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On maximal functions of fractional order
by

. 0. OKIKIOLU (Norwich)

1. Introduction. Given any measurable function f on (0, c0) Wwe
define the maximal function M (f) associated with f by

M(f)(e) = sup [w—t)" [f)dy]  (@>0).
<i<z i

In this paper we consider certain extensions of M(f) which we call
mawimal functions of fractional order. The simplest case of this is defined
for measurable functions on (0, o) by

Ul(a:—t

It is obvious that M(f) corresponds to Mo (f). We shall eall M,(f)
the fractional maxzimal function of order 1jr.
The well-known theorem of Hardy and Littlewood [2] states thabt
if feI”(0, oo), then
Ifle <IM@l <21l L <p <),
where (1/p)+(1/p’) =1, and

Il = (fvmvmw

)"’ (z > 0)

Here we set f(t) = 0 for t < 0 if it is defined only on the half-line
(0, co). One of the main results involving M,(f) shows that, for r = p,
(/g) = (1/p)—(1/r), we have
1M (Nlg < 2 1flo-

There are also some similar and simpler results in the case 0 <r < p.
Tn section 6 we consider an extension of M, (f) defined on (— oo, co) by

r o\
4,

_ {_f 1 F(w)-—tF(w—~t)

Z\i(f)(w)={ fw ‘t—‘ fm f(y)dy‘rdt}ll
-0 2t
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x
where F(x) = [ f(y)dy. Following this we consider fractional maximal
0

functions defined on Euclidean space of n dimensions. The last section
of the paper is devoted to applications of results involving fractional
maximal functions in the treatment of some integral operators.

2. Preliminary results. In this section we obtain some elementary
results involving M,(f), and state preliminary results to be applied later.
We shall assume throughout that f is some measurable function on (0, co).

(2.1) For s =¢ >0, we have
@™ ML(f) (@) < &~ ML (f) (@)

Proof. This is easily verified by applying Holder’s inequality to the
expression

(x> 0).

5(7/8) dt

M ()@ = [ |@—07 [y
0 14
(2.2) Let 0 < a <1, (1r) = (afr)+(A—a)fry, 0 <tyy 75 < oo Then

M(f) < Moy (P My ()"

Proof. This easily follows by applying Holder’s inequality fio the
expression

M) o) = [ o= [ )y
0 t

ary

(a— )" [ fayay|* ™",
i

where a = (or)/ry, (1—a) = (1—a)7/r,.

(2.2.1) Note. The conclusion of 2.2 remains valid if M,(f) is replaced
by any of the maximal functions considered in this paper.

(2.8) LsMma, If f = 0 45 in L'(0,b),0 < b < oo, and if v > 1, then
for almost all ® n (0, b), we have

x

O M) =r [ 7o) (0o [ fo)dy) " d— o ma=r( [ f) )
0 . i [

r
)

yr

(i) MmN ) <o ([ FO7a@)"  (FI7(0, ).

Proof. On integrating the left side of (i) by parts, we have
[{@—0" { s ay)"as
0 t

x

= [(r—l)*l(w—t)l*’(f faay), + i) f (0— 1" J Fly)ay) " (o) dt,

icm

Functions of fractional order 261

and the result (i) is easily verified since

lim (z—1)~" [ f(y)dy
e b3

is finite for almost all # in (0, b).
It is easily seen by applying Hélder's inequaliby to the right side
of (i) that

M, () @) < v [ 1) (w— 7 [Fdy) @
[ 1

< f Fly ay)" ML () (@)

and this implies (ii).

In the sequel we shall frequently refer to the following extension
of Hardy’s inequality:

(2.4) Lenmva. Let felP(0,00),p >1,0 <y < @/p), (Ljg) = (1p)—,
and let

A(f)@) = o [fly)dy.
Then
l” A (F){m)llg < km'”f”m

where Ty, = {(1—)p" 1.

Proof. In the case p>1, 0 <y < (1/p), the lemma is proved
in [5], Theorem 7. The case y = (1/p) is easily verified by applying Hol-
der’s inequality.

3. The function M,(f): 0< r < p. The three theorems that follow
involve the cases 0 < r < 1, » =1, 1 < r < p respectively.

(3.1) TamOREM. Lef feIP(0,00), 0 <y < (1/p) <1, 0 <r <1, (1/s)
= (1/p)—y. Then

x

(i) M, (f) (@) < (@—r)"" a1 [|f(y)ldy,

0

(i) =M ML (f) ()]s < (L= Fep il
Proof. The result (i) is obvious from the definition of M,(f). The
result (ii) follows by applying Lemma 2.4 to(i).
(3.2) THEOREM. Let feLP(0, 00),0 <y < (1/p) <1, (1/s) = (1/p)—-
Then
et~ M (f) (@)s < B fll
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where

1
- (1-v)
k= {f gl =) [[og (1 — )Y i"“} .

Proof. We may assume without loss of generality that f > 0. Then
it follows easily by applying Fubini’s theorem that
(3.2.1) M(f) (@) = f F(y)log(w/(@—y))dy-
0
The conclusion of the theorem is now easily verified by applying
the inequality for homogeneous kernels given in [5], Theorem 1.
(3.3) TumormM., Let feL(0,00),0 <y < 1/p), 1 < r<p,
= (1/p)—y. Then

(1/s)

[lw*~ (I/T)Mr () (@)lls < k‘zl,r,v ”.f“m

where Jops,y = 1" {(L—yr)[(1— (r[p))}*"".
Proof. We may assume that f > 0. Then it follows from Lemma 2.3
(ii) that

@
£ NI (1) (@) < o (07 [ o) dy)
0
Sinee f eI’ (0, oo), (pfr) > 1, the integral on the right gide may
be treated by applying Lemma 2.4. We observe that

@
z ! ff(y)’dyeL”’(O, oo), =~ where (rfs) = (r[p)—ry >0.
(3.3.1) Note. In view of result 2.1, the conclusions of 3.1 and 3.2,
with different values for the constants given, may be deduced from 3.3.

4. The function M, (j): » > p. We shallnow prove-the main mapping
theotem in the case 7 > p which generalizes the Hardy-Littlewood theorem.
Our main proof of the result involves an assumption of the Hardy- -Little-
wood result. Tn Note 4.2 we give an alternative proof in the case p < r < 2p
which does not depend on the Hardy-Littlewood theorem.

For & proof of the Hardy-Litlewood result see [3], Theorem 398.
A treatmént of the conclusion is aisc contained in [107, p. 31-32, and
in [4], 21.76.

(4.1) TamorEM. Let feI?(0,00), p>1,
= (1)p)—(L/r). Then

(1) =" M () (@)l < 2" 17115
(i) 1M (Hllg < 2" fllp-

0< (1) <(1p), (g
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Proof. It easily follows from the definition of M,(f) that

——tf

s0 that the result (i) easily follows from the known result involving M (f).
We now turn to the result (ii). The case r = p is rather easy to
obtain. For, if we put # = p in Lemma 2.3 (ii), then it follows that

1M (e < 2" ifllo-

Now from 2.2, or from the definition of M,(f), we easily see that

M.(f) ()

M. (f)(0) < a2V sup

(4.1.1)

Mo (f) ()" M () ()~ 17
M (EL M (f) ()1
('Y "M (f) ().

Hence the result (ii) follows by applying the Hardy-Littlewood
theorem.

(4.2) Note. We shall now give an alternative proof of 4.1 (ii) in
the case p <7 < 2p. As we mentioned in the proof of 4.1, the caser =p
follows from Lemma 2.3. We shall first consider the case r = 2p here.
In what follows we assume that f>0.

From Lemma 2.3 (i) it follows by applying Holder’s inequality that,
forr>1,p =1,

N NN

M. () (@) <7 ff(z)(m )" ff dy)
[ 10— J o)™ (o= f fy)dy) ™ e
0

<o f s oo f i) af™| (o0 [ ) a”
0
and it is easily seen on rearranging that

(421) M) < f fr (ta—1)" f fly)ay) " ds.

Now let f* represent the non-increasing rearrangement of f so that

t

[fway < ff*(y)dy;
t

0

(4.2.2) I, = Ifll,  and
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for example see [3], and also [10], p. 29-3L. Then it follows from 4.2.1
that

00

I3
2p \ , »
i sz(f)(W)z”dxsi(Ep—%) f(mmt)"(t"’ [ .f*(y)dy) dido
0 0 0

[ ]
- (22 { fw ( j.f*(z/)d:r/)ﬂdt} {fm f@)”dm}.

Since 2p/((2;p)—1) < p’, and since, by Lemma 2.4, the first integral
on the right side of the last inequality is bounded by Iy = 2 Ifllps
we eagily see that

(4.2.3) 1M gp (Al < 2 11l

Now suppose that p < r < 2p, and let « be given by (1/r) = (afp)+
+(1—a)/2p. Then by 2.2, we have

Mo(f) < Mp(F) Mop(f)'
Hence if ¢ is defined by (1/g) = (1—a)/2p = (1/p)—(1/r), we have
[ ()1§ < [ (O 11 M (f) 5

and the required conclusion is eagily verified from 4.1.1 and 4.2.3.

(4.3) CorOLLARY. Let feLP(0,o00), p>1, 0 <y < (1/r) < (1/p)
and (1/s) = (1/p)—y. Then

Nl MM ML (F) (@) ls < 2 |1 flp-

Proof. The result is easily verified from (i) and (ii) of 4.1 by applying
Holder's inequality.

5. M,(f) as a funetion in I”, 0 < p 1. There are certain results
involving M(f) as a function in ILP(0, c0),0 < p < 1; see [2], [10],
p. 31-32, and alse [4], 21.80. In the next two theorems we deduce similar
results involving JM,(f). The Lebesgue measure on (0, oo) will be denoted
by m, and we shall write log*# for logmax(l, »).

(5.1) TerorREM. Let f be a non-negative measurable funciion on (0, co
such that flog*feL'(0, co). Then for any measurable set B < (0, oo) ther
are constants a and b such that

J A flo)da <a [ f@)log f@datm(B) - (r>0).
0
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(5.2) TumorREM. Let feL'(0; 00), let 0 <p <1, and let E be any
measurable set in (0, o). Then for v > 0 we have

[ (@3, (@) de < (L—p) " m(B)" ([ 1f(a) da)”.

B

The conclusions of Theorems 5.1 and 5.2 are easily obtained from
the known inequalities involving M (f) since, as in the proof of Theorem
4.1, we have

o~ L (f) () < M (F) ().
6. The function j’,(f). We shall now obtain a mapping theorem

for .L{f.r(f) in the case r > p similar to that given in Theorem 4.1 (ii) for
M,(f). We assume throughout this section that fisa non-negative meas-
urable function on (— oo, o).

(6.1) TEEOREM. Let feLP(— oo, 00),p >1,0 <(1/r) <(p), (1/9)
= (1/p)— (1/r). Then there is a finite constani ky, such thai
I (Pllz < B -
Proof. It is clearly sufficient to prove that

( f N, (f) (@) da)"” < Top fllp-

e
A similar result involving f N,(f)(z)%dx can be obtained by
changing variables and considering f(—t) in place of f(%).
For r =z p >1 we have

x4t

Fp@r = | e f fy)dy) dit+ f (¢ [ Fl)dy)
[1] z—1t 0 xz

= NO(f) (@) + N9 (f) (@),
and on using the inequality (a-+b)" < '™+ b, 0> 0,b >0, we have

No(f) < NOND+NOF).

It is now sufficient to consider NI(f) and NP (f). However, the
simplest treatment of the two functions is similar to that we shall give
in the next section for the n-dimensional form of fractional maximal
functions. Hence we omit further details here.

7. The n-dimensional fractional maximal function. We denote by E,
the Euclidean space of dimension n (n = 1). For & = (%, &2, ooy Bp) ey,
we define |@| by

o = (@34 23+ ... +an).


GUEST


266 G. 0. Okikiolu

As usual, L*(B,) denotes the space of measurable funetions on 4
such that "
" t g 9 1,
Wiy = ( [1f@)Pds)" < oo
B,
The extension to # dimensions of the maximal theorem of Hardy

and Littl.ewood was first given by Calderén and Zygmund [1]. We shall
now consider the n-dimensional form of the operator N,. This is defined by

[ flo— ) dy {'(u)"’.

It

(7.1) N.(f) (&) = fwlt””" (- 1y

(7.2) TurorEM. Let feL*(B,),n =1, p> .
g i oozl p 1, rizp, (1)q) = (1/p)—
—(L)r). Then there is a finite constant ky,, such that ’ . ()

|V (f)“q < knm,r IFllp-

o Proczb f. Agin the case involving M, in Theorem 4.1, we prove the
eorem by first considering the functions N _(f) and N dine '
shall assume the result =0 () B we

(7.2.1) 1¥e (Nlp < Kupllfily

given in L:l], D. 114-116, we need only consider N,(f).

' The simplest procedure in the treatment of the n-dimensional N 62
involves the introduction of the non-increasing rearrangement of f ozlto
(0, 00). As in Note 4.2 we denote this by f*. Then we have

7.2.2 I, i
(722) ("l = Ifl, and {Imitf(gjq)dg] < [ rwad,

where w, represents the volume (n-dimensi i
- mgional Lebesgue measure) of
the sphere {weH,: |#| <1}. From this it follows that, for p >1,)

00 Py,

Ny (@) < {6f (t"“""(m-—l)m) f f*(y)d/!j)wdt}]/ﬂ
6

00

b
= gk (P) 5, — (/1) -1 gk \D L\
w0 { [y 1w ay) a

0
< ' B |,
" Hence

(7.2.3) ¥ (g < 0 00O =)y

* ©
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Now for p < r < oo, we have

Ny (pla) < (22? i [ flo—ydy

lzlﬁt
= Noo () (@) Np(f) (@),

and the conclusion of the theorem is easily verified by applying 7.2.1
and 7.2.3.

(7.3) Remark. In [8] Smith has proved results involving maximal
functions defined on more general measure spaces; see also Rauch [7].
We remark here that it is possible to consider fractional maximal functions
in this general setting. We simply replace the spheres {y: |y] <t} of 7.1
Dby suitable spheres in the metric spaces concerned. The ﬁroaf of the ana-

) ([ [ gyl
[

it

logue of Theorem 7.2 will then follow on similar lines.

8. Applications to integral operators. The well-known applications
of maximal functions include results involving the majorization of har-
monic and subharmonic functions; see [2], [7], [8] and [9]. As may be
expected, we can also prove some majorization theorems involving frac-
tional maximal functions. In the first theorem of this section we prove
guch a theorem for certain one-dimensional operators. Majorization theo-
rems involving operators defined on I?(B,),n > 1, are not as straight-
forward as the one-dimensional case. Hence in the multi-dimensional
case we consider results involving the Poisson operator only.

(8.1) TuEoREM. Let the function ¢4(t), a > 0,te(— oo, c0) be meas-
wrable on (0, 00) X (— oo, o), and be absolutely continuous in i. Suppose
that for each fiwed mumber a, we have

(1) OaELp’:

(i) [8)"Pea(t) =0 as |t — oo,

(iii) tey(t)eL”, where p =1 and v > 1.

Let the operator Oy be defined by

Oulf@) = | caltifl@— D,
and Tet -
7(a) =( fm 1to;(t)r’dt)1"'.
Then i

supr(a)~* |CalN (@) < N, () (@)

a>0
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Further, for p > 1,7 = p, (1/g) = (1/p)—(1/r), there is a constant k

]l r
such that

Hsupr “HOWD g < FepplIflly-

Proof. Since ¢,eI”, it is elear that C,(f) is defined for feL” and
a > 0; in fact, C,(f) is continuous on (— oo, co). Now we have

Ik & f i) a
- J

o d & . © , u .
z*i ;ﬁ(%(”m_[ d ('J)d"’) o i () ( jl J(J/)dz/) p

It follows by applying Hoélder’s inequality that

Cu() ()

f

() [Fw)dy || < 1™ leatt)l |l
x—t

ang, by condition (ii), this tends to 0 as [f| = co. On using this resuls
it follows that

5] &
(8.1.1) L N(@) =~ [ ) [fy)dyds.
- —00 x—t
Hence by applying Hoélder’s inequality again, we have

@] <sla)( f | ft sy .

This clearly proves the firgt result of the theorem. The second result
follows at once from Theorem 6.1.

(8.2) Special cases of Theorem 8.1. We define the one-dimensional

form of the Poisson operator P,, e > 0, and the Weierstrags operator
W, @ > 0, respectively by

1r ,
Pafifo) =~ [ Lo f

Wolf) (%) = (dna)~ 1 fm e~ C-a"ap gy gy

—00

Then it is easy to verify that the kernels of these operators satisly
the conditions of Theorem 8.1. Further, since

] i \ta(ul(a"‘ 1))

iy , 1y
dt} :2@( f{t”/(aﬁ—l—ﬁ)zl'dt) =~ l(r),
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and

f \ a1 —t2/4a)

it follows from Theorem 8.1 that, for p > 1, r > p, (1/¢) = (1/p)—(1/r),
there iy a constant %(p,r) such that

1y
dt} = a~ YLy (r),

(8.2.1) llsup @ 1Po(Hllle <E(p, ) Ifllps
(8.2.2) nsu? @\ Wa(Pllg < k@, 7) Iflln-

(8.3) The n-dimensional form of the Poisson operator. The #n-dimen-
sional form of the Poisson operator is given by

Paf(e) = & f el @@ (6>0,2¢F),

where ¢, = 7:‘”*1)'2/1’(4}(%—{—1) ‘
Tt is well-known that sup{{P.(f)(®@)],a >0} < kN (f)(z), where &
is some finite constant; see for example [9], p. 44. We shall now show that
sup ™ | Po(f) (@) < BN, (f)l2) (1 <7< o). ‘
a>0
Firstly we have .
(8.4) LeMMA. Let feL”(B,), n =1, p > 1. Then for r>1, we have
([ e 1Pa(h (@ da)” < ez 142" 1)) N, () (@)
0
Proof. The first part of the argument used here is that given in [9],
p. 44. We may clearly assume that f > 0. Then

anPa(f) (@) = a( f+ f)f(w—t )(a2-4- (g2~ I ag

It <a >
o [fla—natra [ ey
it<a ) >a

Now

o

a [fla—pp™dt=a

=1 om—1 Mg
t>a m=1 2" la< jt <2

fle—b =" dt

0

< NaErta [ fla—bd

el it<2™a
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hence, for r < oo, ‘

([ 4 [Pl @) da) "

(=] o0 '
<N (@ 4-9n 2 gLy —m(-T)r {f ‘(Zma)..nJ,.(n_l)/r f(ﬂf‘—f)d! r da}l/y,
: : M=l 0 It c2"a

= N,(f) (@) + 9n ( 5‘21_1112_111,n/r) N.(f) (),

Mee=]
and this gives the required conclusion.

(8.4.1) Note. A result of the form given in 8.4 with N,(f) replaced
by fractional integrals, can be obtained by applying the continuous form
of Minkowski’s inequality; see [7].

(8.5) TurorEM. Let feLP(H,), n 21, p>1, =, (1/q) = (1/p)—
—(1/r). Then there are constants kn, and Ty, such thal

(1) iu:‘!)) a™r 1P.(f) (@H < kn,’r N, (f) (@) )
and,
(ii) “2&? " |Pu(f)lllg < o | fl -

Proof. We may clearly assume that f > 0. Since the function
a" (a2 4y D2 = 1/(1 N (y/a)z)("-id)/z
ig increasing in a, it follows that a"P,(f) () is an increaging function of a
on (0, o). Hence for y >1, we have

o0

(=17 a" VP () = a"Pu(f) [ y7"ay < [ 4" TPy (Ndy,

a

and it follows by applying Holder’s inequality that

(=) rRy(f) < ([ g0 aye ([ g, gy )
a 0

If we choose y so that we-also have (n/r')+41—y < 0, then by applying
Lemma 8.4 we easily see that

sup a™"Po(f) < Ton No(f).
a>0
This proves (i). The result (ii) is an immediate consequence of (i)
and Theorem 7.2.

(8.5.1) Note. The procedure employed in the proof of Theorem 8.5
can be applied to other special cases. Among these is the n-dimensional
form of Weierstrass operator with kernel

— T
(4na) 73 o |2 /w7 a>0.
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