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Measures in independent sets
by

ROBERT KAUFMAN (Urbana, IIL)

In this note we construct an independent compact set B of real
numbers, and a positive measure u in E whose Fourier-Stieltjes coefficient

,}('n) = [e™u(dt) (=0, £1,+2,....)

ig 0{1) as |n| — oo. This has been accomplished by Rudin [2], using the
sets of multiplicity of Salem [4]. Inasmuch as Salem’s method is
probabilistic it is of interest to perform as much of the work as
possible in the same spirit. Kahane has previously achieved this by
a method different from ours, involving the Brownian motion process
[1]. We wish to thank Professor Kahane for his aid in preparing this
note.

1. Let X be the infinite-dimensional cube, its elements being denoted
by & = (3, &y ..., Br, --.), Where 0 <2, <1 (1 <k < 00); X is provided
always with the product Lebesgue measure P. Similarly, ¥ is the space
of sequences y = (Y1, ¥ay .-, Yz, ...), Where yz = £1 (1<k <oco); ¥
carries the usual product measure 4. We suppose given a sequence {by}

of pogitive numbers with sum Zbk < oo, and & continuous real-valued
function % on Y. Setting

Fl@,y) = D hmys+h(y) (2eX,yc¥),

k=1

we note that for each fixed » the range of the funet.ion F(x, ) supports
a measure with Fourier-Stieltjes coefficient

i) = [exp(—inF(z, y)) 2(dy).

In the next paragraph we shall prove that under certain conditions
on h and {bx}, F(z, Y) is an independent set for almost all <X, and in
the last paragraph we shall show that under certain conditions on {bz}
alone, z(n) = o(1) for almost all .
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2. Concerning {b;} we assume that

1
lim —log by, = —oo,

Fe—o0

or equivalently that Ein &b, = 0 for every ¢ > 0. To obtain a suitable
function %, we imitate clcgsely the method of Rudin ([3], p. 101), w%lereby
a homeomorphism of ¥ onto an independent set of 1'9&1 numbfars is con-
structed. The additional requirement is, that if y; =Y forl<j<< 70,‘ Tihen
|B(y)—h(y")| < by (1 <k < oo). This can be d(?ne with only small adjust-
ments to the method cited, again using Baire’s theorem.

THEOREM 1. F(z, ¥) is an independent set for almost all x in X.

Proof. Tet sy, 8, ..., Sm be integers =0, and 4 the subset of X
such that for each zed one can choose distinet y', ..., 3™ so that

(1) DlsiF(z,9") = 0.

1=1

We shall prove that P(4) = 0. Equation (1) can be expressed

o0 m m )
. D= — Mu(ghs.
(2) ’;bkmk (gszyk) l;: W ()81

But, from the independence properties of #, equation (2) implies,
for some J =1,
m
Zsz?l.lf # 0.

1=1

(3)

Thus A4 is a countable union of sets A, such that (1) and (3) hold
for some choice of y'(1<1< m). o

For each integer » > J and each choice of 4', ..., ™ occurring in (1)
and (3), let 2, ..., 2" be the vectors obtained by writing 0 for each co-
ordinate beyond the r-th. Then by the continuity conditions on &,

b m "
(4) gbzﬁk (l,le Szzz,) == — l;‘mh(zz) +R,,
where

m o0
B, <3 Y lsi| )b
i=1 =r

The number of choices of ', ..., 2™ which must be counted in (4)
8 < 2™ and, as will appear, the probability that (4) hold for any fixed

* ©
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choiceis 0(27™) as 7 — oo. For if all coordinates except @y are held constant,
the left member of ( 4) is linear in #; with derivative

m m
. 1
bJZSZzJ = bJZSl?/J #0.
=1 1=1

Then (4) holds on a linear 2s-set of measure < 2b7'R,, and Fubini’s
theorem yields the same estimate for the product space X. Finally,
By =0(27™) as 7 - oo, by the hypothesis on {b;}. Hence P(4,) = 0
for each J and so P(A) = 0. The theorem now follows from an enume-
ration of all the choices 81y ey Sy

3. In this paragraph h need only be measurable, but we assume that
loghy = —% loglogk for k> 3. Since this is agreeable with the hypo-
theses of Theorem 1, the main purpose of this article is attained with the
next statement.

THEOREM 2. For almost all @, the coefficient

i(n) = [exp(—inF(z,y)A(dy) = o(1), |n] > oco.
7

Proof. Let » and s be positive integers so that

lis(n)[*= [ ... [exp(—in[F(a, P+ F (@) — ... — Pz, y*))A(dyY). ..
Ay = [ exp(—inH (z, ))2(dY).
Thus

f | ()| P (dw) = [[ exp(—inH (2, ¥))2(d5)P (@)

When ;/ is fixed,
28
J=841

s
oH .
—_— by —
Ers ; w Yk

and H is linear in @, #,, ... For any real number «

1
Uexp(mm)dm]g 0(ul),

where 0(3) =1, 0<1<2, and () = 2/t, 2<t < oo,

Writing
8 28
T = ) biyf— D bk 1<k < oo),
=1 J=841
we find

Jli@)P(aa) < [] B(o|nTy)
k=1

(47 denotes the mean over Y).
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Now {T; = 0} occurs with probability (in Y)
o)
and in the complementary case |T%]>2. Thus

28
(nb) B(8 [nTe]) < As™ 4 A5~ 3'p~ < By~ Plogs.
D=l
Here we used the fact that for any p, {I) = p} occurs with a smaller
probability than {Ij = 0}.
Define s = s(n) for n >3 by the inequality
s < logn/loglogn < s4+1,
so that for large =,
1
log(Bs(n)"*logs(n)) < — -é-loglogn.

Also

1< nb, for 1<k<blogn/loglogn,

whence

.
og [ ()PP (a) < — g logn, 1>,

Still following Salem [4], we use the fact that for every M

D) M [[ju(m)[*P(do) < oo,
n=1

5O
limsup | Mu(n)| <1

[n}—o00

for almost all #, and the proof is complete.
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Modular spaces of generalized variation
by

HANS-HEINRICH HERDA (Salem, Mass.)

In this paper the author continues investigations by J. Musielak
and W. Orlicz ([2] and, especially, [3]) about modular funectionals of
gengmh’zed variation. Some fundamental lemmas are first established.
Ratio characterizations of inclusions among variation spaces, convex
and concave variation, and modular spaces of generalized variation are
then treated in succession. The last topic includes the study of locally
b‘mmdBd and locally convex linear topological spaces of generalized varia-
tion having the Musielak-Orlicz F-norm topology. Finally, some examples
are listed. It is my pleasure here to express my thanks to Dr. Takashi
It6 for his excellent advice.

LN t‘“ variation and some fundamental lemmas, Given a real, even,
right-continuous function I (u), non-decreasing for « > 0, with M (0) = 0
and M(u) > 0 for u > 0 (such a function will be referred to as a variation

Sfunction) and a real funetion z(t) defined in a finite closed interval [a, D],
the value
M

Vau(x) = sup Z M (t)— 2 (t:_1)]1,
7=l

‘where A= t.o < <...<tyn =20 is an arbitrary partition of the
interval [a, b], is called the M™ variation of 2(t) in [a, b]. It can be shown
that

M(artpy) < aM(z)+BM(y) iff
while

M (ux+ By) = alM(x)+pM(y) iff ar (04 Py) = aViar(z)+ BV a(y),
for a, f# 2> 0 and a+p = 1; that is, M is convex (coneave) iff V,,is convex
(concave). For a more detailed discussion, see [2]. Let X be the class
of all real functions defined on [@, b] which vanish at a. For o, yeX,
it is easy to verify that Vi (s) = 0 iff o = 0, Vy(—2) = Vi(z), and
if «,f>0 and a+pf =1, then Varlazw+By) < V(@) + Var(y). Define

By = {weX: V() < 400}

Var(az -+ By) < aVar(2)+BVar(y),
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