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Introduction

The origin of the present paper lies in the development of general

finite-dimensional perturbations of spectral problems, the investigation
of which was started by the first author in 1956.

Finite-dimensional perturbations turned out to be a unifying tool
for the consideration of almost all the existing variational approximation
methods for eigenvalue problems. On the other liand, they are also in-
strumental in the spectral analysis of extensions of a symmetric operator
in o Hilbert space of finite deficiency indices (such as occur in ordinary
differential eigenvalue problems). In this connection it became apparent
that the right setting for the spectral problems would be to consider

a system (V, W; ¢, D) formed by two Banach spaces ¥ and W and

two bounded linear operators ¢ and D of V¥ into W.
In an ordinary system which corresponds to usual bounded spectral
problems we would have V = W, ¢ = I (identity) and D a bounded
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operator of T into itself. However, in case of a 1)1*0.1)10.111 concerning'an
unbounded closed operator D, instead of putting it in t.he precedn;.\g
frame we will write it as a system (Dp, V5 I, D) where Dp, is the domain
of D provided with its graph norm. . .

TWe may consider a system (17, W; €y, Dy) as another 1‘eprcfseutatlon
of (¥, W;C, D) with the change of “basis” €, D into the “basis” €y, D,
if 0, = a«0L+pD, D, =ypC+ 56D, where the complex matrix (‘; ';) is
non-singular.

If there exists a linear combination aC+4-pD giving an operator ¢,
which is a continuous linear isomorphism of V onto W, then the system
is called non-singular. Via a change of basis to €y, D, and the isom({rphism
C,, the non-singular system ean be transformed into an isomorpl.nc ordi-
pary system (¥, V3 I,07'D,). Hence for non-singular systems it would
11013~beu necessary to consider the more general setting for spectral prob-
lems. However, a general finite-dimensional perturbation may tra‘nsforl‘n
a non-singular system info a singular system, which is mot isomorphic
to an ordinary system. This is the reason why such general systems have
to be considered, their spectral decompositions into subsystems inves-
tigated (1), the classification of their spectral subsystems undertaken
and so forth. .

The first author presented these developments in a number of talks (2).
It became apparent that especially for consideration of finite-dimen-
sional spectral subsystems, a preliminary analysis of algebraic systems
was needed, i.e. systems where ¥V and W are just algebraic vector spaces
(with complex scalars) and € and D are just linear operators of Vinto W (3).

An investigation of this aspect of the problem was started in 1959
in collaboration with the second author. A preliminary draft of the
results was prepared in 1960 but it was only in 1966 that the authors
were able to renew their collaboration and to finish the present paper.

In the meantime many results of this paper were stated (without
proofs) and referred to by the two authors in other papers (see [1] and [2])
and reference was made to the preliminary draft “to appear shortly”.
Since 1960 the authors have developed the theory further, but it was
decided to include in this paper only those results which were part of
the original draft. Some of the proofs bave been simplified and in many
instances the terminology and notations have been changed.

() In the presert paper we speak of a direct decomposition into subsystems
which is in line with algebraic terminology.

() E.g., 1956 Northwestern University—Ilecture; 1957 London Mathematical
Society-—lecture; 1960 International Symposium on Linear Spaces, Jerusalem-——
lecture.

(*) Buch a system is referred to as a “quadruple” in the paper itself, the term
“system” heéing reserved for a technically convenient substitute.
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Sinee a non-singular algebraic system is isomorphic to an ordinary
algebraic system, its algebraic study reduces to that of a module over
the polynomial ring in one variable. It is therefore evident that the
results for general algebraic systems have their analogs in the theory
of modules. We point out these connections in the text. However, the
theory in the general case is often much more complicated and requires
the introduetion of special tools. Among the tools introduced and used
in the present paper are: the notion of chains of different types and the
corresponding vector spaces of chains (*) (Sections 2 and 6), the correeting
transformation (Section 3), quasi-speetral subsystems (analogous to pure
submodules), the eigenvalue part of a system (analogous to the torsion
part of a module), ete.

The main vesults of the paper are in Sections 5, 6, 8 and 9.

In Section 5 the theorem iy given that a quasi-spectral finite-di-
mensional subsystem is spectral (amalog of the corresponding theorem
for pure submodules).

In Section 6, Theorem 6.6 gives a complete deseription of all the
quasi-spectral subsystems of a given system which are direct sums of
finite-dimensional indecomposable subsystems. A maximal subsystem of
this kind ecorresponds to bases in quotient spaces of spaces of chains.
The multiplicity of appearance of a finite-dimensional indecomposable
type in such a maximal subsystem is given by the dimension of the
corresponding quotient space which is an isomorphism invariant of the
given system. Theorem 6.7 says that the quotient of the whole system
module such a maximal subsystem does not have any finite-dimensional
spectral subsystems.

In Section 7 divisible systems are defined. Certain isomorphism
types of divisible systems (which we denote by II) are introduced in
Section 8, and Theorem 6.6 is then extended to include these types (°)
(Theorem 8.8). The structure of divisible systems is determined in Sec-
tion 9, and it is shown that every system iz a direct sum of a divisible
system and one which does mot have divisible subsystems (although
divisible subsystems are not necessarily spectral). This enables us to
reduce the study of cigenvalue systems (defined in the same gection)
to the well known theory of reduced primary modules over a ring of
polynomials in one variable.

We ghould add that in Section 4 we give a proof of the classical
theorem due essentially to Kromecker (see [5] and also [10] and [4])

() Although chains have been considered before for finite-dimensional systems
(seo [9], [6] and [4]) the corresponding spaces do not seem to have been used.

(°) However Theorem 6.7 does not extend in general. The existence of such
an extension was stated by mistake in an abstract by N. Aronszajn and U. Fixman
{see Notices A.M.S. 6 (1959), p. 429).
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concerning the direct decomposition of a finite-dimensional system into
indecomposable subsystems; we believe that this proof is simpler than
other available.

Before ending the introduction we would like to stress the fact
mentioned before that the original notation and terminology has been
changed in many instances. For example, the type III™ ! of the original
draft is III"™ in the present paper. The reader who would like to compare
the results of this paper with those stated in [1] and [2] without proof,
would do well by checking the notation and terminology used in these
papers.

1. Preliminary definitions

Let V and W be vector spaces over the field C of complex numbers
and let ¢ and D be linear transformations of V into W.

The study of the quadruples (V, W; 0, D) involves consideration
of all the complex linear combinations of ¢ and D. In case (e, a) and
(B1, Bs) are distinet (ordered) pairs of complex numbers, it is desirable
to regard a;0+a,D and B,C0+p,D as formally distinet linear combi-
nations of ¢ and D even if they coincide as linear transformations of V
inte W. It will not do to confine attention to the interesting case in
which ¢ and D are linearly independent, because one would like to con-
sider also their restrictions to subspaces of V (or tramsformations in-
duced by ¢, D on quotient spaces of V) and these may well be linearly
dependent. It iy therefore technically convenient to regard the pairs
of coefficients (a,, a,) themselves as acting on V. We are thus led to
the following notion analogous to the notion of a module. Let €? denote
the two-dimensional eomplex vector space of pairs of complex numbers.
A system (V, W) is a pair of complex vector spaces V', W together with
& sysiem operation which assigns to every pair of elements acC? veV
an element av of W so that:

(a) for every acC* the map v — av is a linear transformation of V
into W;

(b) (aa+pb)v = a(av)+ B(bv) for all veV, a,beC® and a, feC.

Otherwise expressed, the system operation (a, o) — av is a bilinear
transformation of C*xV into W.

When the system (V, W) is assumed to be given, we shall denote
by T(a) the linear transformation v — ap corresponding to the element a
of C*. The range and null space of T'(a) will then be denoted by aV and
A (a| V) respectively. ‘

To a given quadruple (V,W;C, D) we attach the system (V, W)
the system operation of which is defined by (a;, ap)v = (¢, C+ a,D)w.
Then the elements (1, 0) and (0, 1) of € act as € and D,ie., T((1,0) =0

e _©
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and T((0,1)) = D. Obviously, this yields a one-to-one correspondence
between the class of all the above quadruples and the class of all the
systems. Some of the concepts defined in the sequel eorrespond to those
introduced above for quadruples, and all the results obtained for systems
can be reinterpreted in terms of the original quadruples.

If (¥, W) is a system, the spaces ¥ and W are its domain and range-
space respectively. If V' is a subspace of ¥, then the subspace of W
spanned by {ev: ¢eC? v V'} is denoted by C2V? (the system in question
being supposedly known). The subspace 2V of W is called the range
of (V, W). Evidently, if a, b are linearly independent elements of €2,
then C*°V = aV+bV and

NN (V) =H(a]V) A A (B]|T).

eeC?

A system (V', W) is said to be a subsystem of the system (V, W) if
and only if ¥ is a subspace of ¥, W'is a subspace of W and the system
operation of (V*, W*) is the restriction of the system operation of (V, W)
to C*x V'. This implies of course that C2V' is contained in W*. The
subsystems of a given system (V, W) form a complete modular lat-
tice under the partial order: (V?, W) < (V2, W?) if and onlyif V' < 72
and W' < W% The join and the meet of a family ((V*, W)z of subsys-
tems are their sum Y'(VF, WY = (V% XV’ and intersection N (v, W
=(MN 7V, M W (with the indnced system operations). Here the sum-
of a family of subspaces of a vector space is of course taken in the algebraic
sense, 3'V" consisting of all the sums of finite subsets of Lig V¥, The “null”

and “all” elements of the lattice of subsystems of (V, W) are the
irivial subsystems (0,0) and (V, W). A proper subsystem. of (V, W)
is one which does not coincide with (¥, W). The usual convention that
an empty sum of subsystems (subspaces) is the zero subsystem (0, 0)
(zero subspace) will be followed. The sum of a family ((Vﬂ W"')),-‘I of
subsystems of (V, W) is said to be a direct sum if and only if

(VL W)~ D)V, Wy = (0,0)

=

for every iel.

The notations 3 -( v W or, in case of a finite number of summands,
(VY W, 47", W) will be used to denote direct sums of subsystems,
with similar notations for direct sums of vector subspaces. Note that
(U, %)= 3-(V', W') means not only that U = 3'- V%, Z = 3 -W'as vector
spaces, but also that C°V' = W* for every 4. A subsystem (V, W of
(V, W) is said to be spectral in (V, W) if and only if there exists
a subsystem (V*, W*) of (V, W) such that (V, W) = (V?, WhH4H(V2, W3, An
tndecomposable system is a non-zero system which has no spectral sub-
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systems except the trivial onmes. A system (V, W) is said to be of finite
dimension if and only if V and W are finite-dimensional vector spaces.
This is the case if and only if the lattice of subsystems of (77, W) is of
finite dimension, and we then assign to (V, W) the dimension of this
lattice, namely: dim(V, W) = dim V+dimW. . .

A homomorphism of a system (V, W) into a system (V*, W) is a pair
(P, Q) where P and @ ave linear transformations of ¥ into V' and of W
into W* respectively snch that aPv = Qav for all a<C* veV. The terms
isomorphism, isomorphic systems, endomorphism. and homomorphic image
are now self explanatory. The ¢somorphism type of a system (V, W) is
the class of all systems isomorphie to (V, W). If (P, @) is a homowmorphism
of (V, W) into (V', WY, its image (P,Q)(V, W) = (PV,QW) is a sub-
system of (V*, W), and its kernel Ker(P, Q) = (KerP, Ker@) is a sub-
system of (V, W) (the kernel KerP*of a linear transformation P is its
null space). If (V', W) is a subsystem of (V, W), then the pair of spaces
(V/V', W/W*) with the (well defined) system operation

(@, v+ V) = a(o+V") = av+W*

is a system called the quotient sysiem of (V, W) modulo (V', W'). Both’

notations (V/V?, W/W") and (V, W)/(V*, W") will be used for a quotient
system. The usual homomorphism and isomorphism theorems hold for
systems and will be used freely. An endomorphism (P, Q) of (V, W)
which is an idempotent (i.e. satisfies P* = P,Q* = @) will be called
a projection of (V, W). Projections of systems are related to their decom-
positions into direct sums of subsystems in the same manner that pro-
jections of vector spaces are related to vector space decompositions.

Some of our proofs will use duality arguments. If ¥ is a vector space
over C, we denote by V' its anti-dual, namely, the space of all the anti-
linear functionals defined on V. Note that the multiplication of a func-
tional v'«V’ by a sealar aeC is defined by (wv')(v) = av’(v) (= v’ (av))
for all v¢V, where a is the complex conjugate of a. If a = (a, as)e(?,
we Write @ = (a;, a,). Let (¥, W) be a system. Then the pair (W', V),
consisting of the algebraic anti-duals of V, W in reverse order, together
with the system operation (a, w') — aw’, where aw’ iy defined by (aw') (v)
= w'(@v) for all vV, constitute a system. The last system will be called
the dual system of (V, W). It will be denoted by (W', vy or (V, WY
according to convenience. The dual system was defined in snch a manner
that the linear transformation corresponding to an element @ = (&, d,)
of €* in the dual is the adjoint of the linear transformation a,C+a, D
corresponding to « in the original system. We denote by | the operation
of taking polars: if I is a subset of V, then

I' = {o'cV':0'(v) = 0 for all vel).
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If I is & subset of V' and P is the canonical isomorphism of F into

its seeond anti-dual V' (defined by (Po)(v') = v'(v) for all v'<T’), we
have

{eV:0'(v) =0 for all v'ell} = P~Y(PV ~ J).

However, no confusion will arise if we identify here ¥ with its image
under P and hence simplify the notation of the last set to V ~ M+ With
this notation, we have the following relations between ranges and null
spaces in the system (V, W) and its dual:

aW' = AM(a|V)t, aV =W ~ ¥ (@ W)t

If (V, W) is of finite dimension, then it is reflexive in the sense that
it is isomorphie to its second dual (¥, W)’ under the canonical isomorphism
(P, @), where P and Q are the canonical isomorphisms of ¥V onto 7" and
of W onto W' respectively. Let (V, W) = NV, W) be a decompo-
sition of (V, W), and let (P;, Q) be the associated projections. Then
the pairs (@, P;) of the adjoint transformations in reverse order are pro-
jections of (V, W)’ onto subsystems isomorphie to the systems (¥7, W
The system (V, W)’ is canonically isomorphic to the complete direct
sum of its subsystems (7, P;)(W’, V*). (The domain of the complete direct
sum of a family of systems (X', ¥%);s consists of all the families ()
such that @;eX* for every 4. The range space is defined similarly; and
the operations are defined componentwise.) If the given decomposition
has only a finite number of summands, we have the dual decomposition

(W, V') = 3-(Qi, P)(W', V).

A system (V, W) is said to be emact if and only if C*V = W. It is

said to be co-ewact if and only if (M) A (a|V) = 0. It is easily seen that
aec?

(V, W) is exact if and only if (V, W)’ is co-exact, and vice versa. Let
(V, W) be an arbitrary system. Let 7 be a direct complement of
NAa| V) in V, (%), & (Hamel) basis of (A4 (a] V) and (Ym)rex & basis
ac? ae¢?
of a direct complement of C*V in W. Then we have the decomposition

(V, W) = (U, C0)+ Y +([a7], 00+ 3 (0, [yx])
7 T
(brackets denote the vector subspace spanned by the enclosed set or
family). The subsystem (U, C*U) being both exact and co-exact, this
decomposition shows that the only isomorphism types of indecomposable
systems which ave either not exact or not co-exact arve given respectively
by (0, [27) and ([«], 0), where @ # 0. Since (U, C*U) is determined up
to isomorphism by (V, W), only systems which are both exact and co-


GUEST


280 N. Aronszajn and U. Fixman

exact play any significant role in the isomorphism Problem. However,
the class of exact systems is not closed under intersections of subsystems,
the class of co-exach systems is not closed with respect to taking quotients,
and the class of systems which are exact and co-exact is not closed under
either of these operations. Therefore, it is not convenient to restrict our
considerations to any of these classes. .

Exact systems are determined up to isomorphism by linear relations.
A linear relation in a complex vector space X is a binary relation @ defined
in X which has the following properties:

(a) there exists at least one pair (w,, ;) of elements of X satisfying
2, Dt

(b) it @, Px,, #;Pz, and a, feC, then (om,+ fos) P(aw,+ fa,).

Thus, from the extensional point of view which we shall adopt here,
a linear relation in X is just a subspace of the external direct sum X+X
of X with itself (denoting the external direct sum here by the symbol
used for direct sums of subspaces will not give rize to any confusion).

If (V, W) is a system and a, b is a basis of C?, then the set

G = {(vy, o) e V+V: b, = awy}

is & linear relation in V which. will be called the domain relation of (V, W)
relative to the basis @, b. Conversely, if @ is a linear relation in V and
@, bis a basis of €’, then the pair (V, (V+V)/®) together with the system
operation o defined by

(aa—+pb)o v = (fv, —av)+ D

constitute an exact system. The domain relation of the last system rela-
tive to a, b is @. Conversely, if @ is the domain relation of an evact system
(V, W) relative to a, b, then the pair (I, @), where I is the identity map-
ping of V and @ is the (well defined) linear tramsformation (v, v,)+@
— bo;—av,, is an isomorphism of the above system (V, (V+V)/¢>) onto
(V, W)

If @ ig the domain relation of a system (V, W) relative to «, b and
¢ = aa-+pb, d = ya+ 80 is another basis of €%, then the domain relation
of (V, W) relative to ¢, d is

{{avy+ By, yv14 6v5): (vy, 0,) e D).

Remark. Similarly, given a basis @, b of €* one establishes a one-
to-one correspondence up to isomorphism between co-exact systems and
their range relations ¥ = {(aw, bv): ve¥}. The co-exact system correspon-
ding to a linear relation ¥ in W is the system (¥, W) having the system
operation o defined by

(aa+b) 0 (wy, w,) = aw,+ fuw,.

icm
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The range relation of the last system (relative to a,b) is ¥. Con-
versely, if ¥ is the range relation of a co-emact system ( V, W), then the
pair (P, I), where P is defined by Pv = (av, bv) and I is the identity map-
ping of W is an isomorphism of (V, W) onto the above system (¥, W).
The transformation of range relations under a change of basis of C? is
given by the same formula as for domain relations. Some concepts and re-
sults involving domain relations have analogs for range relations. However,
the latter will be omitted as they will not be used in the present work.

We now define a proper subelass of the class of exact and co-exact
systems. A system (V, W) is non-singular if and only if there exists an
element « in C* such that the linear transformation 4 = T(a) is an
isomorphism of V onto W. In this case (I, A1, where I denotes the
dentity operator of V, is an isomorphism of (¥, W) onto the system
(V, V) with the system operation o defined by

bov=A""b0, beC?veV.

In this new system-the elements of C* act like linear operators of T~
into itself; in particular, a acts like the identity. A system of this kind,
in which the domain and the range space coincide and there exists an
element of €* which acts like the identity operator of the domain, will
be called an ordinary system. The data V, e, an element be(? linearly
independent of a, and the linear operator B: v ->bo o determine the
above ordinary system (V, V). Thus, since a non-singular system is iso-
morphic to an ordinary one, it may be rvegarded as a representation of
a single linear operator B of a vector space V. The latter is often studied
by means of the module over the ring of complex polynomials defined
by p(2)v = p(B)v, p(4) a polynomial, veV. Hence, arbitrary systems
may be viewed as a generalization of a special case of modules over prin-
cipal ideal domains. Some concepts and results for such modules carry
over to systems, but in many instances in a non-trivial manner, since C*
iy just a vector space, not a ring. Some of the differences between systems
and modules over principal ideal domains will be pointed out later in
the appropriate places.

We shall have to refer below to the ranges and the null spaces of
linear transformations corresponding to elements of €. If ¢ceC? and
¢# (0,0), then the range ¢V and the null space A#7(¢| V) of T'(¢) in a given
system (¥, W) evidently depend ouly on the point of the complex pro-
jective line which ¢ represents. We shall regard the complex projective
line P'(C) as the quotient set of C*—{(0,0)} modulo the equivalence
relation of proportionality and denote the point {y¢: 0 # y<C} of P'(C)
corresponding to an element ceC*—{(0, 0)} by ¢. If a, b is an (ordered)
basis of €*, then

(at+Bb) — —aff  ((0,0) # («, )eC?, —al0 = oo)
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indnces a one-to-one map of P'(C) onto the extended complex plane C.
Thus the map
b—6a for 6eC,

0~ by = . for

0 = co

is a parametrization of a complete set of representatives of the points
of P'(C). Note that for 8; = 05, by, by, is a basis of €*. Generalizing
from the special case T(a) = I, we gay that a voetor v is an eigenvector
of the system (V, W) corresponding to the eigenvalue 0 if and only if it
is a null vector of T'(by); i.e. byv = 0, v 5= 0. It should be noted that the
parametrization, and therefore the eigenvalues, depend on the chosen
basis &, b (which is not necessarily such that 7'(a), 7'(b) are the originally
given transformations ¢, D). If ¢ = aa—{—fib, d = ya+0b is another basis,
then d, and b, are proportional (i.e. d, = by) if and only if # is the Moebius
transform # = (80+»)/(f0+a) of 0. Whenever the above kind of para-
metrization is used it is tacitly if not explicitly assumed that a basis of (7,
usually denoted by a,b, has been chosen.

2. Finite-dimensional indecomposable systems. Chains

We now exhibit certain types of systems which will turn oub to be
all the isomorphism types of indecomposable systems of finite dimension.
In the definition below and henceforth the letters 1, m, n with or without
subscripts will be reserved for positive rational integers.

Definition 2.1. A system (V, W) is said to be of type:

I™ if and only if dimV = m, dimW = m—1 and dim4(¢| V) = 1
for every ceC*— {(0, 0)}.

Iy if and only if dimV = AimW = m, dimA(d]| V) =1 for every
deé and #(d|V) =0 for every deC*—{(0,0)}, d¢e.

III™ if and only if dimV = m—1, GimW = m and M(e] V) = 0 for
every ceC*—{(0, 0)}.

Obviously, systems of distinet types are not isomorphic. Our chax-
acterization of these types by means of chaing (to be defined later) will
make it evident that systems of the same type are igomorphic, 8o that
1™, II7, III™ may be regarded as notations for isomorphism types. It
is clear that systems of type ITI' (respectively I') are of the xingle non-
exact (respectively non-co-exact) indecomposable isomorphism type
mentioned in Section 1.

Using the parametrization 6 — b, defined in Section 1, we may denote
the types IL", ¢eP'(C) by IIZ’-)’;, f¢C. We shall abbreviate this to 11y°,
keeping in mind that the designation of a system ag being of type 115"

0
depends on the choice of a basis a, b for C? (see the conventicn made

icm
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at the end of Section 1). Thus, a system (¥, W) is of type II” if and
only if~ dmV = dimW = m, dimA(by|V) =1 and 4 (0,1 V) =0 for
0 # neC.

PROPOSITION 2.2. The systems of Definition 2.1 are indecomnposable
(and therefore emcept for types TITY, 1* exact and co-ewact).

Proof. Let (V, W) be of type II}* and let (V, W) = (V) WY
+(V?, WZ_) be a decomposition. For 5 % § we have dimW® > dim b, &
= dim V", Since AimW'+dimW? = m = dim 7'+ dim V?, it follows that
dimW* = dim Vi, i =1,2. Hence the two component subsystems are
non-singular. Thus, if both components were non-zero, both would have
an eigenvector. As 0 is the only possible eigenvalue, this would imply
that dimA(b,|V) > 2. Therefore the decomposition must be a trivial
one. If (V, W) is of type IIT™, we have again dim W’ > dim 7°. Since
AmW 4+ AmW? = m = dim 7'+ dim V*+1, we have AimW®= dim V*
for 4 =1 or i =2. For this value of 4 it follows that (V*, W% = (0, 0)
since otherwise the system (¥, W) would have an eigenvector. A similar
proof can be given for type I™. However, by the next proposition the
indecomposability of systems of type I™ follows from that of systems
of type III™. One has only to apply the remarks on duality made in
Section 1. .

ProPosITIoN 2.3. The dual of a system of type III™ is of type I™
{and conversely by veflevivity). The dual of a system of type 117 is of type II;{L.
Thus the dual of a system of type I} relative to the basis a, b is of type I
relative to the basis @, b (here oo = oo),

Proof. Let (V, W) be the given system. The domain and the range
spaee of (W', V') obviously have the appropriate dimensions in both
cases. For a subset L of ¥ let L* be the polar {0 eV': 0’ (v) = 0 for all
veL}. We then have the relations

dm V' = dimA(d| V) + dimA(d| V)L,

AW’ = 44| V)L and dimW = dim AW' 4+ dimA(d | W’).

Using these one checks that dima”(d|W’) matches too in all cases.
The final statement of the proposition follows from the fact that (by) = B3.

Remark. Using the formula for change of parametrization given
at the end ¢f Section 1, wo obtain that if & = (a,, a,), b = (f;, f,) then b,
is proportional to bz if and only if

= ('517/)12—— Bras) 5{‘1@2 - 731 Bs

B (g ty— a0ty) f;—k (1,/?2~ (12B1 ’
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It is easy to verify that the map 6 —  is the inversion (or reflection)
in the circle (or straight line) given parametrically by
o = (@fs—Fraa)t+BiBo—B: o

B (61 Oy~ alaE)t+ a1—32— aZBl !

1 real.

Thus & system of type IIy" (w.r.t. the basis a, b) is isomorphic to
its own dual if and only if 6 lies on this circle. In the particular case
a = (1,0), b = (0,1) this condition means that 6 is a real number.

As a clue to a more detailed description of systems of our types,
we consider a system (V, W) of type Iy, 0 # oo. Since the operator

4 = T(a) = T'(by) is an isomorphism of V onto W, such a system is’

non-singular. As explained in Section 1, the isomorphism (I, A™!) maps
it onto an ordinary system (V, V) which is essentially determined by
the single operator B: v — A~ by of V into itself. The space V is indecom-
posable into subspaces invariant under B, and B has the single eigenvalue 6
(in the ordinary sense). We conclude from the classical canonical form
that there exists a basis (vx)i-; of V with respect to which B is described
by the matrix corresponding to the elementary divisor (A— 6)™. That
is, we have the relations Bw_, = o1+, b =2,...,m, By, = 00,
which imply byvr_, = vy, k = 2, ..., m, byv,, = 0 in the original system.
The following concept of chain ig a generalization of this type of basis.

Let a, b be a basis of C*, (V, W) a system, p a rational integer or
the symbol — co and ¢ a rational integer or the symbol co sueh that
P—1 < ¢ (we use the usual conventions on order and addition in the
rational integers extended by the symbols — oo, co). The symbol (uz)3
will denote a sequence % — uy; defined on the segment [p, ¢] = {k: &
integer, p <k, k < g} of the rational integers. In particular, the segments
of the form [p,p—11,p integer, are empty, and (uz)s~" denotes the
empty sequence. The set of all the pairs of sequences I' — () ()" Y
with vzeV, w;,<W, which satisfy the conditions

O = Wey Do = wry,  for  Fe[p, q]

constitutes a complex vector Space under the operations
(0035, (0bls™) +(oDg, (WhE™) = ((vh-+ oS, (wh+ k),
a((vs)3, (wi)3™) = {(awp)s, (awr)%™)

(here the sum of the empty sequence with itself and the product of the
empty sequence by a complex number are the empty sequences). This
vector space will be denoted by (?4(a, b, V, W). An element I' = ((v;)8,
(wi)5*") of C"¥(a, b; V, W) will be called a chain (w.r.t. a,b) in (V, W)
with domain sequence (v)§ and range sequence (we)g™. IE I = (o), (we)2™)
is @ chain in (V, W) and (X, Y) is a subsystem of (V, W), we shall say
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that I' 4 contained in (X, ¥) and write I = (X, ¥) if and only if v,eX
for every ke[p, ¢] and wpeY for every ke[p, ¢41]. The pair of spaces
([oe: kelp, ), [wi: kelp, ¢+19)) is the smallest subsystem of (v, w)
which contains I'. This subsystem will be called the subsystem of (V, W)
spanned by I'. If p < g, then the subsystem spanned by I' is exact. If
g = p—1, then [vq: kelp, q]] =0 and the subsystem spanned by I' is
either of type III' (w, £ 0) or the zero subsystem (w, = 0).

It is helpful to visualize a chain of 0" a,b; V, W), —co<p < q
< oo, by means of a diagram

Py, 9
Uy P+l Vg1 Uy

Wp Wy Wpya 77 g1 wq Wy
with corresponding infinite diagramg for infinite segments.

It p <gand I' = ((0)§, (w)5*") is a chain of ™4, b; ¥, W), then
the domain sequence (vr)p satisfies the conditions

k=1, ke[p, g].

Conversely, if the basis a, b and the system (V, W) are given, such
a sequence uniquely determines a chain in " a,b; V, W). Similarly,
for ¢ =p—1 a chain ()57}, (wr)p) is determined by the index p and
the element w,. When the integer P may be assumed to be known, we shall
denote such a chain by (@, Wy).

Let (P, Q) be a homomorphism of (V, W) into a system (U, Z).
It is immediate that it I = ((v)2, {(wi)§t?) is & chain of C™(a, b; V, W),
then its homomorphic image (P,Q)I" = (Por)§, (Qui)s) is a chain of
C*Ua, b; U, 2Z).

We now define certain subspaces of (*%(a, b; V , W) and operations
on these subspaces, keeping the former notations and restrictions on
P, ¢ It ¢ < oo, we denote by (%%(a, b; V, W) the subspace of ("*(a, b;
V', W) consisting of all the chaing (vp)p which satisty v, = 0 for k> ¢.
In particular, it — oo < p, then ¢*P1(q, b; V, W) is the zero subspace
of ™™g, b; V, W). Similuly, if — co < p and ¢ < oo, we denote by
C%Ma, b; V', W) the subspace of ¢~ (a,b; V, W) consisting of all the
chains (('IJA,)T’N, (w,ﬁ)”foo) with domain sequences which vanigh outside the
segment [p, g1, ie., satisfy o, =0 for k <p and k >g¢. In particular,
if — oo < p, then (9P~ (4, b; V, W) is the zero subspace of ¢~ (6, b;
V, W). In an obvious way we could have introduced also the spaces
G (a,b; 7, W), however, the chains can always be oriented in such
2 way that these spaces are superfluous in the present work.

vy = boy_,,
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We make the convention that the pair @, by in a symbol for a space
of chains stands for the pair b, a. .

Let r, s satisfy similar restrictions to those imposed on p and g,
namely, » is a rational integer or the symbol — oo, ¢ iy a rational intcger
or the symbol oo and r—1 < s. Suppose in addlbmn that p <7 and s < ¢.
Then R™° will denote the restriction map

((’”k);lla (wk)?ﬂ- ) ((”k)r: (wk)s+1)
defined on any of the spaces ("%(a, b; ¥, W). In particular,
BN s (wi)p) = (D, wr).

The maps R™ are obviously linear transformations of their domains
C"%a,b; V, W) into the corresponding spaces C"*(a, b; V, W). Thus
E((8 (a,b; 7, W)) and E*(CP (a, b3 V, W)) denofe cortain sub-
spaces of C™*(a, b; V, W).

In case v =p and s =y the notations RPY(CPY (a,b; V, W)} and
R0, b; ¥, W) will be abbreviated to R(C%T (a,b; V, W)) and
R(CPF (a,b; V, W)) respectively.

Note that if I'is a chain of R™*(C™%(a,b; V', W)), B™*((%2 (a,b; V, W)}
or B(C% (a,b; V, W)) and (P, Q) is a homomorphism of (V, W) into
a system (U, Z), then (P, Q)I" belongs to

EH(C"(a,b; U, 5)), B*(C" (4,0;U,2)) or R*(CPF (a,b; U, %)

respectively.

A chain ((a;k)p,(wk)q“) of (™ (a,b; V, W), R(0®2 (a,b; V, W)) or
R(C?? (a,b; ¥, W) is said to be proper (1e1at1ve to the respecmve space
of chains) 1f and only if both ity domain sequence (v;)} and the sequence
{(we)2, (we)g or (wg)p4, respectively are linearly independent (note that
in the second case wy,; =0, while in the third case w, = wy,, = 0).
Tn particular, if — co < p, then a chain (@, w,) of C**~'(a,b; V, W)
is proper if and only if w, # 0 (according to the above definition the zero
elements of R(CZ'~! (a,0; V, W)) and R(CP2* (a, b; V, W)} are to be
considered as proper chains; however these spaces wﬂl not occur in our
later work).

Finally we introduce the shift operators §. If I'= ()%, (eoR)st?)
is a chain in C®%(a,b; V, W), then

ST = ()i}, () y)

is defined by ug = w41, 5 = wyy,. Thus, for every integer I the maps 5’
are linear isomorphisms of their domains ¢ “(a,b; V, W) onto the corres-
ponding spaces P4 Y(a, b; ¥, W).
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The following examples will illustrate the above definitions. A chain
(o)1, (we)**) Delongs to R (0% (@, be; V, W)) if and only if it can
be represented by the dmgram

W1

and there exists an element ¢, in ¥ such that av, = w;. A chain
77L

((0)1, (201)7"*Y) belongs to RO (a, b5V , W) if and only if 1t can be
represented by the diagram

NNCN

Wiy
Tt is a proper chain of R(Gij" (@, b5 ¥V, W)} if and only if both the
sequences (vz);" and (wy)y are linearly 1ndependent

ProPoSITION 2.4. Let (V, W) be a system spanned by a proper chain
I = (0, (wi)&™) of *(a, b V, W), R(CE? (a, b; V, W) or R(C™E(a, b;
V, W)), where p < g. Then the set

HCRPEAY k=1, kelp, ¢}, Wreay o) k—1,ke[p, ¢} v {(rg, 0)},
or
{(07 7-’11)} - {(kala V) ]‘1*“17 755[]3: qj} hd {(77417 0)}:
respectively is « basis of the domain relation & of (V , W).
Proof. We prove the statement in the third case, the argument in
the other cases being similar. Let

a q
(1, wp)e®  with o, = Zﬂk‘vky Uy 2“1 Vg

k=p R==p
Then
¢ [
\ 1
;\_4 Py = bu;, = au, = E Wy
k=pi1 k=n+1

Sinee (wy);,, i3 linearly independent, this implies that Pr_1 = a
for p-+1 <k < q. Hence
a

(11, 12) = ap(0,0,)+ D' ar(vi1, v+ iy (9, 0).

I=p--1
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The exhibited set is obviously contained in @, and the fact that
{(v)% is linearly independent clearly implies that the exhibited set iy
linearly independent.

Remark. It is evident that a sequence (vz)% of elements of V is the
domain sequence of a chain in (P%(a,d; V, W), R (C"l;“ (a, b; V', W)) or
R(C (a, ; V, W)) if and only if the corresponding set mentioned in
the proposition is contained in the domain relation of (177, W).

In proving that the indecomposable gystems of our types are spanned
by chains we shall use the following lemma:

Lemma 2.5. Let a, b and ¢, d be bases of C2. Let (V, W) be a system
spanned by a chain I' in O™ (a, b; V, W), s > 0. Then there exists a chain
A in (e, d; V, W) which spans (V, W). If I' is proper, so is A.

Proof. Let X, ¥ be the complex vector spaces of polynomials in
an indeterminate 1 of degree not exceeding s—1, ¢ respectively (if s = 0,
then X = 0). The pair (X, ¥) with the map

(ea+2b, p(R)) = (ea+Cb)p(4) = (e4CA)p(A)

constitutes a system which is spanned by the chain ((#*Y)3, (2*)i* ).
IE I = ((vg)], (wi)+Y), then the pair of linear transformations (P, Q) defined
by the requirements PA*! = v, QA*! = w; is a homomorphism of (17, ¥)
outo (V, W). If ¢ = aa+ b, d = ya+ 6b, it is easy to verify that

(6@t () = ({fa B0y 64, (0t B4 (4 o)1)

%s a chain in (Jl's(c,s d; X, Y) which gpans (X, ¥). Thereforeits homomorphic
Image 4 = {(Pm,{)l, (Qyx)i*") is the required chain. The chain I is proper
if and only if dimV =, QimW = $+1. Since 4 spans (V, W) it must
be proper if I is. )

; PR;)POSITION 2.6. A systom (V, W) is of type I™, I or IIT™ if
and only if it is spanned by a proper chain of R(OY) (a,b; V, W)
R(CY"(a, bg;. 7, W) or C¥™(a, b; V, W) respectively. S ¥ W),

Proof. We omitmthe straightforward sufficiency proof. A necessity
proot f.or the types II;" was given in the remarks leading to the definition
of chains. (Whenever a statement concerning all the values of the para-

meter peC is proved in this work only for § # oo, a proof for = co
is ‘obtamable on interchanging the roles of @ and b.) A more direct proof
might also. be given. .

. ;;ﬁ;s(V, W) be of .type Illol’f”. If w, is any non-zero vector of W, then
2, ) 31’131‘01361“ chain of Ca,b; V, W). Let ((vp)5, (wr)7™) be a proper
chain in ¢ (a,', b; V, W) with the maximal possible ¢ (s is bounded by
im;tjll). It suffices to show that the subsystem. (V', W') spanned by it
18 the whole system (V, W), Assuming the contrary, we have dim Vv

“iom®

Algebraic spectral problems 289

= dimW/W' = m—s—1 > 0. Therefore some element d # (0, 0) of C*
has a null vector x4+ V' 5= V' in (V, W)/(V', W'). Let ¢eC® be linearly
independent of d. By Lemma 2.5 there exists a chain

It = ((oR)i, i)i™") 0™ (e, a@; V7, W)

which spans (V', W'). We shall show that it is extendible to a proper
chain I" of "¢, d; V, W). Applying the lemma again, this time to S~'T,
we shall obtain a proper chain in ¢***'(a, b; V, W), which will contradict
the maximality of s. We have duze<W", therefore

s41 841

dr = 2 oy, = a,wi4-d E Ty

k=1 k=2

(where the last sum is zero if s = 0). Here a, 5= 0 since otherwise, d having
no null vector in ¥, we would have xzeV*. Therefore w} is of the form
w; = dvy, Wwith

S4+1

vy = a Nz — Z apVh_1)-
k=2
The chain ((v})§, (wi);™!) determined by the domain sequence (vg);

is the required extension. Its domain sequence is linearly independent
since

8
1
Sk =0
. F=0
implies
S+1

2 ﬂk_1’wilc =0

o
on operating with d, and the elements in the last linear combination
are linearly independent because the chain {(o4)], (w)i*?) is proper. If
(wi)itl were linearly dependent, ([vg, ..., %], [0}, ..., wsy]) would be
a non-zero subsystem of (¥, W) with the dimension of its range space
not exceeding the dimension of its domain, which would imply the exis-
tence of an eigenvector in (V, W). Thus the chain ((v})5, (wh)y™) is
proper as required. Finally, if (V, W) is of type I™, its dual (W', V')
is of type III™ and therefore is spanned by a proper chain ((wz)7 7 (v)})
belonging to ¢“™ (@, b; W', V'). Let (ww)s, (vx)]" denote the dual bases
in reverse order (the first basis is empty if m = 1) defined by the relations
wi(wy) = Bimyr_gy, 1<E<m—1, 2<j<m, and  0i(v) = Symri_ss
i,je[1, m]. Then it is easy to verify that (vg)7* is the domain sequence
of a proper chain in R(CYY (a,b; V', W)) (with range sequence (0, w,, ...
-vey Wn, 0)), and thus it spans (V, W).

Studia Mathematica, t. XXX, z. 3 19
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Note that a system (¥, W) is of type I™ or III™ if and only if it is
spanned by a proper chain in R(CY) (a,b; V, W) ox O™ *(a,b; V, W)
respectively, where a, b is an arbitrary basis of €, while it is of type oy
if and only if it is spanned by a proper chain in R(CY] (a, b; V, )
where ¢, b is any basis of C* such that beé.

In view of Proposition 2.6 we introduce the following mnotations.

Definition 2.7. Let (V, W) be a system and &, b a basis of C-.
We write:

Crm(“a bV, W)= R(Cfin (a, b; V! W))1
OII?(“; b; V7 W) = R(G—l—’:n (“7 bo? V’ W)7
OIIIm(a, bV, W)= Ol’m—l(a,, by V, W).

It IT is one of the types I™, IIy or IIT™, a chain (not necegsarily
proper) in CII{a, b; ¥V, W) will be said to be of type II. :

Clearly, if I'eCil(a,b; V, W) and (P, Q) is a homomorphism of
(V, W) into a system (U, Z), then (P,Q)I'<0l(a, b; U, 7).

The following proposition is an immediate consequence of Defini-
tion 2.7:

ProposIrIoN 2.8, Let (V, W) be a system and a,b o basis of (.
A sequence (v)]" of elements of V is the domain sequence of a chain in
CIII™ Y a, b; V', W) if and only if there ewist elements wy, w,, 1 W osuch
that the relation

m
(b— Aa) Zlm"kvk = — 1wyt Wy
Ie=1
holds identically in the complex variable A. In particular, (vg)7 is the domasin
sequence of a chain in CIIg(a,b; V, W), 0 = oo, if and only if there
ewists an element w, in W such that

m
(bg—2a) N 0 Ey — _gmy,
holds identically :in‘z (if 6 = oo, replace a, b, by b, a). It is the domain
sequence of & chain in CT™(a, b; V, W) if and only if it satisfies the identity
m

] .
}.m"—k'lik = 0.
k=1

(b—2a)

Remark‘s.' The duality for indecomposable finite-dimensional 8ys-
tems (Proposition 2.3) is reflected in the following duality for chaing
(already used above). Tt I' = (o), (wy)) is & proper chain in one of the
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spaces CI™(a,b; V, W), CII;*(a,b; V, W) or CIII™(a,b;V, W), we
define the dual chain I" = ((wy), (v)) by the relations

w; (w;) = 61‘,'m+1—9’? 'U'E () = 5i,1n+14

with 4, j varying in the appropriate domains. It is then easy to verify
that I" is a proper chain in CTX™(z,&; W', V'), CII7(a, &; W', V') or
CI™(@, b; W', V') respectively.

The following formulas allow transforming chains from one basis
to another. Let a,d and ¢,d be bases of C* related by ¢ = aa- pb,

= ya- db.

If I'eCIIT™(a, b; V', W), then, as explained in the proof of Lemma 2.5,
its domain sequence may be represented by the polynomial sequence
(#1)P=! and then the sequence {(a+ A" 5 (y+ 62)~Y* represents
the domain sequence of a chain 4 in CIII™(c, d; V, W).

The same formula allows to transform a chain I'«CIIy'(a, b; V', W).
If the domain sequence of I' is represented by (A*~Y), 5 is the unique
element of € such that d, is proportional to b, and ¢ = a;a-+py by,
dy = 9, by (usual convention if § or 7 equals co), then ((a;+ B, A)™*(3, )"
represents the domain sequence of a chain in CIL)'(c,d; V, W).

Finally, if (v4)" is the domain sequence of & chain in CT"(a, b; V, W),
then by Proposition 2.8, the relation

By > 6" v =0
k=1

holds identically in the variable 6. If d, is the element of ¢ propor-

m

tional to B, it must annihilate 3 6™ Fv,. Therefore if we substitute
i

=1
6 = (an—y)/(— Bn-+ 6) in this expression and multiply by (— fy-+ )™,
the coefficient of ™ * will be the %-th element in the domain sequence
of a chain 4¢CI™(¢, d; V, W). .

In all three cases, if I' ig proper relative to the respective space and
spans (V, W), then 4 has the same properties. Under these conditions,
if I7 is one of the types I™ or III™, then every chain in O (e, d; V, W)
is a multiple of 4. This kind of uniqueness is not true for the type
CII)' (¢, d; V, W) (details will be given later).

3. Spectral subsystems. Correcting transformations

In this section we collect some of the tools for proving spectrality
of subsystems.

The following proposition enumerates elementary properties of
spectral subsystems. Their straightforward proofs will be omitted.
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PropostTioN 3.1. Let (VY, WY and (V? W?) denote subsystems of
a system (V, W) such that (V?, W) < (VL WY < (V, W).

(a) If (V% W) is spectral in (V', W) and (V', W') is spectral in
(V, W), then (V?, W*) is spectral in (V, W).

() If (V2, W?) is spectral in {V, W) and (V', W")/(V?, W*) is speciral
in (V, W)V, W), then (V', W) is spectral in (V, W).

(e) If (V2 W) is spectral in (V, W), then (V?, W?) is spectral in (V', W).

(d) If (V*, W) is spectral in (V, W), then (V*, Wh)[(V?, W) is spectral
in (V, W)[(V?, W°). o o

() If (VL WY, (U, 2Z")ia and (X, X'))ig (I an arbitrary indew
set) are subsystems of (V, W) such that (U',%") = (V', WH+(X', ¥

for every i, then we have (V, W) = (VY WH+ 3 (X', %) if and only if
(V, WV, W) = Z-(T, 20V, W).

The following lemma is sometimes unsed in conjunction with Pro-
position 3.1{¢) to prove spectrality:

Lemma 3.2. If (VY, W) is & subsystem of (V, W) and (V, W)[(V*, W)
s isomorphic to a subsystem of some system (X, Y), then there ewisls a system
(U, Z) containing (V, W) as a subsysiem such that (U, Z)[(V', W
~ (X, X). .

Proof. By a standard application of Zorn’s lemma it suffices to
show that if (X, ¥') is a proper subsystem of (X, ¥) and (P,, ¢,) is an
isomorphism of (X', ¥') onto a quotient system (T*, Z")/(V', W*), then
there exists a subsystem (X*, ¥%) of (X, ¥), properly containing (X*, ¥7),
and an extension (P, @,) of (P, §;) to an isomorphism of (X7 ¥?) onto
a quotient system (U Z%)/(V', W) (this clearly implies that (U? Z°)
o> (T, 2Y)). We can always choose (X7, ¥*) so that (X% ¥*)/(X', ¥
is of type ITT' (if '+ ¥) or I' (if ¥' = ¥). We indicate how to extend
(P1, @1) to (Py, @,) in both cases, omitting the simple verifications needed.

I (X%, YH/(X 1Y is of type IIT', we have X® = X!, ¥®=TY%%
+[y], 9¢Y". We then define: U? = U, Z* = Z*4[z], where z is a new
element, and we take the system operation in (U?% Z%) to be given by
the same function as in (U%, Z%). We then take P, = P, and Q,(y'+ ay)
= Qyy' +alz+W") for all y*e¥Y?, acC.

I (X, TH/(XY, ¥ is of type I*, we have X*= X'i[a], a¢X
¥ = Y. We define U* = U'+[u], where u is a new element, % — 7.
We make (U% Z*) into an extension of (U, Z) by requiring for a basis
a,b of C* that oueQ oz and bueQbx. Finally, we take Py (@' + az)

=Pz +a(u+T?) for all #'cX?, aeC, and Q, = Q,.

One of the main methods for showing that a subsystem (V?, W)
of (V, W) is spectralin (V, W) is the method of correcting transformations.
We start by taking any direct complement V2 in the domain, V = V%72,
and then change the decomposition to V = V™+V® g0 as to have
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W' A W* = 0, where W*® = (V> Then taking any direct complement
Wt of W'+W* in W, we get a decomposition (V, W) = (V*, Wh)+
(V3 WP+ W*) as desired. We can express the change of the decompo-
sition of the domain as follows: Let B be the restriction to V* of the
projection of V onto V' along V*; then V° = {v—Hv: ve V?}. Conversely,
if V=7V'4V* and ¥ is any linear transformation of V* into V', then
V? = {v—Fv: veV?} satisties ¥ = V'4V% The condition that W'~ W*
= 0 is given in the following definition and proposition.

Definition 3.3. Let (V', W) be a subsystem of (V, W), V* a direct
complement of V'in V and a, b a basis of C°. A linear transformation ¥
of ¥*iato V' is said to be a correcting transformation of V* into V! (the
systems and basis of C® involved being tacitly given) if and only if for
every pair (uy, 1) e V*+V? such that (u,+ V%, u,+ V') belongs to the
domain relation of (V, W)/(V', W'), the pair (u,—Bw,, u,—Eu,) belongs
to the domain relation of (V, W). Explicitly, B is a correcting transfor-
mation of V* into V' if and only if w,, uye V2 and bu,— au,eW* imply
that b{w,—Fu)— a(u,—Fu,) = 0.

ProPOSITION 3.4. Let (V', W') be a subsystem of (V, W). Then the
following four statements are equivalent:

(1) (VY W) is spectral in (V, W):

(2) Every system of equations

2 Gijlj == Wy,
jeJ
(I, dJ possibly infinite index sets), where w;eW"' and ay are elements of C*
such that for every i, a; = 0 ewcept for o finite number of indices j, which
is solvable for the unknowns m; in V is solvable also in V'

(3) For every basis a,b of C* and every direct complement V* of V*
in V, there exists a correcting tramsformation of V* into V'

(4) There ewists a correcting transformation E of o direct complement
V* of VVin V into V* relative to a basis a, b of C.

Proof. (1) = (2). If (v;);y is a solution of the system in ¥V .and
(P, Q) is a projection of (V, W) onto (V?, W), then (Pv);s is a solution
of the system in V.

(2) = (3). We construct a system of equations as follows. Let (v;)5.r
be a basis of V2. For every pair (us;, us)e V:+V? such that bug— au,
= w;¢W' we include in the system the equation

bZﬂiiWi“azaiJ‘mﬁ = w;,

where u; = Z’ﬁi,my- and u; = D ayv;. The system obtained is of the form
considered in (2) since the i-th equation can be written

2 (—aya+fyb)a; = w;

iel
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and for every 4, a; = fy = 0 for all but a finite number of j ’s. Since
the system has the solution (v;)rs in V, it has a solution (v})js in VL
The linear transformation # of V* into V' defined by the requirement
that Bo; = o}, j<J, is evidently a correcting transformation of ¥* into V.

(8) = (4). Obvious.

(4) = (1). By the remarks made before Definition 3.3 it suffices to
verify that if V° = {v—Bv: veV?}, then W' ~ (*V® = 0. Every element
of C*V? is of the form w = b(u,—Fuy) — a(uy—Bu,), where uy, u,eV?
If weW?, then since Hu,, Buye VY, also bu, — auy e W', Since Fis a correct-
ing transformation, this implies that w = 0.

Defining a correcting transformation (if such exists) is often
facilitated by the wuse of chaing, as the proof of the mnext proposi-
tion shows.

PROPOSITION 3.5. Let (V*, WY) be a subsystem of (V, W) such that
the quotient system (V, W)[(V', W) is spanned by a proper chain
((oR+ VY, (Wi +WHE™) of one of the spaces O°(a,b; VIV, W/W?,
R(CPE (a,b; VIV, W/WY) or R(C%E (a, b; V|V, W/WY), where p <gq.
Then (V', W) is spectral in (V, W) if and only if there exists a sequence
()% of elements of V' such that the sequence (v})g = (vi— &y)3 is the domain
sequence of a chain I'® = ((‘fvi)p, (wk)“*'l) in the corresponding space CP%(a, b;
V, W), C% (a,b; V, W) or C2Z(a,b;V,W). If this ds the case, thcm
I'® is proper relative to the 'respectwe space of chains.

Proof. Since the domain sequence (vi--V")Z is a basis of V/V},
the sequence (vx)% is a basis of a direct complement V? of V*in V. Hence
a linear transformation & of V* into V* may be defined by assigning the
values Evi, ke[p, ¢], arbitrarily in V. By Proposition 3.4, (V*, W' is
spectral in (V, W) if and only if these values can be chosen so that Z
be a correcting transformation of ¥* into V' Because of the linearity
of B, this will be the case if and only if for every pair (uy, 1y)e V+V?
such that (u,+ V", u,-+V?) belongs to a given system of gencrators of the
domain relation of (V, W)/(V', W) the pair (u,—Eu,, u,—Fu,) belongs
to the domain relation of (V, W). Applying Proposition 2.4 to

(V, W)/(V', W') and the remark following it to (V, W), we see that
;thls condition is fulfilled if and only if (v} —Bw3)) is the domain sequence
of a chain in the appropriate space. Hence the condition of the proposi-
tion with z;, = Bvi follows.

That I is proper is a consequence of the fact that the elements
(9% (or (wi)%t') are congruent to the corresponding elements of (v%)3
(OT (wk.)”l) modulo 7* (or W') and the chain ((v}+ V)%, (wh+ WhHEH
is proper.

As a first application of the method of correcting transformations
we prove the following lemma:
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LeMMA 3.6, Let (V', W) be a subsystem of (V, W) spanned by a chain
' = (b)Y, () of CT™(a,b; V, W). Then (V1 WY 4s spectral in
(V, W) in each of the followfmg cases:

(@) (V, W)/(V', W) ds of type T and either m <n or m>1 and
CI"™ Ya,b; V, W) = 0.

() (V, W)/(V*, W') is of one of the types IIV.

e) (V, W)/(V', W' is of one of the types III™

Proof. In case (a) let (v}+V")} be the domain sequence of a proper
chain spanning (V, W)/(V*, W'). Write v} = o2 ; = 0. Then we have
the identity

(b—Aa) 3770}

=1

k3
n—j 2 =
= Y (b} —ad,),
F=0

N
where each bt —arf,, belongs to W' and hence is of the form ' a0},

k=2

Thus we get

According to Proposition 2.8 we have

(3.6.1) (b— 7a) 5’;‘“— =

mn

. _1 1
-

If in (3.6.1) we replace the term A" 7w} by the first expression of
(3.6.2) when k—j <m—n and by the second expression when k—j
> m—n, we obtain an identity of the form

(3.6.2) 1wl = ”}“)Z Tl (g4

n max(n,m—1)

(b~7.a,)(2)u"“j@f— by z’—lmn_m)zo,

T=1 j=1

{3.6.3)

where z,_;.,¢V'. If n < m, then by Proposition 2.8 8 identity (3() 3)
yields a chain of CI™ *(a, b; ¥V, W) which does not vanish becanse v}¢ V.
Thus the second %sumption of (' a) implies the first, that m < n. Xf m < n,
then, by (3.6.3), (vj—;)7 is the domain sequence of & chain in CI® (@, b;
V, W); and thus, by Proposition 3.5, (V', W) is spectral in (V, W)

From the characterization of the types by means of proper chains
{Proposition 2.6) one sees that a system of type ITy or III” is isomorphic
to a subsystem of a system of type I' provided I > n. Thus in cases (b)
and (c) it follows from Lemma 3.2 that there exists a system (U, Z)
including (V, W) as a subsystem such that (U, Z)/(V', W') is of type
Imehe) By cage (a) of the present lemma (77, W) is spectral in (U, Z).

Henece by Proposition 3.1(c), (V', W) is spectral in (V, W).
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4. Indecomposable systems of finite dimension

In the determination of the isomorphism types of finite-dimensional
indecomposable systems we shall use the following lemmas:

Lemma 4.1. A findte-dimensional system (V, W) is non-singular if
and only if it satisfies the following two conditions:

(4.1.1) Bwery set of eigenvectors in the sysiem (V, W) corresponding
to distinct eigenvalues is linearly independent.

(4.1.2) Ewery set of eigenvectors in the dual system (W', V') correspond-
ing to distinct eigenvalues is linearly independent.

Proof. By (4.1.1) and (4.1.2) the number of distinet eigenvalues
of (V, W) and (W', V') is bounded by dimV and dimW respectively.
Therefore, if (¥, W) is of finite dimension, there exists a  in C such
that 7'(d,) has no null vector in V and its adjoint T'(b3) has no null vector
in W'. This means that T'(b,) is an isomorphism of ¥V onto W and (V, W)
is non-singular.

Conversely, it (7, W) is non-singular, then it is isomorphic to an
ordinary system, for which condition (4.1.1) is well known for eigenvalues
taken in the ordinary sense. Since a change of basis of C* involves only
a Moebius transformation of the parameter giving the eigenvalues, (4.1.1)
follows for the given system. Since the dual of a non-singular system is.
non-singular, (V, W) satisfies (4.1.2) also.

. Remark. Tt can be verified that (4.1.2) is equivalent to the follow-
ing condition which does not involve the dual system:

If By, ...y Omy = 1, are distinet elements of C such that bg, V # W,
k=0,...,m, then ”

m
bogV+ (00,7 = W.
=1

Lewwa 4.2. Suppose that o system (V, W) has a set {up: b =1, ...
“op m~+1} of m—+1 linearly dependent eigenvectors corresponding to distinet
etgervalues O and that m is minimal with this property. Then (V, W)
contains o subsystem of type I™, and if m > 1, then CI™ Y(a, b; V, W) = 0.
Froof. Without loss of generality we may assume that the basis
@, b has been chosen so that all the 0y are finite and 6,

Let =0
m+1
(*) D) wmu =0
k=1
be a non-trival dependence relation. Then the polynomial in 2
M1 M1
A
[lo-n3 e
J=1 = 02

icm
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is identically annihilated by b— Aa and bas degree not exceeding m—1.
By Proposition 2.8, the coefficients »; of ™% in this polynomial form
a domain sequence of a chain I' = ((u)7, (wp)i"™") 01 (a, b; V, W).
Because of the minimality of m, the relation (*) is the single depen-
dence relation among the u; up to proportionality. Therefore, since the
0y’s are distinct, the polynomial does not vanish identically. Hence there
is at most a finite number of values of 1 for which it vanishes. For every
other value of A the polynomial yields an eigenvector corresponding to the
eigenvalue 2. Thus by the minimality of m, (vg);" is linearly independent.
The same avgument shows that if m > 1, we have CI™ *(a, b; V, W) = 0.

Suppose that
m
Zﬁkwk =0

i=
m

is a non-trivial dependence relation. Then 3 fzvy and ¥p,; are anni-
k=2

hilated by . By the minimality of m, they are both linear combinations
of %y, ..., uy. Using the fact that (vy)7 is linearly independent, we can
eliminate one u; and find an eigenvector corresponding to the eigenvalue 0
which depends linearly on m—1 of the vectors u,, ..., %y. Therefore I
iy proper and spans a subsystem of type I™.

The following version of the theorem of Kronecker mentioned in
Introduction shows that the isomorphism types of finite-dimensional
indecomposable systems listed in Definition 2.1 are all the possible ones.

THEOREM 4.3. Every finite-dimensional system is a divect sum of
subsystems of the types I" IIj' and III™

Proof. The statément of the theorem is trivially valid for systems
of dimension 0. We proceed by induction on the dimension of the system,
assuming that every system of lower dimension than that of (V, W)
is a direct sum of subsystems of the given types.

Suppose first that (V, W) is non-singular. Let @, b be the basis of *
with respect to which the parametrization 6 — b, is defined, and let
at, bt be a basig of C* such that T'(a!) is an isomorphism of ¥ onto Ww.
Then (¥, W) is isomorphic to an ordinary system (V, V) essentially
determined by the operator B':v — T(a')"*b's. Applying to the vector
space V the classical decomposition corresponding to the elementary
divisors of B', we obtain a direct decomposition of the system (V, V)
into subsystems of the types IIj., 6; # oo, with respect to the basis at, b*
(¢f. the remarks preceding the definition of chains in Section 2). Hence
the isomorphic system (T, W) is a direct sum of subsystems of the types.
II? (the possibility 6 = co included) with respect to the given basis @, b.

It (V, W) is singular, then by Proposition 4.1 it violates at least
one of conditions (4.1.1), (4.1.2). Suppose that (V, W) violates condi-
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tion (£1.1). Then by Lemma 4.2 there exists a positive integer m such
that (V, W) contains a subsystem (V*, W) of type 1" and, in case m > 1,
CT"Y(a, b; V, W) = 0. By the induction hypothesis we have a decom-
position

(Vs WUV, W) = YT 29V, W,

where each summand (T%, Z°)/(V", WY) is of one of our types. If m = 1,
then C1"~*(a, b; U", Z') = CT™*(a, b; V', W) = 0. Hence, by Lemma 3.6,
{7, W' is speectral in each (U, Z%). This implies, by Lemma 3.1 (e)
that (V?, W) is spectral in (V', W). Then (7%, W) together with a decom-
position of a direet complement in (V, W) into subsystems of our types
yield the desired decomposition of ( v, W). ’
Finally, if (V, W) violates condition (4.1.2), then the dual system
(W', V'), which has the same dimension ag (V, W), does not s‘ntisfy
condition (4.1.1). Therefore by what we have proved, (W', ) is a direct
sum of subsystems of our types. By Proposition 2.3 the dual decompo-
sition of (V*, W), which is isomorphic to (¥, W), ix of the same kind.

5. Quasi-spectral subsystems

o Ihe concept of a spectral subsystem is not sufficient for treating
infinite-dimensional subsystems mainly because the sum of a set of spectral
subsystgms which is totally ordered by inclusion is not necessarily spectral.
In paltmeular, a direct sum of a sequence of subsystems, every i‘inife subsum
of which is spectral, need not be spectral or even contained in a proper
spectral subsystem. For instance, it is well known that if V is the torsion
submodule of the complete direct sum of the C[A]-modules XN,, =
C[}f]((l—. 6)™, where 8 is a fixed complex number and m ranges over the
positive lgtegers, then the direct sum of the submodules ¥, (embedded
naturally in N) is not contained in 2 Proper direct summand of N (al-
though every finite subsum of the N,, is a direct summand). Using a cor-
respondgnce between such modules and ordinary systems as in Se[ztimi 1
we obtain such an example for systems with summands of the types Il"l
{note that a spectral subsystem of an ordinary system ig ordinary, henuoe
must correspond to a submodule which is a direct summand). In the
theory of modules the notion of a pure submodule is introduced as a re-
medy. In the present context it seems best to generalize ]iliw{ri% the
concept of a spectral subsystem. B

. pefmiti?n 5.1. A Subsystem (V%, W') of (V, W) is said to be
?V{;,Stl;'?)eitfr% 7m 11(7 ;7; Wﬁ thhand olnly 1]f it is spegtral in every subsystem
is of finite dililensiog.e W (VLW < (7, W) ana (VY Whi(T®, W*)

icm°

Algebraic spectral problems 299

A system (V, W) is said to be an extension of finite type (an ewtension
by type II) of its subsystem (V', W*) if and only if (V, W)/(V*, WY is
of finite dimension (has isomorphism type I7). It is immediate that (V, W)
is an extension of finite type of (V*, W) if and only if there exists a finite-
dimensional subsystem ( V*, W?) of (¥, W) such that (V, W) = (V*, W'+
+(V?* W*) (here V* may be taken as a direct complement of V'in V).
Using this terminology, a subsystem (V', W) of (V, W) is quasi-spectral
in (V, W) if and only if it is spectral in all its extensions of finite type
which are included in (V, W).

We have the following analog to Proposition 3.4:

PROPOSITION 5.2, Let (V', W') be a subsystem of (V, W). Then the
following four statements are equivalent:

1° (VY WY 4s quasi-spectral in (V, W).

2° Every system of equations

2 Qg 5 = Wy,

jeJ

tel (I a possibly infinite index set),

with a finite number of unknowns #;, jed, where w; W' and ay;eC?, which
is solvable in V is solvable also in V™.
3% For a particular basis a,b of C* every system of equations of one
of the forms
(1) amy = wy, bwy_y—ox; = wyy, t =2,..., M, by = Wpy1,
ceey My byly, = Wy, (0e0),
veoymy (case (ii) for 6 = oo)

(i) bpdbs_y— aw; = wyy © =2,

(iii) bow, = wq, az_;—bw; = wy, + =2,
or

(iv) by —ax; = wy, 1 =2,
with w, W', which is solvable for the unknowns x; in V, is solvable alsoin V.

4° (VY, WY is spectral in all its emtensions by the types I™, IIY,
or II1™ which are contained in (V, W).

Proof. 1° = 2° Let (v;); be a solution of the system of equations
in V. Since J is finite, (V*, W)+ ([v;: jeJ ], C*[v;: jeJ]) is an extension
of finite type of (V?, W*). Hence (V', W') is spectral in this extension
and there exists a projection (P, @) of the extension onto (V?, W'). Then
(Pv;);s is a solution of the given system of equations in V™.

2% = 3° Obvious.

3° = 4°, This is an immediate corollary of Propositions 2.6 and 3.5.

4° = 1°, This follows from Theorem 4.3 and Proposition 3.1(e).

We now enumerate elementary properties of the relation of quasi-
spectrality. The first four arve shared by spectrality (Proposition 3.1)
while the sixth is the principal feature by which these relations differ.

PROPOSITION 5.3, Let (V', W) and (V*, W*) denote subsystems of
a system (V, W) such that (V?, W*) < (V', W') = (V, W). Then:

Ceey My
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(a) If (V?, W) is quasi-spectral in (Vi, W) and (V', W) is quasi-
spectral in (V, W), then (V?, W*) ds quasi-spectral in (V, W).

(b) If (V* W*) is quasi-spectral in (V, W) and (V', WH/(V?, W?)
is quasi-spectral in (V, W)[(V?, W?), then (V', W') is quasi-spectral in
(¥, W).

() If (V* W?) is quasi-speciral in (V, W), then (V?, W?) is quasi-
spectral in (V', W').

(d) If (T, W) is quasi-spectral in (V, W), then (V*, WH/(VE, W?) is
quasi-spectral in (V, W)|(V?, W3,

(e) If (V*, WY is spectral in (V, W), then (V, W) is quasi-spectral
wm (V, W).

(f) If ((Vk, W"))M is a family of quasi-spectral subsystems of (V, W)
which is directed under the relation of inclusion <, then ' (V*, W) is

KK
quasi-spectral tn (V, W).
. (g).A sum Z(Vk, W) of subsystems of (V, W) is a direct sum which
is quasi-spectral in (V, W) if and only if every finite subsum enjoys these
properties.

Proof. ~St;:am;ement; (¢) is obvious from the definition, (e) follows
from Proposition 3.1(c), while (g) is an immediate corollary of (), (e),
and (a).

The 1:e}nainjng statements can be easily derived from criterion 2°
of Proposition 5.2. We shall indicate the proof only for statement (f).

Let
Z Oy @y = Wy,
jeJ

iel,

be a sysltem of equations with a finite number of unknowns x; and with
wze ) W' which has a solution (9)jer In V. Since the number of v;’s is finite,
thc? wy's span o finite-dimensional subspace of ZWk. The family (W*),z
being directed by <, this subspace mugt already be contained in some
subspace W™, ke K. Since (V%, W) ig quagi-spectral in (V, W), the
system of equations has a solution in V* and a fortiori in Z’Vk. ,

Rema;r}zs. From the example mentioned in the beginning of the
present section and Proposition 5.3 (g) it follows that a quasi-spectral
subsystem is mot necessarily §pectral.

As col?eerkns 5.3 (g), it should be remarked that the agsumption
that Z‘(V » W) is a direct sum and each summand (V* W5 is quasi-
spectral in (V, W) does not imply in general that Z‘(’V"’ W*) is quasi-
spectral. This follows from the fact that a direct sum o’f two spectral
subsystems qf a finite-dimensional system is not necessarily spectral
as the fo]lowl\nngl example shows. Let (V, W) be a direct sum of two sub-7
syster?s (V5 W) and (V?, W*) of the types II; and II} respectively.
Let I be a proper chain (of type 1I; or IT3) which spans (Vi Wh,i=1,2,

icm
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and let (V°, W*) be the subsystem spanned by I™++R"(SI'%). Then it is easy
to verify that (V°, W?) is a spectral subsystem of (¥, W) which forms a di-
rect sum with (7', W', but (VY, WH4 (V3 W*) is not spectral in (V, W).

Definition 5.4. A system (V, W) is said to be quasi-spectrally
srreducible if and only if it is not a zero system and it does not have non-
trivial quasi-spectral subsystems. :

From statements (a) and (c) of 5.3 it follows that ( V', W) is minimal
among the non-zero quasi-spectral subsystems of (V, W) if and only
if it is @ quasi-spectrally irreducible quasi-spectral subsystem of (V', W).
Evidently, a quasi-spectrally irreducible system is indecomposable,
a finite-dimensional indecomposable system is quasi-spectrally irreducible.
Examples of quasi-spectrally irreducible systems which are not of finite
dimengion will be given in Sections 8 and 9.

Evidently, if (V, W)/(V', W") is of finite dimension, then (V*, W)
is spectral in (V, W) if and only if it is quasi-spectral in (7, W). We
shall show in the next theorem that the same holds under the assumption
that (V*, W) is of finite dimension. This means that for finite-dimensional
subsystems spectrality is equivalent to quasi-spectrality.

THEOREM B5.5. If (V', W) is a finite-dimensional subsystem of (V, W)
which is quasi-spectral in (V, W), then 4t is spectral in (V, W).

Proof. Let V* be a direct complement of V' in V. If we show that
there exists a correcting transformation of V* into V', the theorem will
follow from Proposition 3.4.

A linearly topologized vector space is a vector space endowed with
a topology which makes its additive group into a (Hausdorff) topological
group and which has a basis of neighborhoods of zero consisting of sub-
spaces. A subset of a vector space iy said to be a linear variety if it is
either empty or a coset modulo a subspace. A linearly topologized vector
space is said to be lincarly compact if and only if every family of closed
linear varieties which has the finite intersection property has a non-
empty intersection.

Since the space V' is of finite dimension, it is linearly compact when
endowed with the discrete topology. According to an analog of Tychonoff’s
theorem, the space V' " 0f all funetions of V¥ into V* is linearly compact
in the product topology [7]. If X is a subspace of ¥, we denote by M (X)
the set of all the functions B of V2 into V* such that the restriction of
to X is a (linear) correcting transformation of X into T Tt is easy to see gha;t
if X ig of finite dimension, then M (X) is a closed linear variety in le I
X' ..., X" ig a finite family of finite-dimensional subspaces of V%, then

"

ém(xﬁ > (Y x).

~
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By Proposition 3.4 the last set is not empty because (V?, W) is
spectral in
n n
(7, Wh+( Y X, ¢ Z‘x%).

=1 =1
Hence the set OR = M{OM (X): X a finite-dimensional subspace of V?}
is not empty. But, by definition, a function ¥ of V* into V' is a linear
transformation and a correcting transformation if and only if its restriction

to every subspace X of V* of dimension at most 2 enjoys these properties.
Hence M(V%) > M (actually M (V?) = M) and M (V?) is not empty.

6. Bases for finite-dimensional speciral indecomposable subsystems

In the present section we describe in terms of chains all the quasi-
spectral subsystems of a given system which are direct sums of finite-
dimensional indecomposable subsystems. In particular, we obtain ma-
nageable criteria for finite-dimensional spectral subsystems. These will
be stated in terms of the spaces of chains appearing in the following
definition:

Definition 6.1. Let (V, W) be a system and a, b a basis of C=
We write

OT™(a, b; V, W) = B™(C37 (a, b; V, W)+R™O (a, b; V, W),

CII (@, b; V, W) = BV (0%" (a, by V', W) +E-™(0X"" (a, by; V, W)
and :
CITI(a, b; V, W) = B¥ 10" (4, b; V, W) +R" Y4, b; 7, W)).

Note that if IT is any isomorphism type of an indecomposable system
of finite dimension, then é’ﬂ(a, b; V, W) is a subspace of 0I1(a, b; V, Ww).
We denote the quotient space OII(a,b; 7V, W)/é’ﬂ (¢, 0; V, W) by
Ql(a,b; V, W).

The convention that for § = oo the pair a, b, is to be replaced by
b, @ is still in force. According to the definitions in Section 2, for m =1
the spaces O («,b; V, W) and C-"* (a,d; V, W) are the zero
subspaces of C~*%(a, b; V, W), so that éIl(a, b; V, W) is the zero sub-
space of CT'(a, b; V, W). Similarly, for m = 1 the subspace CY™~(q, by;
V, W), which figures in the definition of (IIf(a,b; V, W), is the zero
subspace of CL° (a, by; V, W) so that CITi(a, b; V, W) = BMNOY (a,0,;
v, W)). Finally, a chain (@, w,) of CII'(a,d; V, W) belongs to
CIII'(a, b; V, W) if and only if there exist elements o} and %} in ¥V such
that bvg+ar] = 1, i.e. it and only if w,eC? V.

L © |
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We shall use without further comment the obvious fact that if
]‘eél](d, b; V, W) and (P,9) is a homomorphism of (V, W) into
a system (U, %), then (P, Q)I'e0II(a,b; U, Z).

Lemma 6.2, Let (V, W) be a finite-dimensional indecomposable system
of type II which is spanned by a (proper) chain Ae<CI(a,b; V, W). If IT
is I* or IIZ, let A denote the emtension of Ato a chain of C2F (a,b; V, W)
or G (a, by; V, W) respectively. Let s denote o non-negative rational
integer. Then:

(a) If IT is I" and I'eC**(a, b; V, W), then I is of the form

n—1
I'= Z @R 8%, o, complew mumbers.
k=—8+41
(b) If I is 11} and I'eC"*(a, by; V, W), then

n—1

= Y aR=8*4.

(e) If IT 4s III" and I'<C™(a,b; V, W), then
n—1—8

= 2 apR¥ 8% 4
k=0

(here the range of summation is to be considered empty if n—1 <s, and
I' =0 in this case).

Proof. Let 4 or 4 be ((@), (yx) and let I be ((0)f, (wii*). If
s = 0, the statements of the lemma amount to the true assertion that w,
is a linear combination of (yz). We therefore assume that s > 1. Since
each v; is a linear combination of (»,), we may put in cases (a) and (b)

n—7 '
v = Z Oiaky  J=1y.., 8.
Toem ~§4-1

It is clear that in case (¢)if » = 1 (and s > 1), then I" = 0 as claimed.

Hence we exclude this possibility too, and pub in case (c)

e 1 f
v == 2 Uity j =1,.. oy S

fommf 1
In case (a) the velations bv;_; = av;,j =2,...,s, and the linear
independence of (y); imply that aj_;p = e for —j+2 <k <n—j.
Thus ay is independent of j, and if we denote the common value by o,

we obtain statement (a).

In ease (b) the relations byv;_, = av; (or, for 0 = oo, av;_, = bvy)
and the linear independence of (y,)7 imply the former equations a;_;x = -
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together with the equations ¢ ;.. = 0,§ = 2,...,s. Thus, in this cage
ap =0 for —s-+1 <k < —1, and we get statement (b).

In case (c) we obtain similarly the equations a;_; = o for 2 <j s,
—j+2 <k <n—1—jtogether with aj ;1 = aj_y 55 =0forj=2,...,5s,
which implies (e).

In the following three lemmas the assumptions on (V, W), 4 and 4
are the same as in Lemma 6.2:

Lemma 6.3. (a) If I'eCI™(a,b; V, W), then: I' = ad if (V, W) is
of type I"; T'eCT™(a,b; V, W) if (V, W) is of type I*,n < ;I =0 if
(V, W) is of any other type.

(b) If TeCTIy(a,b; V, W), then: I' = ad+ A, where 4eCIIY(a,b;
V, W), if (V, W) is of type IIp; DeCTI (a,b; V, W) if (V, W) is of
type 1hg, n = m, or of type X"; I = 0 if (V, W) is of any other type.

(e) If I'eCIII™(a, b; V, W), then: I' = ad if (V, W) is of type IIT";
I'=0 4 (V, W) is of type I, n < m; T'eCTIT™(a, b; V, W) if (V, W)
is of any other type.

Proof. Most parts of the lemma follow from Lemma 6.2 either
directly or by showing that due to the vanishing of extreme terms in
the range sequence of a chain I" of type I™ or II, certain coefficients
in the representation of I' in terms of A vanish. The rest follows from
a consideration of eigenvalues. We omit the simple but tedious details.

The following lemma collects some of the results of the preceding
one for easier reference:

Lemma 6.4. I vanishes in each of the following cases:

(-e!,) I’edl’“(a,, b; V, W) and (V, W) is of type I", n = m, type Iy or
iype 111"

(b) I’e{?II’,,"(a, by V, W) and (V, W) is of type 1Ly, 5 # 6, or type TII";

(¢) I'eCIII™ (@, b; V', W) and (V, W) is of type III" n < .

In the next lemma we add some details to the part (b) of Lemma 6.3.

LEMMA 6.3. Suppose that (V, W) is of type ITg and I'eC""(a, by; V, ).

(a) If m > n, then I'eCIIy(a,b; V, W).

(b) If m< n and I'eCIIg{(a, b; V, W), then I’s(:‘IIZ,n(a,, b; ¥V, W) and

Nn—1 o
— 1,m ok
r k=gma"R ¢ 4.
(¢) If m =u, then T'eCII}(a,b; V, W) if and only if

-1
=Y aR"s 4.

k=1
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Proof. (a) follows immediately from Lemma 6.2(b) since in the
present case for each & = 0, ..., n—1 we have B §* 4 0TI} (a, b; V, W).

(b) We apply again Lemma 6.2 (b) and notice that the (m-1)-sb
range element of I'is 0 and it is the linear combination with coefficients
Cgy «vvy Oy_m—y Of the last n—m non-zero range elements of 4 (which
are linearly independent). Hence op = 0 for k& << n—m. On the other
hand, for k > n—m, we have RY"8*4 (T 2(a,b; V, W).

(¢) By the same arguments as above we reduce the question to the
proof that ¢ @IIE‘(a, b; V, W). Assume the contrary. Then 4 = R“"I"+
+I®, where I"eC%'(a,by; V, W) and I<R™(CY*" (o, by; V, W)). By

Lemma 6.2 (b),
N—1

RYRHLG-IT Z y}lch,ﬂ.+1 Skd”
k=0

and by part (b) above

n—1

RN 1 'y;’ RL-1 SF A-.
él :

It follows that

|
-

n

4 =3 Giatvi) B84

[\

k:

[

which is impossible since it would make the n-th range element of A
-vanish.

TaEOREM 6.6. Let (7, W) be a system. For each finite-dimensional
sndecomposable type IT let (']’}})MH be a (possibly empty) family of chains of
ClI{a,b; V, W). Let (Vi , W) denote the subsystem spanned by 1’177'. Then
4n order that each I'l; be a proper chain of OII(a, b; V', W) (i.e. that (Viz, W)
be of type IT) and that the sum 3 3 Vi, W) be a direct sum which is quasi-

I g
spectral in (V, W), it is »n.ecessar; and sufficient that for every type II the
Sfamily (F}})MH be linearly independent modulo e (a,b; V, W).
Proof. Necessity. Suppose that for a certain type I/ we have

Sl = LeCl(a, b; V, W),

jer
where the o; are complex numbers and J is a finite non-empty subset
of J. Then I'is of the form I' = R¥I™+R¥I™ where I" and I belong
to the two spaces of chains which figure in the definition of C1I(a, b; V, W).
Let (U, Z) denote the smallest subsystem of (V, W) containingjzj' (Vi Wo)
I and I'*. Then f‘séﬂ(d, b; U, Z) and (U, Z) is an extension of finite

Studia Mathematica, t. XXX, z. 3 20
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type X (Vi, W7). Since, by Proposition 5.3 (g), the last sum is a direct
jar
sum which is quasi-spectral in (¥, W), we have a decomposition

(U,2) =3 -(Vi, W)+ (U, 7).
FeT
Let (P;, @;) denote the projection of (U, Z) onto (V- i},, W%,) associated

with this decomposition. Then I" is invariant under the projection
(3 P;, 3 Q) and hence
jeJ jed
I'= (P, Q1)
JeJ )
It ITis the type I™ or III"™, then by Lemma 6.4 (a), (c), (P;, @5)] = 0.
If 7 is I3, then by Lemma 6.5 (c),

(Py, Q)T e R™(0X" (a, by Vi, Wih)).
Thus in all cases we have ZJ’ &wh = 0, where Il = ((v}), (w}),

g - B
and if /7 is T* we have also > ;0] = 0. Since the i, (or +]) are non-zero
7

7

elements in distinet direct summands, it follows that o; = 0, jed.

Sufficiency. By Proposition 5.3 (g) it suffices to show that the
chains are proper and that every finite subsum of X S (Viy, W) is a direct

I

sum which is quasi-spectral in (V, W). If (V?, le) is a subsystem of
(V, W) which is an extension of finite type of such a finite subsum, then
(V', W') is finite-dimensional, the chains I involved in the subsum
belong to CII(a, b; V', W') and, since é‘H(a, b; VL, WY < éﬂ(a, b; V, W),
they are linearly independent modulo CI7 (@, b; V*, W*). Thus it is enough
to prove -the sufficiency statement under the additional assumption
that (¥, W) is finite-dimensional. We shall restrict ourselves to this cage
and show that if for every type I7 the family of cosebs (F}}+éﬂ (e, b;
v, Wi 7y 18.3 basis of QII(a, b; V, W), then the chains I7}, are proper and

(VW) =D\ N (Viy, Wh).
I 7

Since every linearly independent family can be completed to a basis,
this will prove our statement.

Let
(6.6.1) (V, W) =D 3-(Uk, 2%),
Q keKg

(U%, Z5) of type 2, be any decomposition of (7, W) into indecomposable
subsystems. By Theorem 4.3 such decompositions exist and the types 2
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range over I", II§ and III". By Proposition 2.6 each (U%, Z%) is spanned
by a chain 4% of CQ(a,b; V, W). Let (P2, Qf) denote the projection
of (V, W) onto (U’f,, Z%) agsociated with decomposition (6.6.1). Projecting,
we get for each I7 and jeJy "

b= > (PR, @D Th.
Q k
By Lemma 6.3 this may be written

(6.6:2) Th= D i+ Th,
®

where ofy, keKp, are complex numbers and ﬁ}leéﬂ(a,‘b; V, W). Since
(F}})jEJH represents a basis of QII(a,b; V, W), (6.6.2) implies that
Aim@I(a, b; V, W) is finite and does not exceed the cardinality of K.
By the necessity part of the theorem, which we have already proved,
(A}“}),“KH represents a linearly independent family of QII(a,bd; V, W).
Therefore it represents a basis of QII(a, b; ¥V, W). Thus the index set Ky
may henceforth be identified with J;, and relations (6.6.2) may be in-
verted to yield

(6.6.3) Ay = N parh 4%,
i

where f%, jedq, are complex numbers and A%¢(Q(a, b; V, W). The
chains 4% may be expressed in the form

g

We shall infer from (6.6.3) and (6.6.4) that for every type £ and
ked, we have

(6.6.5) 4% < (X, Y), where (X, 1’)=22(V7H, Wi).
I g

(5.6.4)

This together with (6.6.1) will imply that
(V, W) =D 3 (Vir, W)
o7
Since dim V% < dim U, we get
dmV = 22 dim U%; = ZZdlm Vi > dmV;
J7a a7

and it will follow that we have equalities everywhere and that dim V7,
= dim U}. In a similar fashion we obtain the analogous equalities for
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the range spaces and conclude that the chaing 'L ave proper and that
the sum 3 3'(V7, W7) is a direct sum.
Ty
We finigh the proof by verifying (6.6.5). If Q is the type I', then (6.6.5)
follows from (6.6.3) because OI*(a, b; ¥, W) = 0. Suppose for the purpose

of induction that (6.6.5) holds for the types I", n < m. For 2 the type
I™, (6.6.4) reduces by Lemma 6.4 (a) to

dom = 37 3 (PF, Q) dbm.
n<m 7
By the inductive assumption this is contained in (X, ¥), hence so
is Ak, ’
Suppose that (6.6.5) does not hold for all the chains of the type IIj, ¢
fixed. Denote by A% and A% the extensions of A’;In and 47, respectively
(] 0

to chains of C%"(a, by; ¥V, W). Since only a finite number of chains are
involved and R“*°S8°Af vanishes for i > n, we may define ¢ to be the
maximum of the integers ¢ such that there exists a chain Aﬁ with
R 4% & (X, ¥) (by our assumption ¢3>0). Among the chains A%
with B*°(8 4%) ¢ (X, ¥) let 47, be one with m the minimal possible
value of n. Applying Lemma 6.4 (b) to (6.6.4), we obtain

A= YN E, Gt 33 @, G .
n f n g

By what we have shown, the first summand on the right-hand side is
contained in (X, Y). The second summand is aceording to Lemmas 6.2 (b)
and 6.5 of the form

(6.6.6)

(6.6.7)

n—1 7—1
2 Z 2 i RV A4 Z 22 i RV8" A,
n<m g =0 n=m j =1

From (6.6.6) and (6.6.7) it follows that Rl’“S‘ﬁ,’n is the sum of a chain
contained in (X, ¥) and a linear combination of chains of the form
RY 8™ 4L, where i > 0if o< m and ¢ >1if > m. By the choice of
and m, these last chains are also contained in (X, ¥). Hence RV S jfn
and R“°8° 47, are contained in (X, Y), which contradicts the choice
of A7,.

Finally, we get a contradiction if we suppose that (6.6.5) is not
valid for the types III* by choosing Afrm as one of the chains not con-
tained in (X, ¥) with m the maximal possible value of . For in this
case (6.6.4), in view of Lemma 6.4(c), assumes the form

AA;Hm = 22 (P7H1 Q;T) j;II”"“‘ 22 (-P7H1n1 7111”) Aﬂ;IImy
o

n>m’;

icm°
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where in the first summand on the right-hand side I7 ranges over the
types I" and IIy, for which (6.6.5) is already known, whereas the second
summand is contained in (X, ¥) by virtue of the maximality of m.

We now give a number of complements to Theorem 6.6.

In the course of proof of Theorem 6.6 we have actually shown that
if (V, W) is finite-dimensional, then the chains IY, are proper and

(VW)= D 3 (Vh, Wi
T 7

if and only if for every type I7 the family of cosets (I’,’}—{—C?U (@, 55 V) Wiy
is a basis of QII(a, b; V', W). It follows that the number of summands
of type I in any decomposition of (V, W) into a direct sum of indecom-
posable systems is dim@QI(a,b; V, W) (which is therefore independent
of the choice of a, b). Hence any two such decompositions are isomorphic;
namely, there exists a one-to-one correspondence between the summands
of these decompositions such that corresponding summands are isomorphie.
This last conclusion follows also from the Kurosh-Ore lattice theorem [8]
as the similar theorem for groups.

1t is clear that for a general system (V, W) the families (I%);.s,
represent bases of @II(a, b; V, W) for every finite-dimensional indecom-
posable type I7 if and only if the chaing Iy are proper and the sum
> 3V, Wi is a maximal quasi-spectral direct sum of finite-dimensional
Ty

indecomposable subsystems. Using the results 2.6, 3.1(e), 4.3, 5.3(b)(d)
and 5.5, one deduces the following theorem:

TeEOREM 6.7. The families (F}})NH represent bases of QII(a,b; V, W)
for every finite-dimensional type IT if and only if the chains I'y are proper,
the subsystems (Vi, Wi) spanned by them form a quasi-spectral direct
sum 33 (Vip, W) and the quotient (V, W)/HZ’-?Z'-(V}}, W%) has wo

T 7
Sfinite-dimensional spectral subsystems.

Although the isomorphism type of such a “basic” subsystem
2 2(Viz, W) is uniquely determined by (V, W), because the eardinality
of the set of summands of type I7 must again be dim@II(a,b; V, W),
it iz well known already for ordinary systems that a system may have
in general more than one such subsystem. However, we have:

ProposiTioxN 6.8. Let (V, W) denote the sum of ol the subsystems
of (V', W) of the types I"™. For each positive integer m, let ()i, be a (possibly
empty) famsly of chains of CI™(a,b; V, W). Let (Vi, W) denote the
subsystem spanned by I%,. Then the famaly (P,j,,),-Jm represents a basis
of QI™(a, b; V, W) for every m if and only if each (Vi,, Wi,) is of type T
and

(Vy, Wyr =D X (Vh, Wh).

m i
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Proof. Suppose that each (Vi an) is of type I"™ and
(v, W)I-Z Z Ty Wh-

Then by Theorem 6.6 each family (]’Zn),-s,,m ig linearly independent modulo
OI”‘(a b; V, W). If for a certain value n of m there exists a chain I,
of CI"(a, b; V, W) such that I, is still linearly independent of (I3 Tn

modulo GI"(a, b; V, W), then, again by Theorem 6.6, I, spans a sub-
system (V,, W,) of type I" such that

(Va, Wa) 22 (Viy Wh) =

But then (Vy, W) & (V, W)r against the definition of (V, W)r.
The only part of the converse not implied by Theorem 6.6 is that

V, Wix e X D (Vi, Wi
mf

(the reverse inclusion being obvious). To show this we prove by induction
on n that X 3'(Vi., Wi) includes all the chaing of OI"(a,d; V, W).
m<n 7 .

For n = 1, a chain I'; of CI'(a, b; V, W) is congruent to a linear com-

bination of chains of (IY) modulo éI‘(w, b; V, W). But the last space
vanishes, g0

(0, 0).

e DV, W).
7

For n> 1, a chain I, of CI*(a, b; V, W) is congruent to a linear
combination of chains of (I']) modulo o (a, b; V, W). But & chain in
OT"(a,b; V, W) is a sum of two chains which essentially belong to

G‘I"‘l(a, b; ¥V, W), hence by the inductive assumptlon such a chain is
* included in Y Z’(VZ", Wi,). Thus

mST—1
I, e ZZ me, ij)

m=<n

ag required.

We can use Theorem 6.6 to complete Lemmsa 3.6 as follows:

PROPOSITION 6.9. Let (V*, W*) be a subsystem of (V, W). Then (V*, W?)
is spectral in (V, W) in each of the following cases:

(V2, Wy is oftypeI"‘and(V WV, W) is of type I, n >
or type IIO";

(v, W‘) is of type 11y and (V, W)/(V, W
or type III";

(V*, W) is of type III™ and (V, W)V, W) is of type II1", n < m.

m, type Iy

is of type 1L}, n # 0,

icm
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Proof. In order mot to introduce additional notation we present
the proof only for (V*, W*) of type II3'; the same argument is however
valid in all cases. Let I" be a chain of 5 (@, b; V', W) which spans

(V', Wh. Suppose that FséII?,"(a,,b; V, W). Then there exist chains
T QY™ (a, by; V', W)

such that I'= R I*+R“I™ Let (P, Q) be the natural homomorphism’
(V, W) onto (V, W)/(V!, W). Then

(P, @I 08" (a, bo; VIV, W/W')  and
(P, QI 02" (a, bo; V[V, W/W).

From Lemma 6.3(b) it follows that (P,@)I" and (P, Q)I™ vanish.
Hence I and I'* are contained in (V?, W') and. consequently I'eCTI?(a, b;
V', W'). But since I" must be proper and (V', W') is spectral in itself,
this contradicts Theorem 6.6, Therefore I'¢OTY(a, b; V, W), and Theo-
rem 6.6 implies that (V', W') is spectral in (V, W).

Remark. Using chains it is easy to construct examples showing
that if the types of the finite-dimensional indecomposable systems (V*, W)
and (V, W)/(V?, W) are not as in Proposition 6.9, then (¥, W) is not
necessarily spectral in (V, W).

To finish this section we will state a theorem which is convenient
in some applications (see [1]) and which results immediately from
Theorem 6.6.

THEOREM 6.10. Consider for a subsystem (V*, W%
following property:

(A) For any finite-dimensional type IT and for any set {I'} = OIl(a, b;
YV, WY if the I" are linearly independent modulo CII(a,b; V', W), then
they are linearly independent modulo o (a,b; V, W).

Then, for an arbitrary subsystem (V', W'), property (A) is necessary
for quasi-spectrality, whereas for finite-dimensional (V*, W) it is also
sufficient for spectrality.

and  I?eCY" ' (a, by; V, W)

of (V, W) the

7. Divisible systems

Definition 7.1. A system (V, W) is said to be diwisible if and
only if ¢V = W for every c¢eC*—{(0, 0)}. A system is said to be reduced
if and only if it has no divisible subsystem except (0, 0).

The structure of divisible systems and the possibiliby of (decompos-
ing an arbitrary system into a direet sum of a divisible subsystem
and a reduced subsystem will be discussed in Secticn 9. Here we shall
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be content with listing the elementary properties needed in the fol-
lowing sections.

The following proposition is an easy consequence of the definitions.
Its proof will be omitted.

PROPOSITION 7.2. (a) The only systems which are both divisible and
reduced are the zero systems.

(b) Systems of the types 1™ are divisible.

(¢) An arbitrary sum of divisible subsystems of a given system is divisible.
In porticular, the sum of oll divisible subsystems of (V, W) ds the largest
divisible subsystem of (V, W). This (unique) maximal divisible subsystem
of (V, W) will be denoted by Div(V, W).

(d) 4 quotient system of o divisible system is divisible.

(e) If (W}, W) is a divisible subsystem of (V, W) and (V, W)[(V', W'
is divisible, then so is (V, W),

(£) The quotient (V, W)/Div(V, W) is reduced.

(g) A quasi-spectral subsystem of -a divisible system s divisible.

Remark. It will follow from the theorem on the structure of divisible
systems (Theorem 9.10) that systems of the types Il and III™ ave
reduced.

LevMva 7.3. If (V), WY is a divisible subsystem of (V, W) and
(V, W)V}, W') is spanned by a proper chain ((vk-+V")3, (wh-+W"EH)
of CP2(a, by V|V, W/W"), where p is finite, or of C%%(a, b; V|V, W/W"),
then (V*, W") s spectral n (V, W).

Proof. We shall apply the method of correcting transformations
via Proposition 3.5.

In the first case the result is obvious if ¢ = p—1. Otherwise we
have the relations

by —avi = wieW'  for ke[p--1,q].

We define x, = 0. Since (V*, W') is divisible, we have aV' = W,
and thus we can solve successively the equations awy = bay_, —wi,
ke[p-+1, q] for oy in V*. Then (vi— )% is the domain sequence of a chain
in ®%(a,b; V, W)

In the second case we have the additional relation bvj = wy,,<W'
Since b¥' = W* and ¢ is finite in this case, we can solve in V' the equation
bz, = wy, and then the equations bwy = whyi+adyy, ke[p, ¢—1] in
decreasing order of k. Then (vt~ @)% is the domain sequence of a chain
in R(CP(a,b; 7V, w)).

Remark. As we shall show later, the requirement made in the
first case that p be finite is actually superfluous.

LeymMA T.4. A divisible system is speciral in extensions by the types

icm

Algebraic spectral problems 313

115" and III™. Therefore a divisible subsystem of (V, W) is quasi-spectral
in (V, W) if and only if it is spectral in oll extensions by the types 1™ con-
tained in (V, W). The mawimal divisible subsystem Div(V, W) of a system
(V, W) is always quasi-spectral in (V, W).

Proof. The first statement is an immediate corollary of the pre-
ceding lemma and Proposition 2.6. The second statement then follows
by criterion 4° of Proposition 5.2. This in turn implies that Div(V, W)
is quasi-spectral because by Proposition 7.2 (b) and (£), (V, W)/Div(V, W)
does not contain a subsystem of type I™.

8. Systems of type IT7

To describe the structure of divisible systems we need a class of
ordinary quasi-spectrally irreducible systems which correspond to the
Priifer modules over C[A]. We shall follow Rédei’s characterization of
the Priifer modules in introducing these systems (see [3]). However,
since our characterization is among systems, which are not necessarily
ordinary, the verification that the definition leads to well defined iso-
morphisin types is somewhat more involved than in the module case.

Definition 8.1. A system (V, W) is said to be of type II7° if and
only if it contains subsystems of all the types IL,m =1,2,..., but
no proper subsystem of (7, W) has this property.

As in the case of systems of the types IIY, if a basis a, b of C* is
assumed given, we shall abbreviate IIg: to IIy°. Thus a system (V, W)
is of type IIY if and only if it containg subsystems of all the types IIg,
m=1,2,..., but no proper subsystem of (¥, W) has this property.

Lemma 8.2. Let (V, W) be o system spanned by a chain I' = ((v.)5,
(wk)%H) of R(C&q (@, bo; V, W))r ¢ < +oo.

(a) If I' is not proper and does not vanish, then (V, W) contains
a spectral subsystem of some type I™.

(b) If p > —oo, then (V, W) is & direct sum of subsystems of the
types 1™ and at most one subsystem of type I1g. Such a spectral subsystem
of type 115 exists if and only if wy, is linearly independent of all the other wy.

Proof. We assume that 6 5 oo (if 6 = oo, veplace @, by by b, a).
(a) Clearly, the non-vanishing of I implies that p < ¢ and the domain
sequence of I” does not vanish. Diminishing ¢ if necessary, we may assume
that v, = 0. Since linear dependence of (vr)% implies, on operating with a,
linear dependence of (wy)s, we have a dependence relation

aq
Zakwk =0 with 7> —o0,p <7 <qanda 5%=0.
k=1
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Let I' denote the extension of I' to a chain in O%% (@, by; V', W).
Then the chain
I3

2 ay Rl’q—r-‘-lsk_lf

k=t

belongs to GIqi”‘l(a,, by; V, W) and does not vanish because its domain
element with index ¢—r-+11s a,9,. Let m be the smallest positive integer n
such that CT"(a,bs; V, W) #0. Then clearly CI™(a,b,; V, W) = 0.
Thus, if 4 is a non-zero chain in OI™(a, b,; ¥V, W), it spans according
to Theorems 6.6 and 5.5 a spectral subsystem of type I™.

(b) As shown in Section 2, we can span (V, W) by a chain in
R(C%2 (¢, by; V, W) for any ¢ not proportional to b,. It follows that
5,V = W for all 4 # 6, whereas codim b,V is 0 or 1 depending on whether
wp i8 or is not linearly dependent on all the other w;. Considering
then the direct decomposition of (¥, W) by Theorem 4.3 (Kronecker’s
theorem) we check immediately our statement.

ProrostrioN 8.3. 4 system (V, W) is of type IIY if and only if it
s spanned by a proper ehain of R(0S° (a, by; V, W)).

Proof. Without loss of generality we assume that 6 # oo.

Suppose that (¥, W)is spanned by a proper chain I' = (('vk)"_,,c, (‘wk)im]
of B(C5™*(a, by; V', W)). Denote by (V*, W°) the subsystem spanned by
R™™T, s > —1. Then (V~!, W) = (0, 0), while for s 0, (V5, ) is
of type II;*'. Thus (7, W) contains subsystems of all the types II}.
A proper subsystem of (V, W) cannot contain all the subsystems
{V°, W), s 0, since their sum is (¥, W). Thus to show that (v, w)
is of type I3, it is sufficient to show that (V, W) contains no other
subsystems of the types ITy". We actually show that every proper subsys-
tem (X, Y) of (V, W) which satisfies aX = ¥ coincides with one of the
subsystems (V°, W°). Let s > —1 be the maximal integer such that
{V, W*) = (X, ¥) (a maximum exists since (X , ¥)is proper and contains
{77, W) If V° £ X, there exists a vector

0

0= S

k=—t

in X with £ > ¢ and a_; = 1. Since I" ig proper, T'(a) is an isomorphism
of V onto W and T'(a)~"T'(d,) is an operator of V into itself under which .U
is invariant. Therefore the wvector

0
(T(a)‘lT(bo))t_s——lfp =0_g_ 1+ 2 Oty sq1 Uk
k="¢g

{where the last sum is zero if s = —1) belongs to X. Since the second
term on-the right-hand side belongs to V¢ < X , We have v_,,, e X. Hence

e ©

icm

Algebraic spectral problems 315

(V*F, W) = (X, Y) against the choice of s. Thus X = V°, and since
(X, T) it exact, (X, ¥) = (V°, W°). '

Suppose now that (V, W) is of type II5°. Let (X™, ¥™), m = 1,2, ...,
be subsystems of the respective types II§'. From their description by
chains (Proposition 2.6) we infer that for m > 2, {T(a)7 5, X", by X™)
is of type II3""!. Therefore, by Definition 8.1, the subsystem

D' (T(a) " by X™, b, X")
=2
must be equal to (V, W), Thus bV = W. Hence, starting from

a null vector v, of by, say in X', we can construct a non-zero chain
TeR(0Z° (a, by; V, W)). It suffices to show that I' is proper since
then the subsystems spanned by R™™'I, m —=1,2,..., are of the
respective types II7. Hence their sum is (V, W), which means that I’
spans (V, W). )

Suppose to the contrgry that I' is improper. Then by Lemma 8.2 (a),
(V, W) contains a spectral subsystem (X,Y) of type I'. We reach
a contradiction by showing that (V, W)/(X, ¥), .and .hence .a direch
complement of (X, ¥) in (¥, W), contains subsystems of type 1157 with
arbitrarily large m; and thus subsystems of all the types ITy,, m = 1, 2, ...
The subsystem ((X", Y™)4(X, ¥))/(X, Y) is spanned by a chain of
R(OZ™ (a, bg; V/X, W]Y)) — the image of R~""*under the natural
homomorphism of (¥, W) onto (V, W)/(X, Y). Therefore by Lemma 8.2 (b)

Z
(X", ¥")+ (X, DNX, Y) = 3 (T, 2),

where the subsystems (U7, Z') are of the types I™ except possibly for
one which is of type II7. Comparing dimensions we get

t
m—r = dim X" —dim X < dim((X™4 X)/X) = Zdim U7 < tmaxmy,
Pt i
and on the other hand

r—1 = dim X™— (dim Y"— dim ¥) > dim (X" X)/X)— dim ((¥Y"+ ¥)/¥)

N

t t 14
dim U7 — Z dimZ% > Z m;— Z (m;—1)—1 =1t—1.
j j=1 j=1 f=1

7

i
ot

Therefore maxm; > (m—7)/r. Since m can be taken arbitrarily large
and since a system of type I™, m; > 2, contains a subsystem of type
II7%~Y, this proves our assertion.

PROPOSITION 8.4. A system of type 11 is divisible and quasi-spectrally
irreducible. Its only eigenvalue is 0 and dimA7(dy|V) = 1.
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Proof. Since, by Proposition 8.3, (¥, W) is spanned by a proper
chain in R(CZ" (¢, d; V, W)) where ¢, d is any basis of C* such that
d = by, the divisibility and the statement about eigenvalues become
clear. If (X, Y) were a non-trivial quasi-spectral subsystem of (V, W),
then by Proposition 7.2 (g) it would be divisible. But then ¢X = Y.
As we have seen in the first part of the proof of Proposition 8.3, this
implies that (X, ¥) is of some type IIg; hence not divisible.

Our aim now is to generalize Theorem 6.6 30 as to incorporate sub-
systems of the types II3.

Definition 8.5. Let (V, W) be a system and a,b a basis of C
We write:

CII (a, b5 V, W) = R(0Z™" (a, by; ¥, W))

and
LI (a, b5 V, W) = B=0(027 (a, b3 V, W)+ 3O (0,003 7, ).
o {=o

Then (}II‘;"(a, b; V, W) is a subspace of CIIF(a,b; V, W), and
we denote the quotient space CII(a,b; V, W)/CXIP(a,b; V, W) by
QIIP(a, b; V, W). A chain of CII{(a, b; V, W) will be said to be of
type IIg.

Again we replace @, by by b, a if 6 = co. Proposition 8.3 says that a
system (V, W) is of type II{® if and only if it is spanned by a proper chain
of O11P(a,b; V, W). Note that the spaces (5*° (a,by; V, W) appear-
ing in the definition of é’II?,"(a, b; V, W) form a non-decreasing sequence.
Thus a chain I" belongs to 611? (a,b; V, W) if and only if there exists
a mnon-negative integer ¢ such that

I’eR_m'o(le'_l(ay be; Vs W)+O‘r_—f’o (@, bo; V, W))

Leywa 8.6. Let (V, W) be a systom and let (IM); be a family of
chains of OIIF (a,b; V, W), 0 fived. Let (Vf, W) denote the subsystem
spanned by I7. Then in order that each I be a proper chain of OIIF (a, b;
¥, W) and that the sum '.ZI:( V7, W) be a direct sum which s quasi-spectral

7e

n (V, T’Y) it is necessary and sufficient that (I} be linearly independent
modulo OII3(a, b; V, W).
Proof. Using Proposition 5.3 (g) we may assume that j Tuns over
a finite set.
The proof of the necessity statement of Theorem 6.6 guits the present
case with almost no modifieation. If 'y I7 = I 4TI, where
Ty e B™20052 (a, bg; 7, W)

and  Iye R0 (a, by; V, W),

e ©
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¢t a non-negative integer, then the smallest subsystem of (V, W) con-
taining 3 (V?, W’), I'; and T is an extension of finite type of Y (V/, W)
since it is sufficient to adjoin I',. Instead of Lemma 6.4 or 6.5, we use
the fact that the projections of I', into the subsystems (177'7 W) vanish —
otherwise they would give rise to more than one eigenvalue contradicting
Proposition 8.4.

Suppose now that the chains I” = ((v})%,, (wh)L.) are linearly inde-
pendent modulo CITg(a, b; V, W) and that there exists a non-trivial
dependence relation of the form

2 Zo; i =0,

7 k=t

(8.6.1)

where ¢ > 0 an_d not all the coefficients a(i)t vanish. Let Fal denote the
extension of I” to a chain of 05°° (a, by; V, W). Consider the chains

Iy= R0 N afr?

?
and

[
Iy= —R™3 3 afighhpd,
T k=—f41
Then IyeC™"""(a, by; V, W), TyeR™™(C5" (a,bp; ¥, W)) and,
because of (8.6.1), the range elements with index —¢ of these two chains
coincide. Thus there exists a chain Iy of ¢~*(a, by; V, W) such that
R~"I =T, and BRI, =1I,. Obviously

Tye R0 (a, by; V, W)
and

D) DI — Ty e R0 (a, bo; V, W)).

Therefore Y a¥)I” «C1IF (a, b; V, W) against the assumption of linear
independence. Thig ghows that (8.6.1) is impossible, and since a dependence
relation among the domain elements ot the chains gives rise to a relation
of the form (8.6.1), it follows that the chains are proper and that > (V7, W)
ig a direct sum.

Propositions 8.3, 8.4 and 7.2 (¢) now show that (X, ¥) = Z(Vj, w7
is divisible. HMence to show that this sum is quasi-spectral in (V, W),
it suffices by Lemma 7.4 to show that it is spectral in every extension
(U, Z) contained in (V, W) such that (U, Z)(X, ¥) is of type I™

Let 4 = ((up+ X)7, (2+ X)) be a chain of CI"(a, by; U/X, Z|Y)
spanning (U, Z)/(X, ¥). We assume, as we may, that 6 # co. Following
the procedure in the second case of Lemma 7.3, we construct a sequence
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(@h)™ of elements of X such that (uz—a)7" is the domain sequence of
a chain A" of CIT®(a, b; U, Z). If a(u;— &}) = 0, then 4* actually belongs
to CI™(a, be; U, Z);, and by Proposition 3.5, (X, ¥) is spectral in (U, Z).
Otherwise we have

o
(8.6.2) a(u—al) = D D aul,
7 l=—t

where not all the coefficients of; vanish. If m >t-+1, then using the
extension I introduced before, we get by (8.6.2) that the chain

Al — R 2 é aY)SI— 1fif

7 1=t

belongs to CI™(a, by; U, Z). Therefore if (#})" denotes the domain
sequence of
0
R 7 agi) Sl‘l ff
2 2T
then (xp+ 23)7* furnishes the values of the required correcting transfor-
mation and (X, Y) is spectral in (U, Z) in this case too.

‘We conclude the proof by showing that m < ?is against the assump-
tion that the chains IV are linearly independent modulo CIIF (a, b; V, W).
Denote by A' the extension of 4 to a chain of (2" (a, by; V', W). Because
of (8.6.2) there exists a chain 4® of C~®(a, by; V, W) such that

(8.6.3) . R4 = R—t’oﬂt'x'l,jl
and
[
(8.6.4) Rt =Rt 3T 3 oIS
)

Sinee m < t,it follows from (8.6.8) that 4*eR™**(05°" (a, by; V, W)),
while by (8.6.4),

0
A= B0 3T N IS — A2 RN (0 @, by, V5 W)
7=t
Since
[
Dl = —p=0 3 N QS 2 A
j l=—t+1
and the first summand on the right-hand side belongs to B~ (07 a, by;
¥, W)), we obtain

DI CTI5 (a, b; 7, W),
7

e ©
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From now on the letter I7 will stand not only for one of the types
1", 117" (m finite) and ITI™ but also for I,

Lepwna 8.7. Let (I);or be a family of chains of CIl(a, b; V, W) which
is linearly independent modulo OTT (a,b; V, W). Let (P, Q) be the natural
homomorphism of (V, W) onto a quotient system (V, W)/(X, ¥). Then
the chains (P,Q)I" {which belong to CII(a,b; VX, W/X)) are linearly
independent modulo CII(a,b; V/X, W|Y) in each of the following cases:

(a) IT ds the type TI3" and (X, Y) is divisible;

(b) IT.4s the type III™ and (X, ¥) 4s divisible;

(e) II is the type I and (X, Y) is either o finite-dimensional divisible
subsystem or a direct sum of subsystems of the fized type 11, where 1 6.

Proof. We may assume, of course, that the set of indices o is finite.
We shall show that in each case

(8.7.1) (P, Q)I'<CII(a, b; V|X, W),

where I' = Yo7 implies reom (@,b; V, W) and hence ¢; = 0 for every j.
In case (a), (8.7.1) assumes the form

(8.7.2) (P, Q)T = R*™[,4T,

where I'yeCX™ (a, by; V/X, W/X) and Iye BV (02— (a, by; VIX,W|Y)).
Starting with the elements of index m, we subtract suitable elements
of X from given representations in V of the domain sequences of I
and I, so as to obtain representations

I''=P,Q)l3; and I,=(P,Q)1,,
where I'yeC%"(a, bp; V, W) and I eRYM (0L (a, by; V, W)). This can
be done ag in the proof of Lemma 7.3 since (X, Y) is divisible and thus
Y = b, X. Then, by (8.7.2),
(8.7.3) I'= RY" [T 4T,

where /% is a chain of R(OY" (a, by; X, ¥)). The subsystem (X, ¥)
being divisible, [y can be extended to the left and belongs in fact to
RYMOY" (@, by; X, Y)). Hence (8.7.3) shows that I'eCIIg(a, b; V, W).
The proof in case (b) is similar to the one we have just given and
will be omitted.
In case (¢), (8.7.1) means that (P, Q)I"' = I'\+4I,, where

Iy eR™2(05°7 (a, be; VIX, W/T))
and for some ¢ > 0,

Tye R0 (a, b; VIX, WX)).
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In the present case, given representations of the chains in (V, W)
can be modified by elements of X and Y so as to yield

I =P, Ty = (P, Q)1
where [3eR™(05™" (a,bs; V, W)) and
Ty eR(05° (@, be; V', W),
where R~*~""'I', c (X, ¥). Hente I'= I 4TI with Iy (X, ).
If (X, Y) is of finite dimension, it follows that the infinite chains I’y

and Iy lie in finite-dimensional systems, hence cannot ‘be proper.
Lemma 8.6 applied to a family composed of a single chain, implies that

improper chains of type IIg® belong to éIIS"; hence our statement.
If

and

(X, 7) = DX ¥,
del
where (X’, ¥%) is spanned by proper chains A°eR(05™° (a, by; v, W),
with 5 # 0, we prove again that I', and [ are not proper. To this effect
write

D (X, T,

m=1

where (X%, ¥h) is spanned by R~™°A% The transformation T(ba)‘lT(ai)
is a well defined operator of X into itself under which all the spaces X,
are invariant. Write further

r,= ((”%C)o—ooy g”z)im): I; = ((ﬂ’i)"_m, (wlsc)l—oo)

Since BT, < (X, Y) and T < (X, ¥), we have

(X, YY) =

v = [T T ety  and o = [T(b) 'T(a)] v}

for7=0,1,2, ... Since there exists a finite m and a finite set of indices

K < I such that »*,_; and »; belong to i% - X, it follows that all o*;_,_,

and 9°; lie in the finite-dimensional spaée %’ - X% and I' and I® cannot
1e.

be proper.

Remark. It is an easy consequence of the following theorem that
actually if IT is one of the types I"™, 113, III™ or IT3, tzhen the linear in-
dependence of chains of CII(a,b; V, W) modulo Cll(a,b; V, W) is
preserved in passing to a quotient modulo any direct sum of subsystems
having types of the above list which are distinct from the type II.

ToeoREM 8.8. Let (V, W) be a system. For each type IT among the
types 1", TI7, TII™ and IIY, m o positive integer, 0eC let (I be

iel 1
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o (possibly empty) family of chaing of Cll{a,b; V, W). Let ( Ty Wi
denote the subsystem spanned by I'ly. Then in order that each ]’{7 be a proper
chain of ClI(a,b; V, W) and that the sum 3 3 (Vi, W) be a direct sum
which is quasi-spectral in (V, W) "
every type II the family (I'h)
v, W)

Proof. By Theorem 6.6 and Lemma, 8.6 on
(without the properness of the chaing)
we know that if the chains satisfy the independence condition, then
(Vi W{,) is of type I7. Again we may assume that we have only a finite
number s of chains and subsystems to deal with, which we denote now,
without specifying the type, by I and (77, W), j — 1,...,5 We prove
the assertion by induction on s supposing its truth for fewer than s sub-
systems. By the cited results we may assume that at least one of the
subsystems is of infinite-dimensional type II{® but not all the subsystems
are of this type (hence the ease s = 1 is taken care of). We suppose that
the indices j have been so chosen that if at least one of the subsystems
i5 of some type I™, then the subsystems (V7, W), j — 1,7 (l<r<s)
are all the subsystems of types I”, m =1, 2, ..., Which appear; otherwise

the subsystems (V”',Wj), J=1,...,7, are taken to be all the subsystems
of type IT°, 0 fixed. The sum

7
) i 15 necessary and sufficient that for
o7y D€ Uinearly independent modulo CIT (a, b

1y the sufficiency statement
remains to be proved. In particular,

”
(X, Y) = YV, W)
i=1
is- obviously a direct sum which is quasi-spectral in (V, W). Further-
more, the sums (X, T)+(V7, W), j=r+1,...,s are direct sums.
If (X, Y) and (V’', W’) are both of finite dimension, this follows from
Theorem 6.6. Otherwise, Lemma 8.7 is applicable and by this lemma
the non-zero domain and range elements of I are linearly independent
modulo X and Y respectively. The directness and quasi-spectrality of
8 8
D (VW) = (X, )+ 3 (7, W)

F==1 F=r+1

will now follow from Propositions 3.1 (e) and 5.3 (b) if we only show
that the right-hand side of

@

[

V', WX, ¥) = (X, D)+ (v, WH)|x, ¥)

;b

J=

=N

J=1

Is a direct sum which is quasi-spectral in (V, W)/(X, Y). Let (P,Q)
denote the natural homomorphism of (V, W) on (V, W)/(X, ¥). Then

Studia Mathematica, t. XXX, z. 3 21
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according to Lemma 8.7, the chains (P, Q)I", which span the subsystems
(X, T)+(V/, W))(X, Y); satisfy the linear independence . assumption.
Oonsequently, what we need follows from our induction hypothesis.

In contradistinetion to Theorem 6.7, & quotient of (V, W) modulo
a sum of subsystems spanned by chains which represent bases of QII(a, b;
V, W) for all the types IT considered in Theorem 8.8 may well contain
quasi-spectral subsystems of the types IIP. This happens for instance
in the example given at the begirming of Section 5. ‘We do have however
a generalization of Proposition 6.8.

PROPOSITION 8.9. Let (V, W) denote the sum of all subsystems
of (V, W) of types I",m =1,2,..., and 1P, 6 C. For each type II
considered above, let (I”l}),-gH be a family of chains of CIl(a,b; V, W).
Let (Viy, W) denote the subsystem spanned by I';. Then for every II the
family (I‘Z})Mu represents a basis of QII(a,b; V, W) if and only if each I
is a proper chain of CIT(a, b; V, W) and

(Vy, Wirme = 22 (Vir, W)
T 7

The subsystem (V, W)gme s quasi-speciral in the system (V, W) and
(V, WYV, W)gpee contains no subsystem of type ™ or II5.

Proof. Suppose that each family (T}})MH represents a basis of
QIl(a,b; V, W), and write

3 3 (i, Wh) = (X, D).
F7

Then by Proposition 6.8, (V, W)r < (X, ¥). Moreover, since the
basis of €2 which Proposition 6.8 referred to was arbitrary, it follows
from the proof of this proposition that (X, Y) contains all the chains
of CT™a,by; V, W), m=1,2,..., 8eC. To prove that (V, Wi
< (X, Y) we show that (X, Y) confains all the chains of CIIf (4, b;
v, W), e €. Otherwise, let s be the smallest non-negative integer such
that there exists a chain I' = ((93)" o, (W) oo OF sOme space CLLF(a, b;
V, W) with v_,¢X. The chain I' is of the form

I'= Y alhe+RT\+1;,
jeJ
where J is a finite subset of J oo, 11 = (1) 20y (21) o) €057 (@, Do
'}
V, W) and IyeR (02" (a, by; V, W)) for some ¢>0. The chains
F%Igo and the chain I',, which is essentially in OT"'(a, by; V, W), are
contained in (X, ¥). Hence v_,—u_seX. But B™>°8~'I" is a chain of

CII$(a;b; V, W). Hence by the choice of s, u_.«X (this is true for s =0,

because u, = 0). Thus v_seX, against the choice of I'.
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From Theorem 8.8 it follows th. i
. The . - at the chains are proper and that
;;'(VVH, Wi)isa quasi-speetral direct sum. Therefore (X,Y)=(V, W)

Thus (V, W)rne equals (X » ¥) and is quasi-
Conversely,

T,I1°-

speectral in (V, W).
suppose that the chains are proper an(g.l )

(Vs Winee = Y- 3 (i, W),
I 7

As we have just proved, (V, W i i

, Jrmee is quasi- i
fore Theorem 8.8 implies tha; th:: Hfami]i%s (l e
d?;l(‘e Qf)nilltlon. .’l‘hese families in fact represent bases of the space
Q (a , 037, W) s%ce otherwise there would exist, again by 8.8 ap bS
system of type I™ or IIy which has intersection (0,0) W‘it]:; P

; (V, W). There-
Iy sy, Satisfy the indepen-

(V, Wi = Y N (Vh, Whh.

The éame impossible situation woul i
‘ s 6 d occur if (V, W)/(V, W)y oo
?ad a tsu‘i)s:vstem of .type I™ or II. Being qua;si-spect,ral, /EV’ Wilin
§ spectral in extensions by type I™ and being divisible, it ig ’s ecIt';ID;
according o Lemma 7.3 in extensions by type II5 , pecha
Remark. There is a com posi
plete analog of Proposition 8
sum (V, Wgyree of all the subsystems of (V, W) of tyges " m —9 lfo‘)r e
7 W) ym=1,2 ...
apd I1g, 0 ﬁxed: The p%"oof, which is obtained from that of Proposit’ibxi 8 9’
simply by keeping 6 fixed, shows also that (V, W)yne containg all tﬁe
chains of types I™ and IIS. e

9. Eigenvalue systems. Structure of divisible systems. Reduction

We now generalize to systems the con i
cepts of tor i
free modules over the polynomial ring C[/I].p Hon and forsion
Definition 9.1. A system (V, W) i i )
1tion 9.1. : 8 said to be e i
and only if it hag no eigenvalueg. Honeatue free it
o Let (V, W) b_e & non-singular system, and let a, b be any basis of
suc}1 t_ha‘t .’.L‘(a) 18 an isomorphism of V onto W. Consider the module V
over (4] defined as in Section 1 by p(A)v = p(T'(a) T (b))v. Tt is obvious
;Tt ﬁh1§ module is torsion free if and only it (V, W) is eigenvalue free
us, eigenvalue free systems may be regarded as a ge izati '
: 8 nerali
torsion free modules over C[A]. ¢ estion of
Since we do‘not have a ring of coefficients for systems, we define
the analog of ’co'rsmn modules in terms of the analog of torsion free modules
rather than directly, as usually done in the module case.
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A quotient system (V, W)/(X, X) is eigenvalue free if and only if
epeY where veV and ceC*—{(0,0)} implies that veX. It is therefore
obvious that if (V7 W)ty is & family of subsysterns of a system (V, W)
such that every quotient (V, wH(V, W) is eigenvalue free, then

v, WOV, W)

jeJ

is eigenvalue free. As the set M of all subsystems (X, ¥) of (V, W) such
that (V, W)/(X, X) is eigenvalue free is not empty ((V, W)eM), it is
clear that O has a (unique) smallest element with respect to inclusion.
This justifies the following definition:

Definition 9.2. The eigenvalue part of @ system (V, W) is the
smallest subsystem (X, ¥) of (V, W) suech that (¥, W)/(X, Y) is eigen-
value free. This subsystem will be denoted by Big(V, W). The domain
and range space of Big(V, W) will be denoted by EigV and EigW res-
pectively. A system (V, W) is said to be an eigenvalue system if and only
if Big(V, W) =(V,W).

We shall show in this section that the study of eigenvalue parts
of systems can be reduced to that of reduced primary mogules over
O[] — an extensively investigated subject. Therefore our attention will
be restricted mainly to those properties of eigenvalue parts which have
bearing on this result.

ProposirioN 9.3. Let (V, W) be a system. Then:

{a) BigV contains every eigenvector of V. Big(V, W) contains every
chain of every space (%% (a,b; V, W). Hence it contains all the subsystems
of (V, W) of the types 1™, II5" and II5.

(b) If Eig(V, W) is eigenvalue free, then Big(V, W) = (0, 0).

() If (X, X) is o subsystem of Big(V, W), then Big((V, W)/(X, ¥))
= Big(V, W)/(X, Y).

(d) Eig(V, W) is an eigenvalue system.

(6) A quotiont system of an eigenvalue system is am eigenvalue system.
(f) A speciral subsystem of an eigenvalue system is an etgenvalue
system.

Proof. (a) Suppose that a chain I" = ((v)5, (wy)y) of C7F (4, b;V, W)
is not contained in Big(V, W). Then (vx)y is not contained in RigV.
Since, by definition of €% (a,b; V, W), ¢ < oo and v, = 0 for k >g¢,
we have g > p and there exists a maximal integer ¢ in [p, oo] such that
2,¢BigV. But then we have by, = av,,,<BigW, against the fact that
(V, W)[Eig(V, W) is eigenvalue free. Thus I' = Rig(V, W).

The other statements in (a) are an immediate congequence of what
we have just proved.
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(b) If Rig(V, W) is eigenvalue free, the

' . n by (a), (V

elgeltv:)ac;gléé 1.;., (V, W)/(0, 0) is eigen’value frge.( » (72 W) has no
¢ » ¥) = Eig(V, W), then ((V, W)/(X, T))/(Bi

. : 7 V

1bs e}tgezilv?.lui free since it is isomorphi’c to/ ( V’, Vt)))//(Eig(( V’ 1;7‘;'))/(‘%;5:2

y its definition Big((V i i i i LW,

by i g((V, W)/(X, Y)) is contained in Eig(V, WX, Y).

Big((V, W)[(X, ¥)) = (U, 2)/(X, 7).

e Thﬁeﬁ&?)/(}gé (41; =~ W(§V7 (ng)/(ZX’ )T, 2)/(X, X)) is eigenvalue
. ] c i
(T, DT, T , »Z) and hence Eig(V, W)/(X, ¥)
(d) To prove (d), which means REigRic(V i
. . gEig(V, W) = Rig(V, W), we
ha;re th1 shqw that (X, ¥) < Elg(V, W) and Eig(’V, WX, Y) 7is e;gen—
value free imply (X, ) = Rig(V, W). But by (), Rig((V, W)/(X, Y))
= Ezg)( I;J, ZV%/)(IX » ¥). Hence by (b) this is a zero system.
e) Let , ¥) be a subsystem of an ei
. genvalue system (¥, W).
Then (X, Y) < (V, W) = Rig(V, W). Hence, by (e) v e

H
Big((V, W)(X, ¥)) = Big(V, W)(X, ) = (V, W)(X, ).
(f) This follows from (e) because a s is i i
: § pectral subsystem is isomorphi
t0 a quotient modulo a direct complement. e

I_;EMMA 9.4-_. If 0 is an eigenvalue of the system (V, W), then (V, W)
contains & quasi-spectral subsystem of one of the types 1™, IIT or IIP.

N Proof. We assume that (¥, W) does not contain a quasi-spectral
subsystem of one of the types IT;* and show that it contains a quasi-
spectral subsystem of one of the types I™ or IIP.

From our assumption it follows by Theorem 6.6 that C117 (a, b;

V, W)= (311'{9"(“’ b; V, W) for ever i i
y m. Applying a shift b
see that this is equix;alent to pryne H operaon, we
(941)  R(CZM(a, by; V, W))
== R—-l,O(C;t—l,O ((L, bﬂ7 V, -W—))_l_R—t,o(O;t,——l (a, bo, V,W))

.for every non-pegative integer t. We prove by induction on ¢ that (9.4.1)
implies h

¥ 1,
(9.4.2) R(CZ (a, by; V, W)) = B™(055™ (a, by; V, W)
for all? > 0.

For ¢ = 0 (9.4.2) follows from (9.4.1) because R*(C%™* (a, by; V', W)
= 0. Sipopose that s > 0 and that (9.4.2) is valid for t =s—1. Let
TeR(CZ* (a,by; V, W)). By (9.4.1) we have

I = R—8'0F1+R—8’0F2,
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where Ie055 1 (a4, by; V, W) and I?eC5% " (a, by; V, W). Then
R8I R (OS5 (a, b; ¥V, W)).

Hence by the induction hypothesis, there exists a chain I®eCZ™ (a, by;
V, W) such that R*“*8~'I* = R~**I°, Since the domain elements
with index 1 of both §7I' and I"® vanish, we actually have R~*+1* §-1*
= R™*tM % Applying the operator § to the last equation, we obtain
R = R™*°8I*. Since SI*eC-* (a, by; V, W), we have

I'= BT R R~ (05" (a, by; V, W)},

as desired.

Since 0 is an eigenvalue of (V, W), there exists a non-zero chain of
R(C% (a, by; V, W)). From (9.4.2) it follows that it can be extended
to a non-zero chain of CIIF(a, b; V, W). By the remark following Pro-
position 8.9 this implies that (7, W)I,ng° # (0, 0), and therefore (7, W)

contains a quasi-spectral subsystem of one of the types I™ or of
type 1I5°.

ProposITION 9.5. For every system (V, W) we have EigDiv(V, W)
=V, Wrme.-

Proof. If (X, ¥) is a subsystem of (¥, W) of one of the types I™
or II§, then (X, ¥) is divisible. Hence, by the definition of Div(V, W)
(Proposition 7.2 (e)), (X, ¥) < Div(V, W). But then it follows from 9.3 (a)
that (X, Y¥) < EigDiv(V, W). Since (V, W)rnw is the sum of all sub-
systems (X, Y) of the above types, we have (V, W) < EigDiv(V, W).

A fortiori (V, W)y e < Div(V, W), and the quotient Div(V, W)/(V, W, ) 1

is well defined. If we show that this quotient is eigenvalue free, we shall
obtain the reverse inclusion EigDiv(V, W) < (V, W) me.

According to Proposition 8.9. (V, W)/(V, W)rme and hence also
its subsystem Div(V, W)/(V, W)y contains no subsystem of type I™
or TIF". By part (d) of Proposition 7.2, Div(V, W)/(V, W)g s is divisible.
Hence by part (g) of the same proposition it does not contain non-divi-
sible quasi-spectral subsystems. In particular, Div(V, W)/(V, W)r e has
no guasi-spectral subsystem of any of the types IT3. The desired con-
clusion, that Div(V, W)/(V, W) g is eigenvalue free, now follows from
Lemma 9.4.

The- preceding is more than we need of the general properties of
cigenvalue parts in order to describe divisible systems. However, we
still have to introduce one isomorphism type of eigenvalue free systems.

Let C(1) denote the set of all rational funetions in the complex
variable 1. Unless otherwise stated, C (1) will stand also for this set endowed
with its usual structure as a complex vector space. Let a,b be a basis

e ©
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of C®.'Consider the system (C(1), C(2))ap having C(2) as domain and
range space and the mapping (ea+ Zb, f(2) - (ea-t2b)f(2) = (e-+ CA)f(A)
as system operation. Although the system (Chy, ¢ (M))ap actually depends
on the basis a,d, its isomorphism type does not. If ¢ — aa+ Bb,
d = ya+6d is another basis of €2, then the pair (P, @) of linear trans-
formations of C(4) onto itself defined by

Pf(3) =

ajmdggﬁ, ofth = #(222)

is an isomorphism of (C(2), C(4),q onto (C(2), C(A)ep-

Definition 9.6. The common isomorphism type of all the systems
(C(1), C()ap, @, b a Dbasis of €2 will be denoted by R. A gystem is
said to be a full rational system if and only if it is of type R. A system
is said to be a rational system if and only if it is a subsystem of a full
rational system.

A tull rational system (V, W) is clearly eigenvalue free and divisible.
Hence it is non-singnlar with 7'(¢) an isomorphism of ¥ onto W for every
¢eC*—{(0,0)}. It is easy to see that every module corresponding to
(V, W) by the procedure described at the beginning of this section is
igomorphic to C(4) regarded as a module over C[A].

Clearly, every rational system is eigenvalue free (but not necessarily
divisible). Every system of type III™, m =1,2,..., is rational.

Luvma 9.7, An eigenvalue free divisible system (V, W) is a direct
sum of full rational subsystems. The cardinal number of summands in
such a decomposition is uniquely determined by (V, W).

Proof. The proof can be reduced to the module case, but it is almost
as simple to give it directly for systems. Let @, b be a basis of €* Since
(V, W) is eigenvalue free and divisible, for every e the operator

T(a)'T(b)— 061 if
I if

(a0 () = oo
0 = oo

is a well defined linear automorphism of V. These operators clearly com-
mute. Therefore, if f(1)e C(1), we can define the operator f(7(a)™ T(b))
on V uniquely by substituting 7'(e)"*7(b) for A in any representation
of f(2) as a quotient of products of linear polynomials. We make V into
a vector space over the field C(4) by defining f(A)v = f(T(a)"'T (b))v.
If (v;)je7 is & basis of this vector space, the space decomposes into a direct
sum V = 3 C(2)v;, where the summands C(A)v; are a fortiori subspaces
of V ag a vector space over C. Since T'(¢) is an isomorphism of V onto W,
we have a corresponding decomposition over the complex numbers
W = ¥-aC(2)v;. One immediately verifies that the pair of linear trans-
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formations (P;, Q;) where P;f(d) = f(A)v;, @f(A) = af(A)» is an iso-
morphism of (C(2), €(A)s, onto the subsystem (C(A)v;, aC(A)v;). Thus
(V, W) = 3(C(A)v;, aC(A)v;) is a decomposition of (V, W) into a direct
sum of full rational subsystems.

Conversely, let

(V, W)=

feJ

(Iﬁy Wj)

be any decomposition of (V, W) into subsystems of type R and let
0 £ v;¢ V' Then (v;);7 is 2 basis of V made as above into a vector space
over C(J) using any basis a, b of C*. Hence the cardinal number of sum-
mands in the decomposition equals the dimension of V over C(A) (which
therefore does not depend on a, b) and is uniquely determined by (V, W).

As a corollary of the preceding lemma we obtain a characterization
of the isomorphism type R.

PROPOSITION 9.8. A system (V, W) is of type R if and only #f it is
non-zero, eigenvalue free and divisible, and no proper subsystem of (V, W)
has the same properties. A system of type R is quasi-spectrally wrreducible.

Proof. We already know that a system (V, W) of type R is non-
zero, eigenvalue free and divisible and that a vector space over C(1)
attached to it as in the proof of Lemma 9.7 is of dimension 1. If (X, ¥)
is a subsystem of (V, W) with the same properties, then X becomes a non-
zero C(A)-subspace of V. Hence X =V and Y=CX=CV=W.

Conversely, if (V, W) satisfies the requirements of the proposition,
then by Lemma 9.7 it is a non-empty direct sum of subsystems of type R,
and by the minimality requirement there must be just one summand.

Finally, if (X, ¥) is a quasi-spectral subsystem of a system (V, W)
of type R, then, by Proposition 7.2 (g), (X, ¥) is divisible. Since (X, ¥)
is clearly also eigenvalue free, it follows from the above characterization
that it must be a trivial subsystem of (V, W).

LemyA 9.9. A divisible system s spectral in extensions by rational
systems.

Proof. From Lemma 3.2 and Proposition 3.1 (¢) it follows that
it is sufficient to consider the case of an extension by type R.

Let us represent a system of type R by (C(4), C(l))a,b. If C[A]
denotes the complex vector space of polynomials in 4, then (C[1], C[A])
is a subsystem of (C(4), C(%))op Which is spanned by the proper chain
((lk)?’, (lk)?) of 0*(a, b; C[1], C[1]). From the unique representation of
rational funetions in 1 by partial fractions and the fact that for @ # co
the pair of sequences of cosets

(=0 "+, (A—0''+emls)

e _®
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is a proper chain of R(C5™"(a, by; C(2))/C[A], C(2)/C[2]), one sees that.
(€, C(M)ap/(C[A], C[2]) is a direct sum of subsystems of the types
115, 6 ranging over the finite complex numbers. Hence, if (¥, W) is an
extension by type R of a divisible system (K, L), then (V, W)/(K, L)
contains a subsystem (V', WY)/(K, L) spanned by a proper chain of
¢"(a,b; V'/K, W/L) such that

((V, WK, L)V, WHiE, L))

is a direct sum of subsystems of the types LIf.

From the chain representation of (V', W")/(K, L) and Lemma 7.3 it.
follows that (K, L) is spectral in (V', WH):
(9.9.1) (V', WY = (K, L)+(M, N).

The quotient ((V, W)/(M, N)
to ((V, W)/(K, L)/((V*, WH/(K, L)

(9.9.2)

((V, WH{(M, V), being isomorphic
, has a decomposition

(v, WD, M)AV, WH)(ML, N))

= M((U°, 2%/, W)V, WL, W),
et
where the summands on the right-hand side are of the types ITg’. Since
(V*, WY/(M, N) is isomorphic to (K, L), it is divisible. Thus by Lem-
ma 7.3, (V}, WY/(M, N) is spectral in every (T°, Z°)/(M, N). According
to Proposition 3.1 (e), this fact together with (9.9.2) imply the exis-
tence of a decompogition

(9.9.3)  (V, WM, N) = (V, Wh/(M, N)H(V*, W)[(M, ).

From (9.9.1) and (9.9.3) one easily concludes that
(V, W) = (K, LV, W),

which proves our lemma.

Lemma 9.9 justifies the remark made after Lemma 7.3 since & sys-
tem spanned by a proper chain of ¢~ is isomorphic to @ subsystem of R..

TusorEM 9.10. A system (V, W) is divisible if and only if i is a direct
sum of subsystems of the types I™, II¢ and R. The cardinal number of
summands of cach type in such a decomposition is uniquely determined,
by (V, W).

Proof. In Propositions 7.2 (b), 8.4 and 9.8 we have seen that systems
of the types mentioned in the theorem are divigible. Hence it follows from
Proposition 7.2 (¢) that the condition of the theorem is sufficient for
divisibility.
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Conversely, let (V, W) be a divisible system. Its subsystem (17, W)y yyes
is also divisible. According to Proposition 9.5, (V, W)/(V, Wz is
eigenvalue free. Since by Lemma 7.2 (d) this quotient is also divisible,
it follows from Lemma 9.7 that

(Vs WV, Wi = D) (U, Z)(V, W)geo,

‘where the summands on the right-hand side are of type R. By Lemma 9.9,
{V, W)rneo is spectral in every (U7, Z’). This implies, by 3.1 (e), that

(V, W) = (V, Wyrmeo+ ) (X, ¥¥),

(9.10.1)

where the summands (X’, ¥’) are again of type R. Since, by Proposi-
tion 8.9, (V, W)yne is a direct sum of subsystems of the types I™ and
II%, (V, W) has a decomposition of the required kind.

To prove the uniqueness statement, consider any decomposition

(9.10.2) (V, W) = (v, W+ DX, 7))

of (V, W), where the subsystems (V’, W are of the types I or IIP
while the subsystems (X°, ¥’) are of type R. Then the quotient
(V, W)]3-(V', W%, being isomorphic to Y'-(X’, ¥7), is eigenvalue free.
Hence Y- (V%, W' is contained in Big(V, W), which by Proposition 9.5
coincides with (V, W)rpe. Since the reverse inclusion follows from the
detinition of (V, W)yme, We have 3'-(V%, W*) = (V, W)y iy, Proposition
8.9 now implies that the cardinal number of summands in (9.10.2) of
each of the types I™ and II{ is uniquely determined by (V, W). Lem-
ma 9.7 applied to (V, W)[(V, W) e shows that the same holds for
the cardinal number of summands of type R.

We can now characterize the types IIF (or equivalently, the types
II¥) by requirements similar to those used in Definition 2.1 for finite-
dimensional isomorphism types.

ProrosirioN 9.11. A system (V, W) is of type 11 4f and only if
it is a divisible system which has the single eigenvalue 0, and no proper
subsystem of (V, W) has the same properties.

Proof. We already know (see Proposition 8.4 and its proof) that
a system of type IIy satisfies the above requirements. Conversely, let
{V, W) satisfy these requirements. By Theorem 9.10, (V, W) ix a dirvect
sum of subsystems of types I™, IIY or R. No subsystem of a type I
can actually appear in such a decomposition, because this would imply
that every extended complex number is an eigenvalue of (V , W). Hence,
since § is an eigenvalue of (V, W), at least one summand in the decom-

position is of type IIP. The minimality assumption implies that it must
be the only summand.
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Our next aim is to show that if (X, ¥) is a divisible quasi-spectral
subsystem of (V, W), then (X, Y) is spectral in (V, W). Before giving
the lemmas leading to this result, which are of independent interest, let
us remark. that the usual proof of the analog for modules over principal
ideal domains actually shows more. One easily proves that if X is a di-
visible submodule of V' and U is any maximal element in the set of sub-
modules of ¥ which have zero intersection with X, then ¥ = X+U.
Hence, by Zorn’s lemma, X iz always a direct sammand of V. The follow-
ing examples show that a divisible subsystem is not necessarily spectral,
and even if it is, a maximal subsystem among those which form a divect
sum with it is not always a direct complement. This accounts for the
more involved proof of the mentioned result in the case of systems.

Let (V, W) be a direct sum of two subsystems of type I spanned
by chains I* and I™ of O}%(a,d; V, W). Then 4 = R¥(S~"+I7) is
a proper chain of CI*(a, b; ¥, W), and thus it spans a divisible subsystem
(X, Y) of type I’. Since

RUSTRY (0% (0,0, ¥, W) and RMIeRI4(0 (0, b; 7, W),

we have Aebla(a, b; V, W) and (X, Y) is not spectral in (7, W).
Let (V, W) be a system defined by the following requirements:

V = XiU+[m], W = YiZ,

where (X, Y) is a subsystem of type I° spanned by a chain (), (y:)i)
of CT*(a, b; V, W), (U, Z) is a subsystem of type TIT* spanned by a chain
((wn)}, (z)}) of CIII*(a,b; ¥V, W) and m =0, am =2, - bm = ys-+2.
Then (X, Y) is a divisible spectral subsystem of (V, W) (actually (X, ¥)
= Div(V, W)) — a direct complement is the direct sum of subsystems
of types II%, IT} and II; spanned by chains with domain-elements
(Bg— g+ 1y, — Uy M), (—Bg+ 2+ uy—m) and (—x,—uy~+m) respec-
tively. On the other hand, the subsystem (U, Z), which is not a direct
complement of (X, ¥) in (V, W), is easily seen to be maximal among
the subsystems of (V, W) which form a direet sum with (X, ¥).

ProrosItion $.12. The eigenvalue part of a system (V, W) is quasi-
spectral in (V, W). It equals the sum of all the subsystems of (V, W) of
the types 1™, 112, and I (or equivalently, of the types I' and II7).

Proof. Since a system of type I, m > 2, is a sum of subsystems
of the types TTI%, and YIy~!, while a system of type ITF is a sum of sub-
systems of the types I1}', m =1,2,..., the two sums mentioned in the
proposition give the same subsystem (U, Z).

We construct an increasing transfinite sequence ((V7, W*))ogpeo 0f
subsystems of (U, Z) which are quasi-spectral in (V, ) such that:

1% (V0 W) = (0, 0);
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2% if » < ¢ is a limit ordinal, then

(7, Wy = DV, W

=3

3° if » < ¢ has an immediate predecessor »—1, then
(v, WV, W)

is of one of the types I, IT;* or II;

°(V, W)[(V°, W°) is eigenvalue free.

Starting from (V°, W°) = (0, 0) and supposing that ((V*, W )<,
is already defined so as to satisfy our requirements, we define

(Ve, We) = Y (W, W)
r<e

in case p is a limit ordinal. Then (V¢ W°) is contained in (U, Z) and,
by Proposition 5.3 (f), it is quasi-spectral in (V, W). If ¢—1 exists and
(V, W)(V*~!, W ') is not yet eigenvalue free, then by Lemma 9.4, it
contains a quasi-spectral subsystem (V¢ We)/(Ve~', W™!) of one of the
considered types. By Proposition 5.3 (b), (V% W¢) is quasi-spectral in
(V, W).

If (Ve, WO)/(Ve~Y, W) is of type I™ or IIy’, then (V¢', W) is
spectral in (V°, W% and a direct complement is of the type I™ or IIF
respectively. Hence (V% W°) < (U, Z).

IE (Ve, WO)/(Ve1, W) is of type II3°, then it is a sum of subsystems
of types ITy, and by the above argument (V% W¢) < (U, Z) in this
case too. Since the sequence is strictly increasing, a subsystem (V°, W°)
satisfying 4° is eventually reached.

We now have (V°, W°) < (U, Z) by construction, (U, Z) < Eig(V, W)
by Proposition 9.3 (a) and Big(V, W) < (V°, W°) by 4° and the definition
of Rig(V, W). Hence, these three subsystems coincide and, like (V7, W°),
they are quasi-spectral in (V, W).

COROLLARY 9.13. (a) Rig(V, W) is the largest eigenvalue subsystem
of (V, W).

(b) If (X, X) = (V, W), then Big(X, Y) < Big(V, W).

ey If (X,Y)<=(V,W) and both (X,Y) and (V, W)X, Y) are
eigenvalue systems, then so is (V, W).

Proof. Aecording to Proposition 9.3 (@), Big(V, W) is an eigenvalue
system. By 9.3 (a) it contains every subsystem of (V, W) of one of the
types I' or ITIy". Hence by Proposition 9.12 it contains every eigenvalue
subsystem of (V, W).

Part (b) follows from part (a) on noting that Big(X, ¥) is an eigen-
value subsystem of (V, W).
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Under the assumptions of part (¢) we have (X, ¥) = Big(X, ¥).
Hence by part (b), (X, ¥) < Big(V, W). Proposition 9.3 (¢) now yields
(V, W)(X, Y¥) = Eig((V, W)/(X, Y)) = Big(V, W)/(X, T).

Thus (V, W) = Eig(V, W).

Levma 9.4, If (V, W) is o non-zero eigenvalue free system, then
it containg & non-zero rational subsystem (V*, W*) such that (V, W)[(V*, W)
is esgenvalue free.

Proof. The case V = 0 is trivial, 50 we assume V == 0 and choose

a fixed v, # 0 in V. Denote the subsystem ([v,], C*[v,]), which is of type
II1% by (X, Y), and define (V', W') by
(VY WHI(X, ¥) = Big((V, W)/(X, Y)).

Then (V, W)/(V', W') is obviously eigenvalue free, and we shall
show that (¥*, W') can be isomorphically embedded in (C(1), C(A))ap-

The system (V', W')/(X, ¥) does mnot contain subsystems of any
type I™ since if (X', ¥')/(X, ¥) were such a subsystem, we would have
dimX' = dim ¥' = m--1 against the fact that (V, W) is eigenvalue
free. Since (V', Wh/(X, Y) is an eigenvalue system, it follows from
Proposition 9.12 that it is the sum of all its subsystems (U7, ZH(X, 7)
which ave finite sums of subsystems of the types IIj'; hence (V', W'
= (U, 7). We assert that there exists one and only one isomorphism
(P, @) of (U, Z) into (C(4), C(A))a,p which sends v, to a preassigned
element of C (%), say 1. Since the family {(T7, Z’)) is directed under the
relation of inclusion <, the isomorphisms (P;, @,) agree on intersections
and together yield an isomorphism of (V*, W) into (C(4), C(A)ap-

To prove our assertion note that the finite-dimensional system
(U7, Zj)/(X Y) is an eigenvalue system (Proposition 9.12) and hence has
no spectral subsystem of any type III™. Since it has also no subsystem
of any type I", it must be non-singular. Therefore dim UiIX = aimZ'/¥,
and dimZ%’ —dim U7 = 1. As a finite-dimensional eigenvalue free system,
(U7, ') decomposes into a direet sum of subsystems of the types I,
Since dimZ’ — dim {77 = 1, there is exactly one summand, and (T, Z°) is
of some type T11", m > 2. Let ((w)7™" ()7} be a chain of OIII™ which
spans (U7, 7). Tt (Py, Q,) is an 1som01phlsm of (U7, Z7) into (C(2), C(A))a
and Pyu, = f(4), we must obviously have Pjuy; = /‘L"’“ ), 1 <k <m—1,
and Qg = A ! f(4), 1 <k < m. Since there is a unique representation

m—1

vy = 2 O U y
k=1
the condition Py, =1 implies
m—1

F) =1/ > a*
k=1
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This shows that (Py, Q;) if it exists, is uniquely determined. Since
this determination obviously yields an isomorphism which satisfies our
requirement, our assertion follows.

Remark. The analogous construction for modules over principal
ideal domains yields of course a pure submodule, but it is easy to give
examples (see [2]) in which (¥, W') is not quasi-spectral.

TewoREM 9.15. If (X, Y) is o divisible quasi-spectral subsystem of
(V, W), then (X, X) is spectral in (V, W).

Proof. The argument follows Sgsiada’s characterization of alge-
braically compact groups ([3], p. 83). There exists an increasing transfinite
sequence (( v, W"))K,,S, of subsystems of (¥, W) and an ordinal ¢, 0 < ¢
< 7, such that: .

1° (VW) = (X, Y).

2° If » <7 is & limit ordinal, then

(7, W) = (v W,
u<r

3° If » < o, then (V’, W) is quasi-spectral in (V, W).

4°.If » < o has an immediate predecessor »—1, (V*, W")(V*~1, W1
i3 of one of the types I™, IIy or IIY.

5° If 0 <v <7, then (V, W)/(V’, W*) is eigenvalue free.

6°If ¢ <v <v and » has an immediate predecessor v—1, then
(V?, WH[(7"=%, W) is a rational system. '

° (VW) =(V, W)

To see this let (V’, W)/(X, ¥)jc,<s be a transfinite sequence
constructed as in the proof of Proposition 9.12 but for the quotient
(V,W)|X, Y) instead of (V, W). Since (X,Y) is quasi-spectral in
(V, W), Proposition 5.3 (b) implies that 3° holds. Since (V, W)/(V°, W°)
Is isomorphic to ((V, W)/(X, X))/((V°, W)/(X, X)), it is eigenvalue
free. Evidently 1° and 4° hold too. Suppose now that (Ve, we
75 (V, W) and that ((V", W"’))K,,q, ¢ < g, is already properly defined. If 0
is a limit ordinal, we define

(Ve WY = (v, W),

r<p

Since (V¢ We° is also the sum of the increasing subsequence
(7, W"))sayep and 5° holds for o <» < 0, it holds for » = o as well.
If p—1 exists and (V, W)/(V*", W*Y) is not yet a zero gystem, then by
Lemma 9.14 we take (V% W2)/(Ve, W) to be a rational subsystem of
(V, W)[(Ve!, We ) such that

(Vs WV W) 2= (7, WV, We)f((ve, Wy ve=?, we=1y)

©
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is eigenvalue free. Since the sequence is strictly increasing, it terminates.
with a subsystem (V', W*) satistying 7°.

Suppose now that, starting with (X°, ¥°) = (0, 0), we have defined
an increasing sequence (X, ¥”)),p, 0 < ¢ <7, of subsystems of (V, W)
such that

(9.15.1) V', W) = (X, T)+(X°, 1)

for » < o.

If ¢—1 exists, then (Ve~*, We=!)/(X*%, ¥*~) being isomorphic to
(X, Y), is a divisible subsystem of its extension (Ve TWe)/(Xe!, ¥ !).
If ¢ < o, then by 3° and Proposition 5.3 (¢), (d), this is a quasi-spectral
subsystem, and by 4° the extension is by one of the types I™, II™* or IIY.
If ¢ < g, then by 6° the extension is by a rational system. Applying
quagi-spectraliby, Lemma 7.3 or Lemma 9.9, we see that in all cases we
have a decomposition

(9.15.2) (Ve WO)/(XeY, Yo
= (Ve Weh[(Xeh, Xty + (X8, X)X, XY,

where (X% Yo o (X', ¥°'). From (9.15.1) for v = ¢g—1 and (9.15.2)
it follows that (9.15.1) holds for » = p. If p is a limit ordinal the same
conclusion is valid with

(X%, ¥ = (X, ¥)
r<e
because the summands form an increasing sequence. The subsystems
(X”, ¥) can therefore be defined up to » =7, and (9.15.1) for » =7
proves our theorem.
COROLLARY 9.16. (a) Every system (V, W) has a decomposition

(V, W) = Div(V, W)+(U, 2),

where (U, Z) is a reduced subsystem the isomorphism type of which is uni-
quely determined by (V, W).

(b) An indecomposable system s either eigenvalue free or an eigen-
value system of one of the types T", Iy or II.

Proof. (a) By TLemma 7.4 and Theorem 9.15, Div(V, W) is spec-
tral in (77, W). Since a direct complement (U,Z) is isomorphic to
(V, W)/Div(V, W), its isomorphism type is determined by (V, Ww).
By Proposition 7.2 (f), (U, Z) is reduced.

(b) If (V, W) is not eigenvalue free, then by Lemma 9.4 it contains
2 quasi-spectral subsystem of one of the types ™, 11y or IIF. From
Theorem 5.5 or Proposition 8.4 and Theorem 9.15 it follows that such
a subsystem is spectral.
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The following counterpart to Proposition 9.5 shows what form the

«decomposition of 9.16 (a) assumes for eigenvalue systems.
PROPOSITION 9.17. For every system (V, W) we have

DivEig(V, W) = [Eig(V, W))I,II“ =(V, W)y =.

Proof. By 9.16 (a), DivEig(V, W) is spectral in Eig(V, W). Hence
by 9.3 (d), (f), it is an eigenvalue gystem, namely,

DivRig(V, W) = BigDivBig(V, W).

The first equality of the proposition now follows from 9.5; the second
from the definition of the operation ( )ype in 8.9 and 9.3 (a).

In the investigation of the isomorphism problem of general systems
it suffices by 9.16 (a) and 9.10 to consider reduced systems. If (V, W)
is an eigenvalue system, then by 9.17 the reductions are of the form

(V, W) =(V, W)u=t (U, Z).
Here the reduced subsystem (U, Z), being isomorphic to a quotient of
{V, W), is also an eigenvalue system. Thus, in studying eigenvalue systems
one may restrict attention to reduced eigenvalue systems. A further
simplification is afforded by the following considerations.

Definition 9.18. Let ¢ be an element of the extended complex
plane C. A system (V, W) is said to be O-free if and only if ¢ is not an
eigenvalue of (V, W). The O0-part of a system (V, W) is the smallest
subsystem (X, ¥) of (V, W) such that (V, W)/(X, ¥) is 6-free. This
subsystem will ‘be denoted by (V, W),. A system (V, W) is said to be
a f-system if and omly it (V, W), = (V, W).

The above concepts are relative to a bagis a, b of C’ It is clear how
this dependence on a basis can be avoided by speakmg of ¢-free systems,
ete., where ¢ is a point of the complex projective line. The existence of
(v, W) is verified in the same manner as the existence of Eig(V, W)
{cf. the remarks made before Definition 9.2).

The results 9.3, 9.5, 9.12, 9.13 and 9.17 can all be viewed as stating
properties of the operatlon of taking the eigenvalue part. The reader
will have no difficulty in formulating the analogous results for the opera-
tion of takmg the f-part. The proofs are obtained by considering a fixed
element 6 of € instead of letting it range over €. For conv enience, Lemma
9.4 was already formulated for a given 6, as the implied result 1“.01 systems
which are not eigenvalue free was evident.

Prorposrrion 9.19. Let (V, W) be a system which contains mo sub-
system of any type I™. Then

Big(V, W) = Y -(V, W),

6

icm°
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T'his decomposition is unique in the following sense. If

= (X, ¥),,

86

Eig(V, W)

where (X Y), is for every 0¢C a O-system, then (X, X)y = (V, W), for
every g¢C.
Proof. The equality

Eig(V, W) = D>’ (V, W),

00

follows from Proposition 9.12 and its analog for #-parts. We show that
the domains form a direct sum, the argument for the range spaces being

identical. Suppose that ) v; =0, where v; belongs to the domain of

=1
(VyW),t=1,...,m, and 8,,..., 8, are distinct. Since (¥, W) contains
no subsystems of types I™, v; belongs to the domain of a finite sum

of subsystems (Uy,Zy), j =1,...,k;, of the respectlve types I,
Consider a decomposition of the finite-dimensional system Z Z’ (Ui, Zi)
into a direct sum of indecomposable subsystems. From Lemma 6.3 (b)
and the lack of subsystems of types I™, it follows that 2 (Usiy Ziy)

is contained in the sum of the subsystems of types IIGL appearing
in the decomposition. Hence the vy’s belong to the domains of distinet
components and must vanish.

The uniqueness statement follows on noting that, by the analog of
9.13 (a) for @-parts, (X, X), < (V, W),.

Remark. If (V, W) is an arbitrary system, then

Big(V, W)= DV, W)
8eC
and for every Beé’, (V, Wy ~ Z; (V, W), =(V, W)
n

Big(V, W) = D) (X, T)
0eC
and (X, Y), is for every 6 a B-system containing (V, W), then (X, ¥)
= (V, W), for every §<C. This can be easily reduced to Proposition 9.19
by taking quotients modulo (V, W)y. .
From Proposition 9.19 it follows that a reduced eigenvalue system
has a unique decomposition into a direct sum of 6-systems, which are

Studia Mathematica, t. XXX, z. 3 22
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clearly also reduced. If (V, W) is a reduced 0-gystem, then it is the sum

of ity subsystems of the types IIy. Therefore if neé and 7 % 0, then
b,V = W. Moreover,

(V) W)n = (Vy W) N (V7 W)n = (V7 W)a (o) (V! W)n = (07 0)7

and 7 is not an eigenvalue of (V, W). Thus (V, W)is a non-singular system,
and (provided it does not vanish) it has the single eigenvalue 8. All ques-
tions relating to the structure of (¥, W) are equivalent to questions about
the C[A]-module V defined by

(Mo = p(T(,) " T(a))o, p(A)C[A], veV.

The latter is a reduced A primary module. Taking into account the
former reduction we see that the study of the structure of an arbitrary
eigenvalue system is reduced to the study of such modules. Note though
that even a reduced eigenvalue gystem may be singular (this is the case

if and only if every 6 in € is an eigenvalue) and not correspond to
a module over C[1]. The reader will observe that if (V, W) is a reduced
f-system, then a subsystem spanned by chains representing bases of
QI (a,b; V, W), m =1,2,..., corresponds to a basic submodule of
a A-primary module attached to (V, W). However, as the present work
shows, the scope of the method of chains is much larger.
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Eigenschaften Greenscher Funktionen nicht-selbstadjungierter allgemeiner
elliptischer Operatoren

von

HANS TRIEBEL (Jena)

In {10] wurden Differenzierbarkeitseigenschaften Greenscher Funk-
tionen spezieller elliptischer selbstadjungierter Operatoren angegeben,
wobei sich die Betrachtungen auf das Dirichletsche Randwertprob-
lem beschréinkten. Weitere Aussagen iiber Greensche Funktionen allge-
meiner elliptischer Differentialoperatoren mit glatten Koeffizienten, die
zumeist lokaler Natur sind, und iiber Eigenwertverteilungen elliptischer
Operatoren findet man bei Berezanskij [4], III, §5, sowie bei Ag-
mon [2].

Die in [11] entwickelten Methoden gestatten nun, Aussagen iiber
Greensche Funktionen nicht-gelbstadjungierter Differentialoperatoren mit
allgemeinen Randbedingungen zu machen, die notwendigen und hinrei-
chenden Charakter haben. Wie iiblich wird die Bezeichnung ,nicht-selbst-
adjungiert” im Sinne von ,nicht notwendig selbstadjungiert” ver-
wendet, die selbstadjungierten Operatoren sind also nicht ausgeschlos-
sen.

Abschnitt 1 beginnt mit einer Zusammenstellung bekannter Aussagen
iiber elliptische Differentialoperatoren

Ay = Z az(z) DU

Jaj<zm

mit normalen (mit 4 vertriglichen) Randbedingungen
Bju= Y bul@)D'u, j=1,..,m;m;<2m,
laj<my
D(4) = {u]uewgm(Q), Bjulse =0, =1, ..., m}.
Q ist hierbei ein beschrinktes Gebiet im R, mit glattem Rand 02.

Ferner wird gezeigt (Satz 1), daB (44" +E)™' und (A"‘A—(—.E)‘1 nicht
o Sy, P, 0<p < oo, aber zu Gpume gehoren. Die Opera-
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