STUDIA MATHEMATICA, T. XXXI. (1968)

References

[1] C. Kuratowski, Topologie, Vol. I, 4-ème éd., Warszawa 1956.

[2] E. R. Lorch, Compactification, Bairs functions and Daniell integration, Acta Scient. Math. (Szeged) 24 (1963), p. 204-218.

[3] — and Hing Tong, Continuity of Baire functions and order of Baire sets, J. Math. Mech. 16 (1967), p. 991-996.

[4] N. Lusin, Sur la classification de M. Baire, C. R. Acad. Sc. Paris 164 (1917), p. 91-94.

[5] M. Suslin, Sur une définition des ensembles mesurables Borel, ibidem 164 (1917), p. 88-91.

COLUMBIA UNIVERSITY, NEW YORK, N. Y.

Reçu par la Rédaction le 15. 2. 1968

Integrally positive-definite functions on groups*

bу

E. HEWITT (Seattle, Wash.) and K. A. ROSS (Eugene, Oregon)

1. Introduction. A complex-valued function φ on a group G is called *positive-definite*, according to a classical definition, if

(1)
$$\sum_{j=1}^{m} \sum_{k=1}^{m} \overline{a_j} \alpha_k \varphi(x_j^{-1} x_k) \geqslant 0$$

for all finite subsets $\{x_1, \ldots, x_m\}$ of G and all sequences $\{a_1, \ldots, a_m\}$ of complex numbers. Positive-definite functions play a vital rôle in the theory of unitary representations of locally compact groups. See, for example, [6], § 30, or the detailed and interesting treatment in [1], §§ 13-15. For a topological group G, let $\mathfrak{P}(G)$ denote the set of all continuous positive-definite functions on G.

Besides the definition (1), there is a second notion of positive-definiteness meaningful for locally compact groups G. Let λ be a left Haar measure on G (normalized by $\lambda(G)=1$ if G is compact). A Borel measurable function φ is said to be integrally positive-definite if the function

(2)
$$(x, y) \to \varphi(y^{-1}x)\overline{f(y)}f(x)$$
 is in $\mathfrak{L}_1(G \times G)$ for all $f \in \mathfrak{L}_1(G)$ and

(3)
$$\int_{G\times G} \varphi(y^{-1}x) \overline{f(y)} f(x) d\lambda \times \lambda(x,y) \geqslant 0 \quad \text{for all } f \in \mathfrak{L}_1(G).$$

It is well known that a function in $\mathfrak{P}(G)$ belongs to $\mathfrak{L}_{\infty}(G)$ and is integrally positive-definite. It is also well known that if φ is in $\mathfrak{L}_{\infty}(G)$ and (3) holds for all $f \in \mathfrak{L}_1(G)$, then φ is locally λ -almost everywhere equal to a continuous positive-definite function. See for example [6], § 30, Theorems III and IV. Actually all λ -measurable φ 's satisfying conditions (2) and (3) are in $\mathfrak{L}_{\infty}(G)$ (see [3], § 32).

In this note, we study Borel measurable functions φ on G for which (2) and (3) hold not for all $f \in \mathfrak{L}_1(G)$ but for all $f \in \mathfrak{L}_p(G) \cap \mathfrak{L}_{p'}(G)$, where p

^{*} The second-named author is a fellow of the Alfred P. Sloan, Jr., Foundation. Support for both authors form the National Science Foundation, U.S.A., is gratefully acknowledged.

is a fixed number in]1, ∞ [. It turns out that such functions φ need not be locally λ -almost everywhere equal to a positive-definite function. Thus integral positive-definiteness implies ordinary positive-definiteness only in very restricted cases. A precise statement of our result follows.

THEOREM. Let G be a non-discrete group that either contains a compact open subgroup or is locally compact Abelian. There is a Borel measurable function φ on G with the following properties. If $2 \leq p < \infty$ and $f \in \mathfrak{L}_p(G) \cap \mathfrak{L}_{p'}(G)$ (1/p+1/p'=1), then

$$(x, y) \rightarrow \varphi(y^{-1}x)\overline{f(y)}f(x)$$

is in $\Omega_1(G \times G)$ and

$$\int_{G} \int_{G} \varphi(y^{-1}x) \overline{f(y)} f(x) \, dy dx \geqslant 0.$$

However, φ is not in $\mathfrak{Q}_{\infty}(G)$. In particular, φ differs from every continuous positive-definite function on G on a set of positive measure.

For all facts and terminology from harmonic analysis used here without explanation or reference, see the monograph [2].

2. The general technique.

Liemma. Let G be a locally compact group and let p be a real number > 1. Let φ be a function such that

- (i) $\varphi \in \mathfrak{Q}_p(G)$;
- (ii) $\lim \|\varphi \varphi_n\|_p = 0$ for some sequence $\{\varphi_n\}$ in $\mathfrak{P}(G) \cap \mathfrak{L}_p(G)$;
- (iii) $\Delta^{-1/p'}\varphi \in \mathfrak{L}_1(G)$ (Δ is the modular function for G).

Then (2) and (3) hold for all $f \in \mathfrak{Q}_{p'}(G) \cap \mathfrak{Q}_p(G)$.

If φ only satisfies conditions (i) and (ii), then (2) and (3) hold for all $f \in \mathfrak{Q}_p(G) \cap \mathfrak{Q}_{p'}(G) \cap \mathfrak{Q}_1(G)$.

Proof. We first prove the second assertion. Thus we consider φ as in (i) and (ii) and f in $\mathfrak{L}_p(G) \cap \mathfrak{L}_{p'}(G) \cap \mathfrak{L}_1(G)$. It is known that the function

$$\bar{f}*\varphi(x) = \int\limits_{\mathcal{G}} \overline{f(y)} \varphi(y^{-1}x) dy$$

exists and is finite for λ -almost all $x \in G$ and is a function in $\mathfrak{L}_p(G)$, for which $\|\bar{f} * \varphi\|_p \le \|f\|_1 \|\varphi\|_p$ (see [2], Corollary (20.14)). By Hölder's inequality, the integral

$$\int\limits_{G}\int\limits_{G}|\overline{f(y)}|\;|\varphi(y^{-1}x)|\,dy\,|f(x)|\,dx$$

is finite. Fubini's theorem implies that the integral in (3) exists and is finite for our current φ and f. Since

$$\|\bar{f}*\varphi_n - \bar{f}*\varphi\|_p \leqslant \|f\|_1 \|\varphi_n - \varphi\|_p,$$

we can use Hölder's inequality to write

(4)
$$\left| \int_{G} \bar{f} * \varphi_{n}(x) f(x) dx - \int_{G} \bar{f} * \varphi(x) f(x) dx \right|$$

$$\leqslant \|\bar{f}*\varphi_n - \bar{f}*\varphi\|_p \|f\|_{p'} \leqslant \|f\|_1 \|f\|_{p'} \|\varphi_n - \varphi\|_p.$$

147

Since

$$\int\limits_{G}\overline{f}*\varphi_{n}(x)f(x)\,dx=\int\limits_{G}\int\limits_{G}\overline{f(y)}\,\varphi_{n}(y^{-1}x)f(x)\,dydx,$$

and since (3) holds for the functions φ_n (which are in $\mathfrak{P}(G)$), (4) proves (3) for our current φ and f.

Now suppose that (iii) also holds, and consider $f \in \mathfrak{Q}_p(G) \cap \mathfrak{Q}_{p'}(G)$. Let $\{f_n\}$ be a sequence of functions in $\mathfrak{Q}_p(G) \cap \mathfrak{Q}_{p'}(G) \cap \mathfrak{Q}_1(G)$ such that

$$\lim_{n\to\infty} ||f-f_n||_p = \lim_{n\to\infty} ||f-f_n||_{p'} = 0.$$

(It is an elementary exercise to construct the f_n .) By [2], Corollary (20.14.iv), and Hölder's inequality, we have

$$\begin{aligned} (5) & \left| \int_{G} (\bar{f}_{n} * \varphi) f_{n} d\lambda - \int_{G} (\bar{f} * \varphi) f d\lambda \right| \\ & \leq \int_{G} |\bar{f}_{n} * \varphi| \cdot |f_{n} - f| d\lambda + \int_{G} |\bar{f}_{n} * \varphi - \bar{f} * \varphi| \cdot |f| d\lambda \\ & \leq ||f_{n}||_{\mathcal{B}} ||\Delta^{-1/p'} \varphi||_{1} ||f_{n} - f||_{p'} + ||(f_{n} - f) * \varphi||_{p} ||f||_{p'} \\ & \leq (||f_{n}||_{p} ||f_{n} - f||_{p'} + ||f_{n} - f||_{p} ||f||_{p'}) ||\Delta^{-1/p'} \varphi||_{1} . \end{aligned}$$

The limit of the last line of (5) is zero. Applying the preceding paragraph to each f_n , we infer that

$$\int\limits_{C} (\bar{f}*\varphi)fd\lambda \geqslant 0.$$

That is, (3) holds for our current φ and f's, and the proof is complete. Let G be discrete. For all $x \in G$, we have

$$|\varphi_n(x)-\varphi(x)| \leq ||\varphi_n-\varphi||_p$$
.

Thus every φ as in the lemma is the pointwise limit of a sequence in $\mathfrak{P}(G)$ and so φ is in $\mathfrak{P}(G)$. The lemma provides us with no new information in this case.

The remaining sections are devoted to the proof of the theorem.

3. The compact case. Let G be a compact infinite group. There is a function φ in $\bigcap_{2\leqslant p<\infty} \mathfrak{L}_p(G)$ satisfying all the properties listed in the lemma, and such that φ is not in $\mathfrak{L}_\infty(G)$.

149

We construct φ by looking at representations of G. Let Σ be the set of all equivalence classes of continuous, irreducible, unitary representations of G. Since G is infinite, so is Σ (see [3], Theorem (28.1)). For each $\sigma \in \Sigma$, let $U^{(\sigma)}$ be a fixed member of σ . Let H_{σ} be the (finite-dimensional!) Hilbert space on which $U^{(\sigma)}$ acts, and let d_{σ} be the dimension of H_{σ} . Let $\mathfrak{B}(H_{\sigma})$ be the algebra of all linear operators on H_{σ} , and let $\mathfrak{E}(\Sigma)$ be the product algebra $\mathsf{P}\,\mathfrak{B}(H_{\sigma})$. For $f \in \mathfrak{Q}_1(G)$, the Fourier transform \hat{f} of f is the element of $\mathfrak{E}(\Sigma)$ such that

$$\langle \hat{f}(\sigma)\xi,\eta\rangle = \int\limits_{\mathcal{G}} \overline{\langle U_x^{(\sigma)}\xi,\eta\rangle} f(x) dx$$

for all $\sigma \in \Sigma$ and all ξ , $\eta \in H_{\sigma}$.

We are concerned with certain subalgebras of $\mathfrak{E}(\Sigma)$. Following von Neumann [7], we first introduce a family of norms for operators A on a finite-dimensional Hilbert space H. Let |A| be the positive-definite square root of AA^{\sim} (" \sim " denotes adjoint). Let a_1, a_2, \ldots, a_n be the eigenvalues of |A|. For $1 \leq p < \infty$, let

$$\|A\|_{q_p} = \left[\sum_{j=1}^n a_j^p\right]^{1/p},$$

and let $||A||_{\varphi_{\infty}} = \max\{a_1, a_2, ..., a_n\}$. All functions $A \to ||A||_{\varphi_p}$ are norms on $\mathfrak{B}(H)$, and $||A||_{\varphi_{\infty}}$ is the operator norm of A. Following Kunze [5], we use the φ_n -norms to pick out some useful subspaces of $\mathfrak{E}(\Sigma)$. For $1 \leqslant p < \infty$, let $\mathfrak{E}_p(\Sigma)$ be the set of all $E = (E_\sigma) \in \mathfrak{E}(\Sigma)$ such that

$$\|E\|_p = \left[\sum_{\sigma \in \Sigma} d_\sigma \|E_\sigma\|_{\varphi_p}^p
ight]^{1/p} < \infty,$$

and let $\mathfrak{E}_{\infty}(\Sigma)$ be the set of all $(E_{\sigma}) \in \mathfrak{E}(\Sigma)$ such that

$$||E||_{\infty} = \sup\{||E_{\sigma}||_{\omega_{**}} : \sigma \in \Sigma\} < \infty.$$

We will need the following two facts.

I. A function $f \in \Omega_{\infty}(G)$ is λ -almost everywhere equal to a function in $\mathfrak{P}(G)$ if and only if each operator $\hat{f}(\sigma)$ is positive-definite. In this case, we have $\hat{f} \in \mathfrak{E}_1(\Sigma)$.

II. Suppose that $1 \leqslant p \leqslant 2$ and that $E \in \mathfrak{C}_p(\Sigma)$. There is a unique function $\check{E} \in \mathfrak{Q}_{p'}(G)$ (1/p+1/p'=1) such that $(\check{E})^{\wedge} = E$. The mapping $E \to \check{E}$ is linear, and the inequality $\|\check{E}\|_{p'} \leqslant \|E\|_{p}$ obtains.

For continuous f, Theorem I is due to Krein [4], § 7. The extension to 2 functions is due to the writers and will appear in the monograph [3], §34. Theorem II is due to Kunze [5], Corollary 8.1.

Recall that Σ is infinite. Choose any $E_{\epsilon}\mathfrak{E}(\Sigma)$ such that $E_{\epsilon}\mathfrak{E}_{p}(\Sigma)$ for all $p \in]1, \infty]$, all E_{σ} are positive-definite, and $E \notin \mathfrak{C}_{1}(\Sigma)$. For example, choose a sequence $\{\sigma_k\}$ of distinct elements of Σ , and let $E_{\sigma_k} = (kd_{\sigma_k}^2)^{-1}I_{\sigma_k}$, where I_{σ_k} is the identity operator on H_{σ_k} . Let $E_{\sigma}=0$ for all other values of σ . In any case, given such an E, let us order the set $\{\sigma \in \Sigma : E_{\sigma} \neq 0\}$ as an infinite sequence $\{\sigma_k\}_{k=1}^{\infty}$. For every positive integer n, let $E^{(n)}$ be the element of $\mathfrak{E}(\Sigma)$ such that $E_{\sigma_k}^{(n)}=E_{\sigma_k}$ for $k\,\epsilon\{1,2,...,n\}$ and $E_{\sigma}^{(n)}=0$ for all other σ 's. Also let φ_n be the trigonometric polynomial on G for which $\hat{\varphi}_n = E^{(n)}$. Each φ_n belongs to $\mathfrak{P}(G)$ by I.

For each $p \in [1, 2]$, there is a unique $\varphi^{(p)} \in \mathfrak{Q}_{p'}(G)$ of the form \breve{E} , as in Π . Since $(\varphi^{(p)})^{\wedge} = E$, the uniqueness theorem for Fourier transforms shows that all the functions $\varphi^{(p)}$ are almost everywhere the same; we denote this function by φ . For $p \in]1, 2]$, we have

$$\|\varphi_n - \varphi\|_{p'} \leqslant \|E^{(n)} - E\|_p = \left[\sum_{k=n+1}^{\infty} d_{\sigma_k} \|E_{\sigma_k}\|_{\sigma_p}^p\right]^{1/p}.$$

Since E is in $\mathfrak{E}_n(\Sigma)$, the right side of (7) has limit 0 as $n \to \infty$, and so φ_n converges to φ in the $\mathfrak{L}_{v'}$ -metric for $p' \in [2, \infty[$. This shows that φ has properties (i)-(iii) of the lemma.

Now assume that φ is in $\mathfrak{L}_{\infty}(G)$. Theorem I shows that $\hat{\varphi}$ is in $\mathfrak{E}_{1}(\Sigma)$. This contradicts our choice of E, and completes the proof of the theorem in the case that G is compact.

4. The case of a compact open subgroup. Now let G be a non-discrete locally compact group containing a compact open subgroup J. According to §3, there is a function ψ in $\bigcap_{2\leqslant p<\infty} \mathfrak{Q}_p(J)$ enjoying properties (i)-(iii) of the lemma and not in $\mathfrak{L}_{\infty}(J)$. Define $\varphi(x) = \psi(x)$ for $x \in J$ and $\varphi(x) = 0$ for $x \in G \cap J'$. Plainly (i) and (iii) of the lemma hold for φ and for $p \in [2, \infty)$. We have

$$\lim_{n\to\infty}\int\limits_J\left|\psi-\psi_n\right|^pd\lambda=0$$

for some sequence $\{\psi_n\}$ in $\mathfrak{P}(J) \cap \mathfrak{Q}_p(J)$. Define $\varphi_n(x) = \psi_n(x)$ for $x \in J$ and $\varphi_n(x) = 0$ for $x \in G \cap J'$. Clearly

$$\lim_{n\to\infty} \|\varphi - \varphi_n\|_p = 0$$

and each φ_n belongs to $\mathfrak{L}_p(G)$. It is a routine matter using (1) to check that each φ_n belongs to $\mathfrak{P}(G)$. Thus φ enjoys properties (i)-(iii) of the

Assume that φ belongs to $\mathfrak{L}_{\infty}(G)$. Then ψ would belong to $\mathfrak{L}_{\infty}(J)$, contrary to our selection of w.

5. Anzai's example. The construction of this section was suggested to the first-named author by the late Hirotada Anzai in a conversation in 1953. It is a pleasure to record here our debt to him. Consider the additive group R of real numbers, and as usual regard R as its own character group. Take Haar measure on R to be $(2\pi)^{-1/2}$ times Lebesgue measure. On the character group R, define the function g by $g(y) = \min\{1, 1/|y|\}$ and g_n as $g\xi_{[-n,n]}$ for $n\in\{1,2,\ldots\}$ (ξ_A denotes the characteristic function of the set A). For every $p\in [1,\infty[$, g is in $\mathfrak{L}_p(R)$, and g is not in $\mathfrak{L}_1(R)$. Define φ_n as g_n and φ as g_n ; the latter is the inverse \mathfrak{L}_p transform for any $p\in [1,2]$. Thus φ belongs to $\mathfrak{L}_{p'}(R)$ for all $p'\in [2,\infty[$. Applying a classical Fourier inversion theorem to each g_n and some elementary calculus, we see that

(8)
$$\lim_{n\to\infty} \varphi_n(x) = \left(\frac{2}{\pi}\right)^{1/2} \int_x^{\infty} \frac{\sin(u)}{u^2} du$$

for x>0 and that the φ_n 's are even functions. It is well known that

$$\lim_{n\to\infty} \|\varphi_n - \varphi\|_{p'} = 0.$$

A subsequence $\{\varphi_{n_k}\}_{k=1}^{\infty}$ of $\{\varphi_n\}_{n=1}^{\infty}$ converges almost everywhere. Thus φ is the even function that is equal to the integral in (8) for x>0. It is obvious that all of the functions φ_n are in $\mathfrak{P}(R)$. It is elementary, albeit a little tedious, to show that $\varphi \in \mathfrak{L}_1(R)$. Since

$$\lim_{x\to 0}\varphi(x)=\infty,$$

it is impossible for φ to be in $\mathfrak{L}_{\infty}(R)$. Another citation of the lemma now completes the proof of the theorem for the group R.

6. The Abelian case. Let G be an arbitrary non-discrete locally compact Abelian group. A classical structure theorem ([2], (24. 30)) asserts that G has the form $G_0 \times R^a$, where G_0 is a locally compact Abelian group containing a compact open subgroup and a is a non-negative integer. Sections 4 and 5 show that the theorem holds for G_0 and each factor R. The theorem for all locally compact Abelian groups therefore follows from the following assertion and a simple induction.

Let G and H be locally compact groups. If φ and ψ are functions on G and H, respectively, as in the theorem and the lemma, then $(x, y) \to \varphi(x) \psi(y)$ defines a function on $G \times H$ with all the properties listed in the theorem and the lemma.

Let $\Phi(x, y) = \varphi(x) \psi(y)$ for $(x, y) \in G \times H$. Let $\{\varphi_n\}$ and $\{\psi_n\}$ be sequences for φ and ψ as in (ii) of the lemma, and let $\Phi_n(x, y) = \varphi_n(x) \psi_n(y)$ for $(x, y) \in G \times H$. Clearly the functions $(x, y) \to \varphi_n(x)$ and $(x, y) \to \psi_n(y)$ are

positive-definite and continuous on $G \times H$. Since the pointwise product of positive-definite functions is positive-definite ([8], p. 14), it follows that each Φ_n belongs to $\mathfrak{P}(G \times H)$. For functions on $G \times H$ having the form $f(x, y) \to g(x)h(y)$, it is obvious that $||f||_p = ||g||_p ||h||_p$, since

$$\int_{G\times H} f(x, y) dx dy = \int_{G} f(x) dx \int_{H} g(y) dy.$$

Hence (i) and (iii) of the lemma obviously hold (2 $\leqslant p < \infty$). Also, we have

$$\|\Phi - \Phi_n\|_p \le \|\varphi\|_p \|\psi - \psi_n\|_p + \|\varphi - \varphi_n\|_p \|\psi_n\|_p,$$

so that (ii) of the lemma holds for $2 \leq p < \infty$. Finally, we show that Φ is not in $\mathfrak{L}_{\infty}(G \times H)$. Otherwise, we have $|\varphi(x)\psi(y)| \leq M$ for almost all (x, y) in $G \times H$.

There is a set $D \subset H$ of finite positive measure contained in $\{y \in H : \psi(y) \neq 0\}$. Then $|\varphi(x)\psi(y)| \leqslant M$ for almost all (x,y) in $G \times D$. Hence for some $y \in D$, we have $|\varphi(x)\psi(y)| \leqslant M$ for almost all $x \in G$. That is, $|\varphi(x)| \leqslant M/|\psi(y)|$ for almost all $x \in G$. This contradicts the fact that $\varphi \notin \mathfrak{L}_{\infty}(G)$.

References

- [1] J. Dixmier, Les C*-algèbres et leurs représentations, Paris 1964.
- [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Heidelberg and New York 1963.
- [3] Abstract harmonic analysis, Vol. II, Heidelberg and New York (to appear 1969).
- [4] M. G. Krein, Positive-definite kernels on homogeneous spaces, I and II (in Russian), Ukrain. Mat. Ž. 1 (1949), p. 64-98, 2 (1950), p. 10-59. English transl.: Amer. Math. Soc. Transl. (2)34 (1963), p. 69-164.
- [5] R. A. Kunze, L_p Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89 (1958), p. 519-540.
- [6] M. A. Naĭmark, Normed rings, Moscow 1956. Revised German translation: Normierte Algebran, Berlin 1959. English transl.: Normed rings, Groningen 1959.
- [7] J. v. Neumann, Some matrix-inequalities and metrization of matric-space, Tomsk Univ. Res. Inst. Math. and Mech. Reports 1 (1937), p. 286-299. Also in Collected Works, New York 1967, Vol. IV, p. 205-219.
- [8] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. reine u. angew. Math. 140 (1911), p. 1-28.

Reçu par la Rédaction le 16, 2, 1968