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On differentiability in an important class of locally convex spaces
by

J. KIJOWSKI and W. SZGZYRBA (Warszawa)

The most interesting facts in the theory of differentiation in Banach
spaces are based on the fact that in a Banach space there exist bounded
neighbourhoods of zero. In more general cases these two vproperties (of
being open or bounded) exclude one another. So the generalizations of
this theory which are known to us have followed two different ways:
defining differentiability “with respect to bounded sets” or “with respect
to open sets”. The first way was chosen by Sebastiao e Silva [12]. A very
disagreeable defect of this theory is that differentiability does not imply
continuity. However, this implication is valid for Fréchet spaces but
it requires a non-trivial proof. Besides, the lack of the mean value theorem
in Silva’s theory makes it impossible to estimate the remainder by the
derivative. '

The second way was chosen by several authors, e. g. Marineseu [11],
Bastiani [1], Binz [2], Keller [8], Frolicher and Bucher [6]. As is well
known (cf. an excellent review of Keller [97), in the case of a general
locally convex space I/ there does not exist any locally convex topology
in (B, F) in which the mapping

ExZ (B, F)s(h, L) + L(h)eF

is continunous. No wonder that nobody succeeded in obtaining in the
general case the mean value theorem or an equivalent theorem stating
that the continuously Géiteaux differentiable mapping is also Fréchet
differentiable. Replacing the continuity of a Giteaux derivative by
a much stronger non-topological condition, Marineseu [11], Bastiani [1]
and other authors mentioned above obtain the Fréchet differentiability.

We prove in the present paper that in an important for applications
clags of Fréchet spaces one can develop a theory of differentiation “with
respect to open sets” without assuming this condition. Many theorems
known in the classical theory of differentiation in Banach spaces are
proved here. We give also (in gection 3) a natural criterion for the
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existence of o Fréchet derivative in the Schwartz spaces. As is well known,
this class embraces all nuclear spaces, hence all spaces of the theory of
distributions (*).

1. Definitions and formal laws of differentiation. Let K, F, @, ... be
locally convex topological Hausdorff vector spaces over the field R or C.
By N (F) we denote the set of all absolutely convex closed neighbourhoods
of zero in B. By || |y, || [l ete. we shall denote the seminorms generated
by elements U, VeR(H). By Z,(B, F) we denote the space of all con-
tinuous linear mappings from F to I endowed with weak topology (the
topology of simple convergence).

Let T be a mapping from E to F (¥ and F are both topological
vector spaces). By a weak derivative (Gdteaus derivative) of T' at a point
el we call a mapping VT (z)eZ (B, F) such that for every vector hel
the mapping

Feh —ro(h): = T{(@w+h)—T (&) VI (2)h el
has the following property:

RCAUQANN 0 (teR or teC).

Definition. Let T be a mapping of an open set @ < F to F. We
say that T is Préchet differentiable at a point z<Q if there exists a mapping
Le# (B, F) such that the mapping

Bs b —ry(h): = T(x+h)—T(@)—Lhel

has the following property: for every Ve (F) there exists U< (F) such
that for every Moore-Smith sequence {h;}1.4 convergent to zero in I we
have

lim (MMLV = ().
aed  halle

We collect some elementary facts.

PRrOPOSITION 1. If the mapping T is Fréchet differentiable at weE,
then the mapping L is uniquely determined.

The mapping L is then called the Fréchet derivative of 1' at o and
denoted by 7' ().

ProrosITION 2. 1° Every mapping which is Fréohel differentiable at
zeH i3 also continuous at o. ‘

(1) The theory developed in this paper could be applied to some problems in
the calculus of variations and the classical field theory. A corresponding paper will
be published in Studia Math.
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2° A linear combination of differentiable mappings at © is differen-
tiable at © and its derivative is o linear combination of derivatives.

3° A superposition of o mapping Ty differentiable at xeE with a map-
ping Ty differentiable ot T, (x)eF is differentiable at x and

(I,0 1) (2) = To(T(@)o Ty().

2. Some properties of partially continuous mappings in Fréchet spaces.
In this section we shall prove some facts which will be necessary in de-
veloping the theory of continuously differentiable mappings.

LeMMA 1. Let E be a Fréchet space and F an arbitrary locally convex
space. Let B xB>(x,h) — g(z,h)eF be partially continuous and Unear
in the second variable and partially continuous in the first variable at the
point wyeB. Then the mapping g is continuous at the point (m,, 0) B X E.

This lemma is a generalization of the Mazur-Orlicz theorem (see [3]).

Let B be a locally convex space and U «Jt(E). By Ey we shall denote
the normed space B/N (U) (where N(U) = {zeE: |ally = 0}) with a norm
I l defined in a standard way.

Definition. By a Schwartz space (S-space) we mean a locally convex
space B which satisfies the following condition: for every UeR(E) there
exists WeR(E), W < U, such that the natural injection Ew — Ey i8
a precompact mapping (cf. [7]).

TumorEM 1. Let B be an S-space and F an arbitrary locally convex
space. Suppose that we are given a mapping ExE>(z,h)—g(®,h) el
continuous in a neighbourhood of the point (wy, 0)eEXE and linear in
the second variable. Then for every V e N(F) there ewist U <R(B) and W eN(E)
such that for every @ew,+U

(B, Fy)eglo, ) =, 4(&, )L (B, Fy)
uniformly on W (which means for heW).

Prootf. For every VeW(F) there exists U,<J(H) such that ¢ is
continuous on {m+U,} x U; and llg (=, By <1 f~or heU,, xexo+U,.
Let us take UeN(E) such that U+ U < Uy and Texot U. Then

{y(z,"): 2e+ U} = L(Ey, Fr)

is an equicontinuous set in £ (Ey, Fy). But the topologies of simple con-
vergence and precompact convergence are the same for equicontinuous
sets (see [3]). Since K is an S-space, if one takes WeN(E) which is pre-
compact in Fy, then from the simple convergence

Z(By, Fy)>gle, ) =, 9@, ) £ (By, By)

one obtains uniform convergence on W.
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In the same way one can prove

TuroreM 1°. Let F and I be as in theorem 1. Let g(-, ) be linewr
in the second variable and continuous at (x, 0) (not mnecessarily in the
neighbourhood of (wo, 0)) Then for every VeR(F) there ewists WeR(E)
such that (B, Fy)qy(, -)mj%g(x(,, VeZ(H, Fy) wniformly on W.

3. The mean value theorem.

Definition. The mapping 7' from an open set £ < I/ to I (I and
are both arbitrary topological vector spaces) is called continuously Gdteaus
differentiable if the mapping

B o Qx> VI'(x)eLy(l, )
is continuous.

Plainly a linear combination of continuously differentiable mappings
is a continuously differentiable mapping.

" ProrostroN 3. Let B and F be Fréchet spaces (F-spaces) and G an
arbitrary locally convex space. If T': B — F is continuously Gdteaun differ-
entiable at x,eB and §: F — G is continuously Gdicaus differentiable at
T(wo)eF, then SoT: B — G is continuously Gdteauw differentiable at ux,.

Proof. One must prove only the continuity of the derivative. Let
{#,}1c4 be a sequence convergent to @,

(80T (@) h = § (T (:))(T" (wa) ).

Let us write Ay = T’ (x;)h. Of course, h; it T' () h. But the mapping
(@) ha) — 8 (T'(2;)) by @ satisties the assumptions of lemma 1 and then
S (T (@) ha — 8 (T (w0)) (T (o) B) -

So we have removed the difficulty sygnalized by Keller [9], namely
that in more general spaces and other topologies proposition 3 is not
necesgarily valid.

ProrosITIoN 4. Let B be a Fréchet space and also a Schwarlz space
(#-S-space) amd F an arbitrary locally convew space. Let a mapping T:
E o QT be continuously Gdteaus differentiable in a netghbourhood of
the point @€ 2. Then for every V e R (F) there exist such U e N (B) and W e R(H)
that

sup||VL (@) h—VTL (@) hlly — 0
TeW B
for every T ewy+U.
The proof immediately follows from lemma 1 and theorewm 1.
THEOREM 2 (mean value theorem). Let the assumptions of proposi-

vion 4 be satisfied. Then for every Ve (F) there ewist such UeN(E) and
WeR(E) that for every &ewy+U and heW we have

i@+ )T @)y < C|bllw,
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where
C: = sup VT (Z+ k)slly.
kseW

Prool. Let us take the mapping R [0, 1] -> T(Z+1h)eFy.
From the ordinary mean value theorem (see [4]) one has

|1'(B+h)—T @)y < sup [VT(E+Om)hlly < sup [V (@-+ &) sllw |l
01 ks

for every heW and an arbitrary W eR(E).

From lemma 1 we know that there exist such M < oo, U,eN(E) and
W, eR(EH) that [V (2)slly < Ms|w, for every zew,+ Uy. Let U be such
that U4 U < U, and W = W, ~ U. Then for every 51eq;o+ U we have

sup [|[VT (3 -+ k)slly < M < oo.
k86

From the above considerations we get the following

THEOREM 3 (fundamental theorem). Let the assumptions of pro-
position 4 be satisfied. Then for every V eN(F) there ewist such U, W eNR(E)
that for every ZTemy+ U and for arbitrary U,eRN(E) we have

llrz(B)lly < Oz(Ty) kil
for every heU,. Besides,
0z(Uy): = :%PIIVT(%L k)s—VT (2)s]l»
Uy
sV

and
lim Oz(U,) =0.
U h(E)

Proof. Let us consider the following mapping: ‘
Boy > p(y): = T@y)—VIT@)y, Vuly) =VI(y-VT@).
In the same way as in the proof of theorem 2 we obtain:
[T (5 + h)— T(#)— VI (@) blly = lp(@+1)— @l
< (bl supl| VT (& -+ k) s — VT (&) 8l -
o
The last point of the theorem immediately follows from proposi-

tion 4.

Tf one uges theorem 1’ instead of theorem 1, on can prove the fol-
lowing . -

TagoreM 3. Let B be an F-8-space and F an arbitrary locally convew
space. Let a mapping T: B = Q — F be continuously Gdteaua differentiable
at the point mye 2 (which means that it is differentiable in some neighbourhood
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of @y and VT (x) is continuous at xy). Then for every VeR(F) there ewists
stich WeR(E) that for every UeR (L) and an arbitrary hel we have

ey (Wl < |1}l O (U),
where
C(U): = sup||VL (zy+ k) s — VI (5) 8]l -

ke
seW

Besides, lim C(U) = 0.
U (B)

TusoREM 4. Let F be an F-8-space and F an arbitrary locally conves
space. Let T: E o Q — F be a mapping continuously Gdteaux differentiable
at a point weQ. Then T is Fréchet differentiable at @ and VI'(x) = T'(z).

The proof immediately follows from theorem 3'.

The fact that F is an F-space enters in the above discussions only
through lemma 1. So all the conclusions of the present section can be
transferred onto an arbitrary S-space in the following way:

THEOREM 5. Let B be an S-space and I an arbitrary locally convex
space. Let T: B o Q —F be a mapping continuously Gdteaux differen-
tiable at the point z,eQ. If the mapping

ExEs(w,h) —g(@, h): = VI (z)hel

is continuous at the point (x4, 0) < B X B, then the assertions of propositions 3
and 4 and theorems 2, 3, 3’ and 4 are valid.

Remark. The above assumption means that for every VeN(F)
there exists such UeR(E) that the set

{VI(2): wemy+ U} =« Z(H, Fyp)
is equicontinuous.

Marinescu’s assumption about continuous differentiability in the
sense of “réunion pseudotopologique” [11] means that the mapping
EXE>(@,h) —g(w,h): = VI (x)hel satisties the condition given by
the agsertion of proposition 4. So we have proved theorem 4 — which
we recognize as the fundamental fact of every reasonable theory of diffe-
rentiation — without Marinescu’s assumption in the case of F-S-ypaces
and with a weaken assumptions in the case of S-spaces.

4. Higher order derivatives. If one wants to construct a theory of
higher order derivatives, one must choose & suitable topology in the spaces
.‘Z(E,.?(E,...,.?(E,F)...)) and spaces £(E, B, ..., EH;F) (the space
of all multilinear continuous mappings from EX ... X B to F). Conse-
quently, as in the theory of the first order derivative, we choose weak
topology (simple convergence topology) in all those spaces. This choice

* ©
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of topology permits us to avoid difficulties in the definition of higher
order derivatives (cf. Keller [9]).

LEMMA 2. If B is an F-space and F an arbitrary locally convez spage,
then the spaces %,(E, %,(B, F)) and %5(E, B; F) (weak topologies) are can-
onically isomorphic. )

This lemma follpws from the Mazur-Orlicz theorem. Of course, if
weZs(B, £Lo(B, F)), then w — &e¥ (B, E; F) is defined by

W(h,s): =wu(h)s, h,seH.

Similarly, Z,(E, Z,(... Z.(B, F)) = Z(B, ..., B; F).
Now we shall quote the generalizations of lemma 1 and theorem 1
for the case of several variables.

LemMA 3. Let B be an F-space and F an arbitrary locally convex
space. Let the mapping

EBXEX...XBE2(x,hyyecoyhy) > g(@, hyy ooy ha)eF

be n-linear in the variables (hy,...,h,) and partially continuous in all
variables at the point (g, hyy .., hy) e B X B X... X B for every set (hy, ..., hy)-
Then g is continuous at the pownt (2,,0,...,0)eEX EX... X K.

Proof by induction.

THEOREM 6. Let B be an S-space and F an arbitrary locally convex
space. Suppose we are given a mapping

EXEX...XBE>5®,hyy ooy ) —>g(@, hyy .., hn)eF

continuous in o neighbourhood of the point (2,0, ..., 0) and n-linear i
the variables (hy, ..., hy). Then for every V eR(F) there ewist UeR(E) and
W eR(E) such that for every Zemy+ U

LB,y E;FV)Bg(.'E,‘,...,')&g({l,‘,...,')E.,?(E,...,E;Fy)

wuniformly on WXx...XW.

Proof. The equicontinuous family of n-linear mappings on the
precompact set is a uniformly equicontinuous family. Then the rest of
the proof follows as in theorem 1.

Pefinition. Let E be an F-space and F an arbitrary locally convex
space. Let T: B o 2 — F be Fréchet differentiable in a neighbourhoo.d
of the point z,¢Q. We say that T- is twice Fréchet differemiqble at x, if
the mapping B> 2>z —1"(2) «Zs(E, F) is Fréchet differentiable at ;.

The derivative of mapping # — T'(z) at the point z, will be called
the second derivative of T at x, and denoted by T"(x,). Of course,
T”(wo)e.‘fs(E,_‘Z’s(E, F)) = %,(E, B; F).
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PROPOSITION 5. Let B be an F-space and F an arbitrary locally convex
space. If the mapping T: B o Q — F is twice differentiable at w,, then
T () s a symmetrical bilinear mapping.

Proof. For every VeR(F) and' every h, seE the mapping

R23(a, b) — y(a, b): = T (x4 ah-+bs)elly

is twice differentiable at the point (0, 0) in the sense of the theory of
differentiation in normed spaces (it is, with strong topology in Z(R2, I',)).
Because

P(0,0)(&, n)(C, o) = T () (&bt 18) (Ch+ 05),
from the symmetry of second derivatives in mnormed spaces we have

1L (o) (B, 8) — L' (@0} (3, B)llpr = 0.

Since F is a Hausdorff space, 1" (u,)(h, s) = I (@) (s, h).

In the similar way one can define higher order derivatives.

Definition. Let F be a Fréchet space and F an arbitrary locally
convex space. We say that the mapping T: B o Q — F is n times Fréchet
differentiable at the point xye2 if it is n—1 times differentiable in some
neighbourhood of z, and if the mapping Esz — T"~(2) eZs(H, ..., B; F)
is differentiable at z,. The derivative of this mapping at the point =,
is called the w-th order derivative of T at &, and denoted by T™(a,). Of
course,

T (wg) e Lo (B, Lo(H, ..., B; F)) ¢ Lo(R, ..., B; F).
As in the case of second order derivatives one can prove

ProroSITION 6. The n-th order derivative is an n-linear symmetrical
continuous mapping from EX...xX K to F.

5. Tayloxr’s formula. Let F be a complete locally convex Hausdorff
space. In the standard way the Riemann integral can be constructed
for continuous vector fields on intervals [a, )] = R with the values in F.
Ii Fis o Banach space, this fact is well known (see e. g. [10]). The stand-
ard properties of the integral, given in [10], can also be verified in this
cage. Also the following lemma can be proved (see [4]):

LeMma 4. Let F be a locally convew complete Hausdorff space. If
a function'f: Ja, b[— F is p-F1 times continuously differentiable in Ja, b[,
then for every t,tyela, b we have

Zf(k) to Uil fjml)(q )w ds.

k=0

icm°®
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THEOREM 7 (Taylor’s formula). Let T be a mapping from the Fréchet
space B to the locally conves complete Hausdorff space F. If T is p-+1 times
continuously differentiable on Q < B, then for every x, e 2 there emsts UeR(F)
that for every he U we have

(%+ h)— T ()
= Z ) () (h ( f A= roen gy o 9h)d9) (h,..., ).
pF1

Proof. Let Uegt(.E') be such that z,4 U = Q. Let us take the follow-

ing vector function:
1=~ 8,14+ 6[ et —>f(t): = T(wo+th)eF.

Of course, f is p+1 times continuously differentiable on j—&, 1+ 4
and
= T® (gy+th)(h,...,h), n=1,...

[
n

Figlo) D41

Using lemma 4 for t =1, {, = 0, we obtain the theorem. We shall use
the following notation:

»
1 M)
KO (h): = T(e+h)— Z:WT( Y @) (R, ...y b,
N= n

where TO (): = T'(x).

TuroREM 8. Let B be an F-S-space and F a locally convex complete
Hausdorff space. If the mapping T: B> Q—~ F is p times continuously
differentiable on Q, then for every e and _every VeN(F) there exist
U, WeR(E) such that for every U, eR(E) and & exy+ U and he U, we hawve

DMy < C3z (U 1,
where

1 .
(7 (U,): = —sup||T® (& + k) (g1, --
Pl kU,

qieW

-5 Op)— T (&) (¢, «- -, 9ol

and lim O (U, = 0.
U, R(E)

Proof. We use Taylor’s formula:

I ()l = H f

P f ,Q;Lde Sap| TP (& -+ %) (g1, -«
(p—1)!  xvy

;s

= Cz (U M-

(1@ (& 4 sh) (R, ..., R)— T® (%) (R, ..., B))ds

v

o) — T (%) (gry -5 QD)“V”h“?V
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From theorem 6 it follows that for every VeR(F) the W, UeR(E)
can suitably be chosen.

6. Partial differentiability.

Definition. Let B and ¢ be Fréchet spaces and 7 a mapping
from Ex G to the locally convex space F. We say that T is partially
differentiable at the point (zy, yo) e B X G in the direction of the space I if
the mapping Eoz— T'(x, y) el is differentiable at aeH. Ity deriv-
ative at the point z, is called partial derivgtive of T ab the point (wy, y,)
in the divection of the space B and denoted by T (%, 9o). OFf course, T (9, ¥o)
e# (B, F). Similarly the derivative in the direction of space ¢ can
be defined.

TueoreM 9. Let B and G be F-S-spaces and F an arbitrary locally
conves space. The mapping T: EXG - F is continuously differentiable
on @ c BEXQ if and only if it is continuously partially differentiable (in
both variables) on L.

Proof. Because of the existence of the n »an value theorem in this
theory, the proof proceeds almost in the same vay as in normed spaces
(see e.g. [4]).

Also in the same way one can prove

TaroREM 10. Let E, F and G be as in theorem 9. If T: BXG -~ T
is differentiable in the first variable at the point (e, Yo)e B X & and con-
tinuously differentiable in second variable in some neighbourhood of the
point (zy, Yo), then T is differentiable at the point (2, Yo)-

In the standard way one can define partial derivatives of higher
order. In this case a theorem similar to theorem 9 can be proved. Also
if all spaces of all variables are %-spaces, the continuous partial deriv-
atives do not depend on the order of iteration (for example T (%, ¥o)
f= Ton (@, _1/0)). This fact follows from the symmetry of the p-th derivative
or p = 2.

*

Let us notice that the above construction does not follow strictly
the construction for Banach spaces. In the theory of differentiation in
Banach spaces the continuity of the derivative is understood in the sense
of strong topology in Z(H, F). In our paper we take weak topology in
Z(H, F), and so we must make an additional assumption about the space
E: we assume that I is an #-S-space. Of course, the common domain
of these two theories is the class of finite-dimensional spaces. For these
spaces both theories are the same.

We would like to thank Professor K. Maurin for his interest in this
work, hig advice and substantial help in formulating the paper.
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