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The non-existence of L estimates
for certain translation-invariant operators*

by

W. LITTMAN, C. McCARTHY and N. RIVIERE (Minnesota)

0. Introduction. There is a close relationship between L”-estimates
for solution to partial differential equations with constant coefficients
and multipliers in I” (R"). Denoting the Fourier transform and its inverse
by A and V respectively, a complex-valued function ¢(&), £eR", is said
to be a multiplier in LP (R™) if there exists an estimate

()Y (@) oy < C1f (@) zogn,

for all feOP(R™) (infinitely differentiable with compaet support.) We
refer the reader to Hormander’s paper [3] for the basic properties of
multipliers and translation invariant operators.

By means of the Fourier transform one can relate the existence of
IP-estimates for solutions and their derivatives of non-homogeneous
linear partial differential equations in all of R" in terms of the L"-norm
of the right-hand side. However, in the theory of partial differential
equations it is very often of interest to study local IP-estimates (in the
absence of global estimates). For that purpose we introduce the notion
of a local multiplier. We say that ¢ is a local multiplier in IP if for f< 03 (S)
(infinitely differentiable functions with compact support on 8) we have
the estimate

eV 2oy < Clflzes

¢ independent of f, and S being a fixed finite cube in R". All (global)
multipliers are also local multipliers, but not conversely. Namely, we
know from well known properties of the wave operator that & /(& & — &)
ig a local multiplier in L2(R%). However, it is not a global multiplier.

* The research presented in this paper was sponsored in part by the U. 8
Air Force (AFOSR 883-67), the National Science Foundation (NSF GP7475), and
the Office of Naval Research (NONR 3776(00)).
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The results of this paper are mainly negative. It is known that bo-
unded rational functions of one real variable are multipliers in L for all
p(1). That this fact has no counterpart for several variables is seen from
a number of the examples presented here.

In an earlier paper [5] (see also [6]) one of the authors showed that
for solution of the n-(space) dimensional wave equation wu(wx,?) =0
with smooth initial data having support contained in a fixed bounded
set there exists no estimate of the type

Jlus, LPda <O [ (l(@, 0)°+ lgradau(a, 0)")da,

13
R} 134

except for » = 1 or p = 2. This can be seen to imply that cos|x| is not
a multiplier in I”(R") except when # =1 or p = 2; a fact also arrived
at independently by Wainger [9] (see also Brenner [17).

It was also shown in [9] that for p = 2n/(n— 1) no estimate of the type

[ [ lule, vPdeat < ¢ [ [|Qul”dods

1l 0 1
Ry Ry Ry Ry

exists for functions in O (unit cube in RiX Ry). The corresponding
question for estimating the IP-norm of u itself (instead of w;) is dealt
with in Section 1. Using these two results it is shown in Section 2 that
for example

(&+0)(E+G—8+1—2i8)7,
a bounded rational function is not even a local multiplier in L”(R®) for
p =4, and that

(E+E+ 88812507,
a bounded reciprocal of a polynomial, i not a local multiplier in L”(R’)
for p >8.

In Section 3 we investigate the non-homogeneous Schridinger equa-
tion

1 .
~i—u,+um—'m =f

(modified by addition of the term —¢u) and conclude that (£,— &~ i),
a bounded reciprocal of a polynomial, is not a multiplier in R2 for 1 < p
< { This is done by studying the convolution kernel ¢~™t ¢,

Section 4 is devoted to the study of the 1-dimensional convolution

3
e
kernel [f| * cost, which arises in the study of surface waves. It is shown
that convolution with this kernel does not take I? — I, if |1 [p—14 > o

M A, P. Calderén, Notes on singular integrals, M. I. T. See also [7].

° ©
lm Non-emistence of LP-estimates 221

In Section 5 convolution with the kernel i~?cos(jz|2/f) (zeR™) is
studied, and by this means it is shown that the solution to the non-homo-
geneous Schrddinger equation with zero initial values satisfies no local
L¥-estimates for p < (2n+2)/(n+ 4), n being the number of space dimen-
sions.

The range of p for which a function is a multiplier in I”(R™ is such
that the values of 1/p form a symmetric interval about } (see for example
Hormander’s article [3]). For local multipliers and local estimates it can
also be eagily shown by a duality argument that the range of 1/p for
which a given function is a multiplier is symmetric about 4. Hence we
have content ourselves in stating each result either for p > 2 or p <2
and have left it for the reader to make analogous conclusions for the
conjugate range of p.

1. The wave equation. We consider the following
QUESTION 1. Does there exist an estimate of the type

) [[ wpawa<e [[ |OvPdedt

xtepace rlspace

Jor functions v (%,1) which are C*° and vanish outside a fized cube in x,1
space (% = (%, ..., ¥,))?

Angwer: not if p >2n[(n—3).

The main tool in treating this question is, as in [5], the explicit solu-
tion of the following “Radiation problem’: Let f(t) be a C®-function of
one variable vanishing outside the interval (0, ¢) and positive inside.
Find a function u(z,t) vanishing for ¢ < 0 and satisfying

(@) u = f(t) 8(z).

The solution is given explicity in Courant and Hilbert [2]. For n
odd it i
}(n-3)

(3) W=y 3 AP O(—7),

=0

where the A, are non-zero constants whose value need not concern us
here; for even  there is an analogous, silghtly more complicated formula.
For simiplicity we restrict ourselves to the case of n odd. The case of
even » can be treated by a combination of methods of this section and [5].
Let w(r,t) = u,(r,t) be the solution to the radiation problem for the
function f(t) = g(t/e), where g is a O*-function vanishing outside the
interval (0, 1) and positive inside. We consider the function

(4) v(r,t) = p)u(r,t),
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where ¢ is a 0°°Q-funetion such that

pt)y =1 for 1<%,
0<opt)<l for $<t<i,
pt)=0 for t>%
‘We then have
(6) O(puw) = ull o+ el w— .
Now, if % = 0, which holds for ¢ >0, we have
(7 (Dol” < O(uf®+ |ud®)
and therefore
(8) [ 1OePaza: < [ 1ul dwdi+ [ lwf? dwat,
i<i<l <i<l i<

where C denotes a generic constant independent of & (remember that » = u,).
The essential step consists in showing that for an appropriate con-
stant 4 >2, and p >2n/(n—3)

‘ lm [ |ul”dedt
(9) >0 de<f<}

\ ftfl(lul"’ﬂuzl”)dmdt =0

Suppose that the above relation holds, and assume that the function
¢(y) used in the definition of # iy symmetric about y = }. Consider the
function

(10) V=Volr, 1) = v(r, t—$e) —0,(7, §6—1).

From the way the function u, was defined it follows that the support

of V ig conbained in the region [¢| < 1, |r| < 1. Furthermore,

(11) OV = 0w (r, t—fe) —Ovs(r, 3—1)

= 8(a) [g (f - 1) —y (£ - 1)] tor <3

(6(#) = Dirac measure). Since ¢ is aggumed even about 4, the bracketed
expression vanishes and we have

(12) av =20

at least in the senge of distributions.
Now (8) and (9) imply that

[ |o]? dwd

13 lmiz%
(13) e [[100]" dwdt *
>%e

for | <%,

icm°®
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Hence it follows that
f ;f | V|? dzdt
(14 lim 2D
) e [[ IOVPdd
x,t Bpace

Now it i not clear whether V is a 0*-function. Let us merely remark
that if not, we can, by modifying V, slightly, obtain another one-para-
meter family of (*-functions depending on & for which (14) holds.

It thus remains to prove (9) for » > 2n/(n—3).

We let

i— —y
(15) 8, =gt (»;—t) and T, = p?~ "7 b gD (——-—t A ! ):
so that, letting a' = {(n—3),

n n
(16) % = ZA,,S, and 4 = ZA,T,.
[ []

t—r\P?
ol7)
&

1
[ISPde = [ (b e B mt g0 (P
0

Keeping ¢ > e, 4> 2,

o

[I8Pds = [ re-rmowsnt oo
0

(an dz,

and letting t—r = &', r =t—er',

Now letting —¢ = (2—n-+»)p-+n—1 we see that ¢ >0 and for
0<r <1

(18) 1< (—er )y Yt =1—er' /)9 (-2 g2,

and hence for > le 1>2,
(19) [18,Pde = ge=rtpin=ig=,

Here the symbol == is taken to mean the following: the ratio of the
two quantities is bounded from above and below by positive constants
independent & and A.

Similarky
(20) JIT,P de o go-mpan=tg=anr,
Thus
(21) [ [ 18,Pamat s pe=rmngente-me,
t>1e
(22) f f 18, Pdedt = ¢ and f [ 1T, dwdt o =0+,

p<t<1 <t<l
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Now taking into account (16) we see that for A sufficiently large
(23)
il n))
[f " dwar = [] Z\A.‘,|")S,‘|"clmdtg ] 18wl dawdt = &€ »
gl y Rectdr=0 Ag-zlard

Here n' = (n—3)/2 and ~ means that the two quantities are bounded
from above and below by positive eonstants which are independent of g,
but which may depend on A and all other parameters. Similarly, we see
that in the denominator of (9), u; being the dominant term,

(24) [ f Gl - ] deod == ¢! oy,
et

Thus the ratio in (9) ox ¢+ 1", Thig ratio will tend to infinity,
if 94 (4—2n-42n0/+2)p = 2n+(83—n)p <0 or p > 2nf(n—3).
9. Bounded rational functions which are mot local multipliers.

Levma. Let P(E) and Q(&) be polynomials in & = (&, ...y &n) and let

d , , .
1,3-—, in the usual notation. Suppose there exists an estimate
i

g

Q(D)uly < O|P(D)uly

for all C®-functions with compact support in  fized cube K. Then there
also exists the estimate

QD +n)uly < €' |P(D+7)uly,

where 7 is an arbitrary, but fiwed complex n-veetor.
Proof. The shift formula

A P(D)u = e"P(D+n)e™™u
tells us that
167Q (D +n) (e w)|, < Cle"P(D-Fn)(e"u)],  Tor  weCP(K).
Tetting v = ¢ ™u we see that
QD +n)2ly < OIP(D+m)ly  for all eGP (K).
In [5] it was proved that there exigts no estimate of the type

[l < C g gy — Uty | Dty < C|(Di+ ,D;“’,—.T)f)w,},,

for ueCP(K), K being a fixed cube in @, y,t space if p > 4. Ilence, by
the above lemma, for p > 4 there cannot be an estimate of the type

(D) ulp < C|(Da Dy— (D) ulp.
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Now let (D§+D§~(Dt+i)ﬂ)u = and (D;+4)u =g. Then

T+ T+1
BLp_(c+ip  Stp—rtl—2ir
Thus if @ is a multiplier in I?, then the last inequality must hold.

Since it is violated, ® is not a multiplier for p > 4. Tt is easily seen that @
is bounded.

THEOREM. There exist bounded rational functions in R® (and hence in
R", w2 3) which are not even local multipliers for all p.

Applying the preceding lemma to the result proved in Section I,
we obtain, setting n = N—1,

THEOREM. (&-+...+ &y 1— &+ 1—2£40)"Y, a bounded reciprocal of
a polynomial, is not a local multiplier in LP(RY) for Pp>(2N—2)[(N—4).

é = (.151:, where & =

1
3. The equation — u;+ Uy —i% = f.
9

THEOREM. ¢(&,7)= (t—&8—14)"" is not a multiplier in L?(R},)
for 1< p < 4[3 (and the conjugate range).
Proof. Since the function is bounded, it clearly is a multiplier in
I*(R?). Letting
19 02
L=——r4———1
Tw T Y
a fundamental solution to L is given by B, = ¢ 'E(z, t), where
& &
Ble, 1) = iee [ for ¢>0,
0 for ¢<0.
This follows from the fact that FE(«,t?) is a fundamental solution
of the Schrédinger operator
10 02
i 0t oz
(see Tréves [8], p. 72). Now let f be an L™-function with compact support.
Then feI? ~ I” and f,E, = u satisties the equation Lu =f. If ¢ is a
multiplier in I”, since % = ¢f, we must have

[#lp < Cplflp-
We shall show that this inequality is violated. To that effect we take
1
— for O0<<a<h, 0t
e, t) = | 7k or <ax<h, < k,

0 otherwise,
where k= h?ja and h = 1.

Studia Mathematica, t. XXX, z, 2 15
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Taking
e“t‘”zcosﬁ for >0,
By(z, 1) = t
0 otherwise,
we see that
(or—i—h ) e
G = : = Sy e (]7 dIG
oo, ) = Borfala, ) = 37 f f cos (CH)

We proceed to estimate gp. Firgt we notice that for 1 <@ < afh,
1<E<2,0 <W <1,

cos(e+h)?  cosa’
-+ & t

We note that for 1 <12

hkff

Now |gn— o] < Ck+ Ca, where ¢,
={&,: 1 <t<2 a/h}, a short ealeulation shows that

< O(al! + 22 %') < Co.

cos(w+H)" ¢ )

t-+ &

o ——— ‘ an'ak' < Ck.
Vitw Vz

= lim ¢;, = H,. Furthermore, letting
h—0

1<e<

f 1go|P daedt = Cpafh for 7 < Dy,
i
Thus

f lgnl? dadt = [Cy— Opk° — Cp aP Ta/h.
#

First picking o sufficiently small and then &, sufficiently small, and
remembering that & = h?fa, it follows that

nyhP’dmalt - Clafh for  h = hy.

On the other hand,
f]fhl”dmdt = ()(hﬂ(l_p)).
R

Thus for the IP-estimate in question to hold it is necessary thatb
—~1<3(1—p) or p>t

A corresponding argument in n-space and one ¢ dimension shows that
for the estimate to hold one needs that p > (2n+2)/n+2.

icm°®
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. . -3 1
4. Convolution with the kernel |t| 2 ¢os 7 We next investigate

a kernel arising in the theory of surface waves. See for example Lamb [4]
Chapter IX.

THEOREM. Convolution with the kernel
3
_—— a l
E@#) =t & cos

(in R') does not take L? into If, if 1/p—3 > a.

Note. Thus, if « < 0, no estimate holds for any p (1 < p < oo).
If a = 0, the estimate |K«f]y, < C|fiz, has been shown to hold by Frank
Jones (unpublished), and is false for values of p 5= 2. If ¢ > 0, the trans-
formation does not take IF — L%, for [1/p—}| > . For a >} the trans-
formation is bounded ILP — If, for all 1 < p < co. By complex interpola-
tion it can then be shown that the transformation I — If . is bounded
or [Ijp—3} <afor 0<a<i

Proof of theorem. We treat only the case « = 0, the other cases
being only slightly more complicated. We shall convolve the kernel
E(t) = t~**cos1/t with the function f4(t) = 1/h for 0 <t < &, 0 otherwise,
to get the function g;(t). We note that for t >0, 2 >0,

1 o 1 o
(t4 k)~ cos ; — 1% cos " < Cht—%17%2,

where C is a constant independent of A, ¢. Thus for Ch/a < 1 the above
left-hand side does not exceed «/t**. From this it follows that

lga () — K (3)] < a/t".
Hence,

1
f 1P gt
VO

1
[ lmwiras >
Ve

[ 1E@Pa—d
VChja

Estimating as in the previous example, we see that the left-hand side
1—p
)

(3p/2—1)/2 , .
> (T) [Cp—a” Op] m Cpygh®, where o= 3
{3 .

for & chosen sufficiently small. Now [fh*di ~ h'~", hence for the estimate
in question to hold we must have 1—3p > 2(1—p) or p > 2.

By duality it follows that p < % hence p = 2.

Note. It can be seen from the proof that for |1/p — 4| > o the trans-
formation does note take I” — L., for ¢ sufficiently close to p, depending
on a and p.
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5. Convolution by the kernel K (z, 1) = i~fcos (|m|z/t).

TugoREM. Convolution by the kernel I(x, 1) given by =% cos [®]2[t for
1> 0 and vanishing for 1< 0 does not satisfy the estimate

n-+1
|Exflzog < Cplflze for p< Tro—f
8 being o compact set in Ryx Ri, feOF (Rex Rj).
Note. For values of g for which K(,1) is not integrable we may
interpret the convolution by analytic continuation with respect tio f.

Proof. We shall convolve the kernel with the function

x 1 '
fulw, 8y = ¢(%7 F)h—(n f—l)’

where p is 0, vanishes outside the cube 0 < @; < 1, 0 < ¢ < 1, and equals
a constant in the cube } < @; < §, } <1< §. Such that [pdwdl = 1. Let

B o= (hy, hay ey hy), 0SE K<<l and 0K <k <1,
where k= h?.

Then if we restrict the variables @, ¢ by the inequalities 1 < m; <2,
hla <t<1, 0 <a<1, we have
ho R?
< 0[— + —] < Ca,

[z 7|2 J]®
cos 08—
1] &

§

rar——— G
t-- k' i

where ¢ denotes a generic constant independent of ¢. This implies
lo+R a  C'R .
T+ E 7T <y

Denoting by gu(«, t) the convolution (with respect to # and t) I/,
it is easily seen that

(t+%')"*cos |90t|2

t"’cos—‘ <0

a . h
lgn(m, t)— K (2, t)| <O’7,- for 0<h <1’; <t<<l,l <aoy<2.

Ag in the previous two examples, a straight-forward computation
shows that to estimate the IP-norm of g, (for small &) in the above named
region, it suffices to do the same for the kernel X (», ¢) instead, provided
the parameter a is chogen appropriately small and then kept fixed. Under
these conditions we have

[ 1B (@, 07 dadi > Caph'=7, b <,
Dy

where D, is the set 1 <o, <2, hla <t <1
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Meanwhile we have
[ [1falP dwat < 0, -2,
Thus for the estimate |Kxful,p, < Cplfalre t0 hold, it is necessary that as
it

o
we let b — 0, B < O D0+ i e that 1—pf = (1—p)(n+2), hence
that p = (n+1)/(n+2—p).
CoroLLARY. Consider the initial value problem for the Schrddinger
equation

1
Lu:—iuﬁ—duzf, u(z,t)=0 for t <0,

where feC® and vanishes outside the set S: 0 <t <1, [#| << 1. Then there
is no estimate of the type

n-+1
% < <
[ulpesy < |flge,  for @ PR
The proof consists in observing that the solution is given by con-
volving f with the kernel of the theorem with § = n/2.
This corollary, in turn implies our final statement:

(B4 4.+ E 1 —Exy)" s not o local multiplier in IP(R") for
p < 2NJ(N+3).
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