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On stable distributions in Hilbert space
by

R. JAJTE (R6dZ)

The paper aims at giving the canonical form of the characteristic
functional of a stable probability distribution in Hilbert space. Our
formula is a generalization of the classical formula of Lévy-Khintchine 3],
[4] for one-dimensional stable distributions.

Let H be a separable, real Hilbert space with the scalar product
(-,-) and the norm [-|. A countable additive and normed measure -
defined on the field B of Borelian subsets of H is called a probability
distribution in H.

A sequence of distributions {p,} is said to be weakly convergent to
P (pn — p) if for every function f defined in H, continuous and bounded
in H we have

1) 1imff(h)pn(d-h) = ff(h)p (dh).
The distribution pxg defined by the formula
(2) (pxq)(Z) = [ p(Z—N)q(ah) for every Z<B

is called the convolution of the distributions p and g¢.
The characteristic functional p of a distribution p is defined by
the formula

(3) p(h) = [@Pp(dg), heH.

A distribution p is uniquely defined by the characteristic functio-
nal (3). The n-th eonvolution-power of a distribution p shall be denoted
by ™. A ome-point distribution concentrated at a point zeH (Dirac
measure) will be denoted by &, i.e. 8:(Z) =1 if weZ.

For every positive ¢ and every distribution p in H we put by defi-
nition
(4) (Tap)(2) = p(a~'2)
for every ZeB, where obviously ¢Z = {cz:zeZ}. For ¢ =0 we put
moreover Typ = &.
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A distribution p is said to be siable if for every pair of positive num-
bers a and b there exist a positive number ¢ and an c¢lement & of the space
H such that
(5) Tup* Top = Ou* Lo -

We shall prove the following
THROREM. A functional ¢ defined in H is the characteristic functional
of a stable distribution on H if and only if either

(6)

where zgeH and D is an S-operator (i.e. ¢ is the characteristic functional
of Gaussian disiribution) (1) or

p(h) = explifm, )+ [ K(g, WM (dg)),
where xyeH, K(g,h) =exp(i(g,h))——l——i(g,h)(lv{—HgHz)"l and M s

o semi-finite measure in H, finite on the complement of every neighbourhood
of zero in H and such that

g(h) = cxp[i(zo, B)—4(Dh, 1)},

(7) | llgle 3 (dg) < oo,
o<1
(8) there exisis a 0 < A < 2 such that Toll = o’ I for every positive a.

We precede the proof of our theorem by several lemmas. The fun-
damental part of the proof is contained in Lemma 3. We prove this lemma
making use of the method given by Urbanik in [6]. The idea of the proof
is based on reducing the problem to some result of F. Bohnenblust which
we shall refer to later.

LeMMA 1. If p is o stable distribution, then there exwist a sequence
of positive numbers {a,} and a sequence {w,} of elements of the space H
such that

p = lim (8, * To p™).
00

Proof. By the definition of the stability of distribution we easily
deduce that for every matural # there exist a, > 0 and an element i, el
such that p = &, *T, p"", which ends the prool.

LEMMA 2. If for some sequence of positive numbers {a,} and a se-
quence {x,} of elements of the space H we have

(9

q = lim(8g,* T, ™),
N—p00:

(*) An operator in H is called S-operator when it is self-adjoint, non-negative
and with finite trace (see [5], §4).
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where q + 8, for every xe<H, then

(10) n 0,

&n,

(11)

-1

as N~ 00,

an—H
Proof. Suppose (10) does not hold. Then there would exist a subse-
quence {az, } of the sequence {a,} such that liml/a;, = a < co. Then,
however, we would have (putting y, = @, /az,)
* -Talmpkn*) >+ Tog.

pk"**éyn = Tﬂgl(éﬂ‘n
n
Hence nP[p(h)Tn -> g (ah); then &@nfnlp(h) -1 (see eg. [2],
§ 14), whence p = d,. Thus we would have ¢ = 8y, which contradicts
the assumption.
To prove (11) we assume that there exists a subsequence {ay,} such
that

X @
lim —n
N0 akn+ 1

where (0 <<a

=a, oo, a#1.

The case a = oo is impossible. In fact, putting by, = ar, 1/ax,, We
would have

Jop % Ry %
1 * Y — * 1] n
T, (8 * Loy 9°7) = O, * Ty D" > o

On the other hand,

. P
I(bpy, P Ty + 1%
e I gy, P (h) (&)
= — et

. T~
61 Opge,, ) T, o pkn* (h) _
Fu Plar, . h)

/\ .
for some Ze<H, because p(ax,h)—1 and Tﬂknﬂpk“”*(h) —q (), and
the left-hand side converges to 1. Hence we would have ¢ = d,, which
is impossible. Thus the only case to consider is @ < oo. Then, putting

ey = 0[O, 11, We geb

[ ) % Kyt 1%
* = [Tcn(é‘rkna;-l -la,‘.?ﬁlp n e (S""kn“"n'"k,,ﬁ‘l'

B * T,
Ty, %, Lp

But
Ry 1

6.rk * -Ta,:n? ( 6.26;‘.”* Taknpkw*) * Ta;,np b’}

n
and the expression in the square brackets tends to T,q. Hence the se-
quence {m,— ,Tx,; converges to some element y. Thus

§(h) = éMg(ah).
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Without restricting the generality of owr argument we may asswne
a < 1, for in contrary case

&g (i h) =g(h), where z= —-—.
@

By iteration we obtain §(h) = ‘") (a"h) for some sequence {z,}
of elements of H. Passing to the limit as n — oo 'we gob q(h) = ¢l for
some 2,<H, which is impossible. Thus condition (11) has been proved.

LeMMA 3. If the assumptions of Lemma 2 are satisfied, then there
exists @ 2> 0 and a function of two variables z(x,vy) defined for x,y =0
with values in the space H such that for every pair of non-negative numbers
a and b the equality

(12) g (ah)§(bh) = DN ((a*+ b} )
holds for any heH.

Proof. In a way indicated in the paper of Urbanik [(] (see the
proof of Theorem 4, in particular, p. 224-227) we shall reduce the proof
of Lemma 3 to the following result of Bolnenblust ([1], p. 630-632):

If a continuous function g(x,y) defined for x,y = 0 satisfies the con-
ditions

(13) gle,y) =gy,2),

(14) 9lg(@, ), 2) = g(@, 9y, 2),
(15) g (2w, 2y) = 29(2,9),

(16) 9@, y1) <glo,ys)  F ¥ <y
a7) 9(0,9) =1y,

then it is of the form

(18) 9w, 9) = (a*+ """,

where A 1is a positive constant.

First, let us obgerve that by Lemma 2 for two arbifrary positive
numbers @ and y there exist two subsequences {as,} and {an} of the
sequence {a,} such that ‘

(19) lim e Y
koo Oy &
It may be assumed that limit
(20) lim — 2% g

levoa Gy + Qo

icm

Stable distributions in Hilbert space 67

exists. Analogously as in paper [6], we shall prove that the limit s must
be finite. In fact, supposing that the sequence

_ a’n;fl“ Aoy,
Ay,
converges to zero and putting wy = @u/tm,, We haive
* ‘Ibk-i—’lﬂk*
(21) 6z"k+mk Ta,%+mkp

= [Tuk(amﬂk* Tnﬂk.'p”k*)] * [Tukwk (lszmk* Tamkpmk*) 1= '§zk

the sequence {z;} being chosen suitably. Since the left-hand side of the
equality converges to ¢ and the expressions in the square brackets con-
verge to &, the sequence {z;} converges to some element z, and, after
passing to the limit in (21) we would bhave ¢ = §,, which is impossible. -
Putting s; = 1/v, we get

(22)  [Te(ds, * Ta, 2")1* (Lo (82, * T 2]

— ngFmgE _ .
= Tmnkp T Gy, = [T“sk(éxnk-;.mk*Tﬂnk-.unkp V1% 6., -

The expressions in the square brackets on the left-hand side of (22)
tend to T,q and T, g respectively and the expression in the square brackets
on the right-hand side tends to Tyq. The probability distribution Tpq
ig infinitely decomposable (this follows from Lemma 2 and general theory;
see e.g. [71), thus its characteristic functional is different from zero
everywhere. Hence it follows that {z,} converges to some element
2 = z(®, y). Passing to the limit in (22) and then to the characteristic
functionals of the distributions obtained, we get

(23) q (@h)q (yh) = €D ((as)1) heH.

Now, following Urbanik [6], we shall define the function g(x,¥)
for £ >0,y > 0 as follows:

for

gz, 0 ==, g0,y =1,
glz,y) =sr z>0,y>0.
Then equality (23) may be written in the form

g (@h)q (yh) = €€ Dg(g(a, y)R), heH.

Equality (25) holds for # = 0, y > 0.

The function defined by formula (24) is the only function satisfying
(25). In fact, if there were two such functions g, and g, satistying for
some mnon-negative z, and y, the inequality g,(%, yo) < ga(%y, Yo), then
putting

for

- 91(%05 Yo)
92(%05 Yo)


GUEST


68 R. Jajte

we would have for some 2
¢ (h) = 6N (uh).
Tterating, we have
i (h) = ¢ (u"h),

the sequence {z,} being chosen suitably. Since q(u"h) — 1, the sequence
{en} converges to some z, and we would have

‘i(h) — ETD)

n=1,2,...,

which is impossible.
The function g is continuous. Indeed, if @, — &, ¥ > ¥, §(@n, ¥n) - > 2,
then z < oo must hold, for in the contrary case, putting
Tn o = 2
" §(2ny Yn)
we would have

é (h) = é (pn h)&(qn h) Gi(’;nxh)’

the sequence {z,} being chosen suitably. Since § (p,h) — 1 and § (¢, h) -1
for every h < H, the sequence {%,} is convergent and we obtain § (h) = ¢'®o™),
which is impossible.

If 2 < oo, then we have

§ (euh)d (ynh) = NG (g (2, ya)h),
for some sequence {z,}; after passing to the limit we obtain
q (wh)j (yh) = 0N (2h).

But in view of the uniqueness ot the function g it must be z = g(», ),
which ends the proof of continuity of the function g. It is seen that the
function g satisfies conditions (13), (14), (15) and (17). We prove con-
dition (16) almost exactly as they are proved in the paper of Urbanik [6],
D. 226-227. Thus the function ¢ satisfies the assumptions of the theorem
of Bohnenblust. Thus there exists a constant A> 0 such that

n=1,2,...,

9(z,y) = (o'}

Formula (25) may thus be written in the form (12) which ends the
proof of the lemma.

.. Proof of the theorem. It follows from Lemmas 1 and 2 that
a stable probability distribution is infinitely decomposable, The general
form of the characteristic functional of an infinitely decomposable distri-
bution in a Hilbert space (the generalized formula of Lévy-Khintchine)
hag been given by Varadhan [7]. Namely, the functional ¢ defined in H
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is the characteristic functional of an infinitely decomposable distribution
if and only if it is of the form

(k) = exp [i(zy, ) —}(Dh, h)]+ [ K (g, )M (dg),
where x,¢H, D is an S-operator, K is defined by the formula
E(g, b) = exp(i(g, b)) —1—1i(g, b) (1+llgl) ™"

and M is a semi-finite measure in H, finite on the complement of every
neighbourhood of zero in H and such that

(27) [ llgip M (ag) < oo

<1

(26)

Representation (26) is unambigous.

Let thus p be a stable probability distribution in H. To exclude
the trivial case and to employ our previous results we assume that p # ;.
Thus we have

(28) log 5 (k) = i(sy, b)—3(Dh, B)+ [ K (g, h) M (dg).

Hence

9

(09)  logh(ah) = i(@,m)— 5 (Db, W)+ [ K(g, H(LIDdg),

where T = @,+% and z is defined by the formula
(g, b ligl*
(14 ligh®) (L + a?llgl*)
(the integral in formula (30) exists by (27) and by the fact that the
measure M is finite on the complement of a neighbourhood of zero in H).
Thus we have for non-negative o and b
log p (ah)+logp (bh)

a?4b?

2

(30) @, h) = a(l—a) M{(dy)

(31)

=i(y, h)— (Dh, 7l)+fK(g, R [To M+ T M 1(dg)

for some yeH.
On the other hand, by Lemma 3 we have for some z<H and 1 >0

logp (ah)+logp (bh)
(a,"+ bz)z/z
2

(32)

= ifz0, 1) — (D, W)+ [ E(g, 1) [Tt soiynM1(dg)-

By the uniqueness of representation (26) we obtain

(33) b2 = (a’4- b
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and
(34) T M ATy M = Tt yian M

for any pair of positive numbers ¢ and b holds.

From formula (33) immediately follows that if the operator D is
not a zero operator then it must be A = 2. Now we shall formulate a cor-
ollary from equality (34). We shall namely show that for every positive

(35) T.M = oM.
To this aim observe that condition (34) for ¢ = b = 1 implies
(36) M(Z) = M@~ Y7)  for every ZeB

and more generally

1 )

(37) M(Z) -—~—2—n—M(2““”Z) for ZDB.
Thus formula (35) holds for ¢ = 2™* (n =1, 2,...). Putting in (37)
the set 2™*Z for the set Z we obtain

1
(38) M(2™*7) =~2WM(Z) for ZeB,
which proves relation (35) for @ = 27" n =1,2,...). Combining for-
mulae (37) and (38) we obtain

(39) 2“Hm.z|,/[ = Tzl(n-—«’ln)JVI7

m,n being arbitrary integers, i.e. formula (35) for a =2 Since
numbers of the form 2*"~"™ lie densely on the real axis, we have proved
relation (35) for all a > 0.

Now we will show that in the case 1 > 2 the measure M is reduced
to a measure concentrated at zero, i.e. M = kd, and thus the last term
in the square brackets in representation (26) equals to zero. In fact, by (35)
for a > 0 we have

1(714—11!)

1
(40) lgle2(dg) = — | llaglpM(dg) = a** | |igl* M (dg)-
o<t lIol<1fe o= /e
If 1 = 2, formula (40) gives
(41) [ lgr3(ag) = [ lgl*M(dg) for any a >0,

ol o111/
which proves that M = kd,.

If, on the other hand, M s kd, and 1 > 2, then the integral

[ llgll22 (dg)

o<1
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is greater than zero and we have

[ lgle (ag) = a*=* [ llgl*M (dg) > oo as

lol<1 loi<1/a

(42)

a—0,

which contradicts condition (27). Thus we see that there are only two
possible forms of the characteristic functional of a stable probability
distribution in H. Either, in the case 1 = 2 it is simply the characteristic
functional of the normal distribution

(43) P (h) = exp[i(zy, h)—4(Dh, h)]

or, in the ease 0 << A < 2, it is of the form

B(h) = expli(a, b+ [ K (g, WU (dg)],

where the measure M satisfies conditions (7) and (8). It can be easily
proved that the probability distributions given by formulae (43) and (44)
are stable, which completes the proof of our theorem.

(44)
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