisfying the hypotheses of the theorem, for which $\lambda \subseteq c_0$. If $E = l^{\infty}$ with any locally convex topology between the weak topology $\sigma(l^{\infty}, l^1)$ and the Mackey topology $\sigma(l^{\infty}, l^1)$, E is sequentially complete, and $\{e_i\}$ is a Schauder basis for which $\lambda = l^{\infty}$. If $E = \omega$ with the product topology, E is complete; again $\{e_i\}$ is a Schauder basis for which $\lambda = \omega$. Finally let E = c and let

$$\mathscr{D}=\left\{D\colon D \text{ is bounded in } l^1 \text{ and } \sup_{d\in D} \Big|\sum_{i=n}^{\infty} d_i\Big| o 0 \text{ as } n o \infty
ight\}.$$

$$a^{(r)} = 2^{-r} \sum_{i=2^{r-1}+1}^{2^r} (e_{n_i} - e_{m_i}),$$

and let $D = \{a^{(r)}: r \in N\}$. Clearly $D \in \mathcal{D}$.

Further if $x \in c$, there exists q such that $|x_i - x_j| \leq \frac{1}{4} |a - \beta|$ for $i, j \geq q$. If, then, $n_2r-1 \geq q$,

$$\begin{split} \langle y-x,\,a^{(r)}\rangle &= 2^{-r} \sum_{i=2^{r-1}+1}^{2^r} (y_{n_i}-y_{m_i}-x_{n_i}+x_{m_i}) \\ &= 2^{-r} \Big(\sum_{i=2^{r-1}+1}^{2^r} (\alpha-\beta) + \sum_{i=2^{r-1}+1}^{2^r} \left((y_{n_i}-a) + (\beta-y_{m_i}) + (x_{m_i}-x_{n_i}) \right) \Big) \end{split}$$

so that

$$|\langle y-x, a^{(r)}\rangle \geqslant \frac{1}{2}|a-\beta| - \frac{1}{8}|a-\beta| - \frac{1}{8}|a-\beta| - \frac{1}{8}|a-\beta| = \frac{1}{8}|a-\beta|.$$

Hence

$$\sup_{dD} |\langle y-x, d\rangle| \geqslant \frac{1}{8} |\alpha-\beta| \quad \text{for any } x \text{ in } c,$$

so that $y \notin \overline{c}$, and c is closed in l^{∞} .

THEOREM 5. If E is barrelled and (C_1) is satisfied, either $\lambda \subseteq c_0$ or $\lambda \not\subseteq l^{\infty}$. In either case, (SB_3) is satisfied.

If $\lambda \subseteq l^{\infty}$, then $\lambda^{\beta} \supseteq (l^{\infty})^{\beta} = l^1$. But $\lambda' = \lambda^{\beta}$ ([6], Theorem 2, Corollary), so that any norm-bounded subset of l^1 is weakly bounded in λ' , and is therefore equicontinuous. The topology of λ is thus finer than the l^{∞} -norm topology. Since λ is an AK-space, it follows that $\lambda \subseteq c_0$. The final result follows from Theorem 3.

§ 4. Further conditions. In this section we consider the relationship between the conditions (SB'_1) , (SB_3) , (SB'_4) , (SB'_5) and (C_1) , (C_2) and (C_3) .

If E' is given the weak topology $\sigma(E', E)$, $\{f_i\}$ is a Schauder basis for E'. The next proposition follows from the definitions, and the fact that a subset of a locally convex space is bounded if and only if it is weakly bounded.

PROPOSITION 3. Consider $(E', \sigma(E', E))$, with Schauder basis $\{f_i\}$.

- (i) (C₂) is satisfied for E if and only if (SB₄) is satisfied for E'.
- (ii) (SB'₄) is satisfied for E if and only if (C₂) is satisfied for E'.
- (iii) (C3) is satisfied for E if and only if (SB5) is satisfied for E'.
- (iv) (SB'₅) is satisfied for E if and only if (C₃) is satisfied for E'.
- (∇) (SB'₁) is satisfied for E if any only if it is satisfied for E'.

PROPOSITION 4. If $\lambda \neq \varphi$ and either (C_3) or (SB_5') is satisfied, $\{x_i\}$ is bounded in E.

Suppose that $\lambda \neq \varphi$, and that $\{x_i\}$ is unbounded. Let $\alpha \in \lambda \setminus \varphi$, and let p be a continuous semi-norm on E which is unbounded on $\{x_i\}$.

Let $J=\{j_1,j_2,\ldots\}$, with $j_1< j_2<\ldots$, be an infinite set with an infinite complement with the property that $\alpha_{j_i}\neq 0$ for any i. Let σ be a permutation for which

$$p\left(x_{\sigma(i_i)}
ight)\geqslant |a_{i_i}|\Big(p\left(\sum_{k=1}^{i_i-1}a_kx_{\sigma(k)}
ight)+i\Big),$$

for i = 1, 2, ..., and let $\tau = \sigma^{-1}$. Then

$$p\left(\sum_{k=1}^{j_i} a_k x_{\sigma(k)}\right) \geqslant p(a_{l_i} x_{\sigma(l_i)}) - p\left(\sum_{k=1}^{j_i-1} a_k x_{\sigma(k)}\right) \geqslant i$$

for i = 1, 2, ..., so that (SB'_5) is not satisfied. Also

$$\begin{split} i \leqslant p\left(a_{l_i}x_{\sigma(l_i)}\right) &= p\left(\sum_{k=1}^{\sigma(l_i)} a_{\tau}(k)x_k - \sum_{k=1}^{\sigma(l_i)-1} a_{\tau(k)}x_k\right) \\ &\leqslant p\left(\sum_{k=1}^{\sigma(l_i)} a_{\tau(k)}x_k\right) + p\left(\sum_{k=1}^{\sigma(l_i)-1} a_{\tau(k)}x_k\right), \end{split}$$

so that (C2) is not satisfied.

THEOREM 6. Suppose that $\{x_i\}$ is bounded in E and $\lambda \subseteq l^{\infty}$. If (C_3) is satisfied, so is (C_2) . If (SB'_5) is satisfied, so is (SB'_4) .

Suppose that (C_2) is not satisfied. There exists an element x of E and a continuous semi-norm p on E such that

$$\sup_{\sigma \in P(N)} \sup_{j \in N} p\left(\sum_{i=1}^{j} f_{\sigma(i)}(x) x_i\right) = \infty.$$

We shall show that it is possible to find a sequence (σ_j) in P(N) and an increasing sequence (n_j) of positive integers such that

(i)
$$p\left(\sum_{i=1}^{n_i} f_{\sigma(i)}(x) x_i\right) \geqslant i \quad \text{for } i = 1, 2, \dots,$$

(ii)
$$i \epsilon \sigma_i[1, n_i]$$
 for $i = 1, 2, ...$

and

(iii)
$$\sigma_i(j) = \sigma_{i-1}(j)$$
 for $1 \leq j \leq n_{i-1}$ and for $i = 2, 3, \ldots$

We can find σ in P(N) and a positive integer m such that

$$p\left(\sum_{i=1}^m f_{\sigma(i)}(x) x_i\right) \geqslant 1 + \left\|\left(f_i(x)\right)\right\|_{\infty} \sup_i \left(p\left(x_i\right)\right).$$

If $\sigma^{-1}(1) \leq m$, we can take $\sigma_1 = \sigma$ and $n_1 = m$. If $\sigma^{-1}(1) > m$, we define a new permutation τ by setting $\tau(m+1) = 1$, $\tau\sigma^{-1}(1) = \sigma(m+1)$ and $\tau(i) = \sigma(i)$, otherwise. Then putting $\sigma_1 = \tau$, and $n_1 = m+1$, (ii) is satisfied and

$$p\left(\sum_{j=1}^{n_1} f_{\sigma_1(j)}(x) x_j\right) = p\left(\sum_{j=1}^{m} f_{\sigma(j)}(x) x_j + f_1(x) x_{m+1}\right)$$

$$\geqslant p\left(\sum_{j=1}^{m} f_{\sigma(j)}(x) x_j\right) - |f_1(x)| p\left(x_{m+1}\right) \geqslant 1.$$

Suppose now that $\sigma_1, \ldots, \sigma_{r-1}$ and n_1, \ldots, n_{r-1} have been defined to satisfy conditions (i), (ii) and (iii). We can find ϱ in P(N) and a positive integer $k > n_{r-1}$ such that

$$p\left(\sum_{j=1}^{k} f_{e(j)}(x) x_{j}\right) \geqslant r + (4n_{r-1} + 1) \|(f_{i}(x))\|_{\infty} \sup_{i} p(x_{i}).$$

Let

$$\begin{split} R &= \varrho^{-1} \sigma_{r-1}([1, n_{r-1}]) \setminus [1, n_{r-1}], \\ S &= \varrho([1, n_{r-1}]) \setminus \sigma_{r-1}([1, n_{r-1}]), \\ T &= (R \cap [1, k]) \cup [1, n_{r-1}]. \end{split}$$

Then |R|=|S|, so that there exists a 1-1 map θ of R onto S. Now let

$$\pi(i) = egin{cases} \sigma_{r-1}(i) & ext{ for } 1 \leqslant i \leqslant n_{r-1}, \ heta(i) & ext{ for } i ext{ in } R, \ heta(i) & ext{ otherwise}. \end{cases}$$

A straightforward verification shows that $\pi \in P(N)$. Further

$$\sum_{j=1}^{k} f_{\pi(j)}(x) x_{j} = \sum_{j=1}^{k} f_{\varrho(j)}(x) x_{j} - \sum_{j \in T} f_{\varrho(j)}(x) x_{j} + \sum_{j \in T} f_{\pi(j)}(x) x_{j}$$

so that

$$\begin{split} p\left(\sum_{j=1}^{k} f_{\pi(j)}(x) x_{j}\right) &\geqslant p\left(\sum_{j=1}^{k} f_{e(i)}(x) x_{j}\right) - p\left(\sum_{j \in T} f_{e(i)}(x) x_{j}\right) - p\left(\sum_{j \in T} f_{\pi(i)}(x) x_{j}\right) \\ &\geqslant r + (4n_{r-1} + 1) \left\| \left| \left| f_{i}(x) \right| \right| \left\| \sup_{i} p\left(x_{i}\right) - 2 \left| T \right| \left\| \left| f_{i}(x) \right| \right| \right\|_{\infty} \sup_{i} p\left(x_{i}\right) \\ &\geqslant r + \left\| \left| \left| f_{i}(x) \right| \right| \left\| \sup_{i} p\left(x_{i}\right), \end{split}$$

since $|T| \leq 2n_{r-1}$. If $\pi^{-1}(r) \leq k$, we can take $\sigma_r = \pi$ and $n_r = k$. Otherwise we take $n_r = k+1$, and alter π on k+1 and $\pi^{-1}(r)$, as before. This completes the proof of the induction. Now let

$$\mu(i) = egin{cases} \sigma_1(i) & ext{if } i \leqslant n_{m{r}}, \ \sigma_j(i) & ext{if } n_{j-1} < i \leqslant n_j. \end{cases}$$

 μ is a 1-1 map of N into itself (by (iii)), and condition (ii) ensures that μ maps N onto N, so that $\mu \in P(N)$. Since

$$p\left(\sum_{j=1}^{n_i} f_{\mu(j)} x_j\right) \geqslant i \quad ext{ for } i=1,2,\ldots,$$

(C₃) is not satisfied.

The proof that (SB_5') implies (SB_4') is extremely similar, and the details are omitted.

THEOREM 7. If $\lambda \subseteq c_0$ and (C_2) is satisfied, then (SB'_1) is satisfied. Let $x \in E$, and let p be a continuous semi-norm on E. Let

$$M = \sup_{n \in \mathbb{N}} \sup_{\sigma \in \mathcal{P}(\mathbb{N})} p\left(\sum_{j=1}^{n} f_{\sigma(j)}(x) x_{j}\right)$$

Suppose that $\sigma \in P(N)$ and that $J \in \Sigma$. Let $m = \max_{i \in J} \sigma(i)$, and let $L = [1, m] \setminus \sigma(J)$. Since $\lambda \subseteq c_0$, there exists n_0 such that

$$|f_i(x)| \leqslant \left(\sum_{i=1}^m p(x_i) + 1\right)^{-1} \quad \text{ for } i \geqslant n_0.$$

There exists τ in P(N) such that $\tau\sigma(j)=j$ for j in J and $\tau(i)\geqslant n_0$ if $i\in L$. Then

$$\sum_{f \in I} f_i(x) x_{\sigma(i)} = \sum_{k \in \sigma(J)} f_{\tau(k)}(x) x_k = \sum_{k=1}^m f_{\tau(k)}(x) x_k - \sum_{k \in L} f_{\tau(k)}(x) x_k,$$

so that

$$p\left(\sum_{i\in I}f_i(x)x_{\sigma(i)}\right)\leqslant M+1.$$

Now suppose that $\varrho \in P(N)$, that $n \in N$ and that $\delta = (\delta_1, \ldots, \delta_n)$ is an *n*-tuple of complex numbers, with $|\delta_i| < 1$ for $1 \le i \le n$. We can find an *n*-tuple $(\gamma_1, \ldots, \gamma_n)$ of dyadic complex numbers, with $|\gamma_i| \le 1$ for $1 \le i \le n$, for which

$$p\left(\sum_{j=1}^{n} (\gamma_j - \delta_j) f_j(x) x_{\sigma(j)}\right) \leqslant 1.$$

We can also write

$$\begin{split} &\sum_{j=1}^n \gamma_j f_j(x) \, x_{\sigma(j)} \\ &= \sum_{k=0}^r 2^{-k} \Bigl(\sum_{j \in I_k} f_j(x) \, x_{\sigma(j)} - \sum_{j \in I_k} f_j(x) \, x_{\sigma(j)} + i \sum_{j \in I_k} f_j(x) \, x_{\sigma(j)} - i \sum_{j \in I_k} f_j(x) \, x_{\sigma(j)} \Bigr), \end{split}$$

where the A_k , B_k , C_k and D_k are suitable subsets of [1, n]. Thus

$$p\left(\sum_{j=1}^n \gamma_j f_j(x) x_{\sigma(j)}\right) \leqslant 8(M+1),$$

so that

$$p\left(\sum_{j=1}^n \delta_j f_j(x) x_{\sigma(j)}\right) \leqslant 8M + 9.$$

Corollary. If $\lambda \subseteq c$, $\lambda \not \subseteq c_0$, and (SB_4') is satisfied, then (SB_1') is satisfied.

It follows from the conditions on λ that $\lambda' \subseteq c_0$. The result follows from the theorem and Proposition 3.

THEOREM 8. If $\lambda \subseteq l^{\infty}$ and $\lambda \nsubseteq c$, the following are equivalent:

- (i) (SB'₁) is satisfied;
- (ii) (SB₄) is satisfied;
- (iii) (C₂) is satisfied;
- (iv) $\lambda' \subseteq l^1$.

It is clear that (iv) implies (ii), and (i) implies both (ii) and (iii). We show that (ii) implies (iv) and that (iii) implies (iv).

Suppose that $a=(a_i) \notin l^1$. Let $b=(b_i) \in \lambda \setminus c$; so that there exist distinct numbers a and β , and disjoint increasing sequences (n_i) and (m_i) of positive integers such that $b_{n_i} \to a$ and $b_{m_i} \to \beta$.

Suppose first that (C_2) is satisfied. Since $a \notin l^1$, given M > 0 there exists a finite set J for which

$$\left|\sum_{j \in J} a_j\right| \geqslant \frac{3}{4} \sum_{j \in J} |a_j| \geqslant \frac{3M}{|\alpha - \beta|}.$$

Let $m=\sup_{j\in J}(j)$, and let $K=[1,m]\backslash J$. There exist permutations σ and τ such that

$$|b_{\sigma(j)}-a|\leqslant \frac{1}{4}\,|\alpha-\beta|\,,\quad |b_{\tau(j)}-\beta|\leqslant \frac{1}{4}\,|\alpha-\beta|\quad \text{ for } j \text{ in } J$$

and $\sigma(j) = \tau(j)$ for j in K. Then

$$\begin{split} \Big| \sum_{j=1}^m b_{\sigma(j)} a_j - \sum_{j=1}^m b_{\tau(j)} a_j \Big| &= \Big| \sum_{j \in J} \left(b_{\sigma(j)} - b_{\tau(j)} \right) a_j \Big| \\ \geqslant \Big| \sum_{j \in J} \left(\alpha - \beta \right) a_j \Big| - \sum_{j \in J} |b_{\sigma(j)} - \alpha| \, |a_j| - \sum_{j \in J} |b_{\tau(j)} - \beta| \, |a_j| \\ \geqslant \frac{3}{4} \left| \alpha - \beta \right| \sum_{j \in J} |a_j| - \frac{1}{4} \left| \alpha - \beta \right| \sum_{j \in J} |a_j| \geqslant M \,. \end{split}$$

It therefore follows that $a \notin \lambda'$.

Suppose next that (\mathbf{SB}_4') is satisfied. If $a \notin c$, there exist distinct numbers γ and δ and disjoint increasing sequences (p_i) and (q_i) of positive integers such that $a_{p_i} \to \gamma$ and $a_{p_i} \to \delta$. We can suppose that $N \setminus (\{m_i\} \cup \{n_i\})$ and $N \setminus (\{p_i\} \cup \{q_i\})$ are both infinite; let σ and τ be permutations such that

$$\sigma(m_i) = p_i, \quad \tau(m_i) = q_i, \quad \sigma(n_i) = q_i, \quad \tau(n_i) = p_i \quad \text{for } i = 1, 2, \dots$$

and such that $\sigma(j) = \tau(j)$ otherwise. Then a straightforward calculation shows that

$$\sup_{n} \Big| \sum_{j=1}^{n} b_j a_{\sigma(j)} - \sum_{j=1}^{n} b_j a_{\tau(j)} \Big| = \infty,$$

so that $a \notin \lambda'$. If, next, $a \in c \setminus c_0$, $\sum_{i=1}^{\infty} b_i a_i$ is not convergent, so that $a \notin \lambda'$. Thus $\lambda' \subseteq c_0$. But since (SB'_4) is satisfied, (C_2) is satisfied for $(E', \sigma(E', E))$ (Proposition 3), (SB'_1) is satisfied for $(E', \sigma(E', E))$ (Theorem 7) and (SB'_1) is satisfied for E (Proposition 3).

Let us now relate the various implications as the size of λ varies, and give some examples. In the diagrams which follows, arrows denote implications, and conditions included in a bracket are equivalent.

Case 1. $\lambda = \varphi$. In this case (SB₃), (SB'₅), (C₁) and (C₃) are always satisfied. When λ is given the direct sum topology none of (SB'₁), (SB'₂) or (C₂) is satisfied.

Case 2. $\lambda \subseteq c_0$ and $\lambda \neq \varphi$

$$[(SB_3), (C_1)] \Rightarrow [(SB'_1), (C_2), (C_3)] \Rightarrow [(SB'_4), (SB'_5)].$$

Let E=cs, let $F=\varphi\oplus \mathrm{span}$ (e), and give E the weak topology $\sigma(E,F)$ (for the natural duality between E and F). $\{e_i\}$ is a Schauder basis for E for which $\lambda=cs\subseteq c_0$, and for which (SB_4') is satisfied, while (C_2) is not satisfied.

Case 3. $\lambda \subseteq c$ and $\lambda \not\subseteq c_0$.

$$(SB_3) \Rightarrow [(SB'_1), (SB'_4), (SB'_5)]$$

$$\downarrow \qquad \qquad \downarrow$$

$$(C_1) \Rightarrow [(C_2), (C_3)]$$

Give the space F of the preceding example the weak topology $\sigma(F, E)$. $\{e_i\}$ is a Schauder basis for F which satisfies (C_1) and not (SB'_4) , and for which the conditions on λ are satisfied.

Consider next E=c, with the topology of \mathscr{D} -convergence, as described in § 3. Under the Schauder basis $\{e_i\}$, (C_1) and (SB'_4) are satisfied, whereas (SB_3) is not (Theorem 4, Corollary 1). Thus (C_1) and (SB'_4) do not together imply (SB_3) .

Case 4. $\lambda \subseteq l^{\infty}$ and $\lambda \nsubseteq c$.

$$[(SB_3), (C_1)] \Rightarrow [(SB'_1), (SB'_4), (SB'_5), (C_2), (C_3)].$$

Case 5. $\lambda \leq l^{\infty}$.

$$[(SB_3), (C_1)] \Rightarrow [(SB_5'), (C_3)].$$

In this case, if (SB_5') or (C_8) is satisfied, the topology on λ must be the product topology (arguing as in Proposition 2); in particular (SB_4') or (C_9) can never be satisfied.

We end this section with a theorem in which topological conditions are imposed.

Theorem 9. If E is sequentially complete and barrelled, then (SB_3) is satisfied if either (SB'_4) or (C_2) is satisfied.

The proof follows the proof of the Corollary to the Theorem of [10]. Suppose that (SB'_4) is satisfied. Let P be a collection of continuous seminorms on E which defines the topology of E. For each p in P, let

$$q(x) = \sup_{n \in \mathbb{N}} \sup_{\sigma \in P(\mathbb{N})} p\left(\sum_{i=1}^n f_i(x) x_{\sigma(i)}\right).$$

Each such q is a semi-norm on E (since (SB'₄) is satisfied) which is lower semi-continuous, and therefore continuous (since E is barrelled — cf. [5], § 2).

Further

$$q(x) \geqslant \sup_{n \in \mathbb{N}} p\left(\sum_{i=1}^{n} f_i(x) x_i\right) \geqslant p(x),$$

so that the collection Q of semi-norms defined in this way defines the topology of E. Now if $x \in E$, $\sigma \in P(N)$ and $q \in Q$,

$$q\left(\sum_{i=m}^n f_i(x) x_{\sigma(i)}\right) = q\left(\sum_{i=m}^n f_i(x) x_i\right),$$

so that $\sum_{i=1}^{\infty} f_i(x) x_{\sigma(i)}$ is convergent (since E is sequentially complete). The fact that (SB_3) is satisfied now follows easily. The proof is very similar when (C_2) is satisfied, and is omitted.

Notice also that when the hypotheses of the theorem are satisfied, $\{T_{\sigma}\}_{\sigma P(N)}$ is an equicontinuous group of linear operators from E into itself (cf. [5], Theorem 2).

The condition that E is barrelled cannot be relaxed in this theorem (consider c, with the topology of \mathscr{D} -convergence). Nor can the condition that E is sequentially complete be relaxed, as the following example shows. Let A be the set

$$\left\{a\colon a\in\omega\,,\,a_i=0\ \text{or}\ 1\ \text{and}\ \left(\sum_{j=1}^na_j\right)/n\to 0\ \text{as}\ n\to\infty\right\}$$

and let $l_A^l = \{x : x = a \cdot y, \text{ where } a \in A \text{ and } y \in l^1\}$. l_A^l is a linear subspace of l^1 which is barrelled under the l^1 -norm topology ([7], p. 372). $\{e_l\}$ is a Schauder basis for l_A^l , for which (SB'₄) is satisfied, whereas (C₁) is not.

§ 5. A counterexample. We give an example of a Banach space with a Schauder basis which satisfies (SB₂), but not (SB₃), contradicting an assertion of Singer [10].

Let O be the collection of all increasing sequences of elements of N. For each $m=(m_j)$ in O, let a_m be the sequence defined by $(a_m)_i=j^{-1/2}$ if $i=m_j$, and $(a_m)_i=0$ otherwise, and let $A=\{a_m\colon m\in O\}$. Let

$$\lambda_A = \left\{ x \colon x \in \omega, \sup_{a \in A} \sum_{i=1}^{\infty} |x_i a_i| < \infty \right\},$$

and let

$$||x||_A = \sup_{a \in A} \sum_{i=1}^{\infty} |x_i a_i|.$$

 $\|\ \|_{\mathcal{A}}$ is a norm on $\lambda_{\mathcal{A}}$, under which $\lambda_{\mathcal{A}}$ is a Banach space (cf. [8], or [4], Proposition 3). Let E be the closure of φ in $\lambda_{\mathcal{A}}$. It is clear that $\{e_i\}$ is an unconditional basis for E, and that (SB_2) is satisfied. If (SB_3) were satisfied, $\{T_{\sigma}\colon \sigma \in P(N)\}$ would be equicontinuous (see the remark after Theorem 9)-that is there would exist M such that $\|T_{\sigma}\| \leqslant M$ for all σ in P(N). We shall show that this is not so.

Let $a^{(r)}$ be the sequence defined by $a_i^{(r)} = (r+1-i)^{-1/2}$, for $1 \le i \le r$, and $a_i^{(r)} = 0$ otherwise. We shall show first that the sequence $\{a^{(r)}: r = 1, 2, \ldots\}$ is bounded in E. For fixed r, there exists a finite set $n_1 < \ldots < n_s \le r$ of integers such that

$$\|a^{(r)}\|_{\mathcal{A}} = \sum_{i=1}^{s} (i(r+1-n_i))^{-1/2}.$$

Let $m_i = n_i$ for $1 \le i < s$, and let $m_s = r$. Then

$$0 \leqslant \|a^{(r)}\|_{\mathcal{A}} - \sum_{i=1}^{s} (i(r+1-m_i))^{-1/2} = (s(r+1-n_s))^{-1/2} - s^{-1/2}$$

This implies that $n_s = r$. A similar argument then shows that $n_i = r + i - s$, for $1 \le i < s$, so that

$$\begin{split} \|\alpha^{(r)}\|_{A} &= \sum_{i=1}^{s} \left(i(s+1-i)\right)^{-1/2} \\ &\leqslant \frac{2}{s+1} + 2 \int\limits_{1}^{(s+1)/2} \frac{dx}{\sqrt{x(s+1-x)}} \leqslant 1 + 2 \sin^{-1} \left(\frac{s-1}{s+1}\right) \leqslant 1 + \pi. \end{split}$$

Now let σ_r be defined by $\sigma_r(i)=r+1-i$ for $1\leqslant i\leqslant r,$ and $\sigma_r(i)=i$ otherwise. Then

$$T_{\sigma_r}(a^r) = (1, 2^{-1/2}, ..., r^{-1/2}, 0, 0, ...)$$

and

$$||T_{\sigma_r}(a^{(r)})||_{\mathcal{A}} = \sum_{j=1}^r (j^{-1}).$$

Since $\sum_{j=1}^{\infty} (j^{-1})$ is divergent, it follows that $\{T_{\sigma} \colon \sigma \in P(N)\}$ is not uniformly bounded.

The error in Singer's argument lies in asserting that his inequality (21) follows from (SB_2) and his Lemma 2.

References

- [1] N. Bourbaki, Espaces vectoriels topologiques, Chapitres I, II, Paris 1953.
- [2] M. M. Day, Normed linear spaces, Berlin 1958.
- [3] N. Dunford and J. T. Schwartz, Linear operators, New York 1958.
- [4] D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. (3) 16 (1966), p. 85-106.
- [5] On topological sequence spaces, Proc. Cambridge Philos. Soc. 63 (1967),
 p. 997-1019.
 - [6] The β and γ-duality of sequence spaces, ibidem 63 (1967), p. 963-981.
 - [7] G. Köthe, Topologische lineare Räume, Berlin 1960.
- [8] G. G. Lorentz and D. G. Wertheim, Representation of linear functionals on Köthe spaces, Canadian J. Math. 5 (1953), p. 568-575.
- [9] I. Singer, On Banach spaces with symmetric basis (Russian), Rev. Math. Pures Appl. 6 (1961), p. 159-166.
- [10] Some characterizations of symmetric bases in Banach spaces, Bull. Acad. Pol. Sci., Ser. sci. math., astr. et phys., 10 (1962), p. 185-192.
 - [11] K. Zeller, Theorie der Limitierungsverfahren, Berlin 1958.

Reçu par la Rédaction le 26. 8. 1967