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Integrally positive-definite functions on groups *
by )

E. HEWITT (Seattle, Wash.) and K. A. ROSS (Eugene, Oregon)

1. Introduction., A complex va.lued function ¢ on a group @ is
called positive-definite, according to a classical definition, if

(1) Zzaﬂl}ﬂ‘p(% wk =

for all finite subsets {gcl, -0y @m} of G and all sequences {ay, ..., a,} of
complex numbers. Pogitive-definite functions play a vital réle in the
theory of unitary representations of loeally compact groups. See, for
example, [6], §30, or the detailed and interesting treatment in [1],
§§ 13-15. For a topological group @, let P(Q@) denote the set of all con-
tinuous positive-definite functions on G.

Besides: the definition (1), there is a second notion of posl’mve—deﬁ-
niteness meaningful for locally compact groups G. Let 1 be a left Haar
measure on G (normalized by A(G) =1 if & is compact). A Borel meas-
urable function ¢ is said to be integrally positive-definite it the function

(2) (@, y) > ey o) f)fle) s in &(GXE) for all feQ,(A)
and . )
(3) [ ol ) f(y)f@)arx A(w,y) >0
GxG

It is well known that a funetion in P(G) belongs to L. (&) and is
integrally positive-definite. It is also well known that if ¢ is in 8,(&)
and (3) holds for all fe®,(@), then ¢ is locally 2-almost everywhere equal
to a continuous positive-definite function. See for example [6]; §30,
Theorems III and IV. Actually all 2-measarable ¢'s satisfying conditions
(2) and (3) are in 8 (@) (see [3], § 32).

In this note, we study Borel measurable fundtions ¢ on @ for which
(2) and (3) hold. not for all feﬁl(G') but for all feﬁp(G) £, (@), where p

-for all fe8,(G).

* The second-named author is a fellow of the Alfred P. Sloan, Jr., Foundation.
Support for both authors form the Namonal Sclenoe Foundation, T. SA is grate-
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is a fixed number in L, co[. It turns out that such fun_ct_ions @ need
not be loeally A-almost everywhere equal to a positive-d:e.flmte f.m.letion,
Thus integral positive-definiteness implies ordinary positive-definiteness
only in very restricted. cases. A precise statement of our result follows.

TeEoREM. Let G be a non-discrete group that either contains & compact
open subgroup or 4s locally compact Abelian. There is o Borel measurable func-
tion @ on @ with the following properties. If 2< p < oo and felp(G) A 8 (&)
(1jp+1[p" = 1), then o

(@, y) > oy @) fW)f(2)

is in 8 (G XEG) and

[ [ot  a)f)f(@)dyde = 0.
G G

However, ¢ is not on L, (G). In particular, ¢ differs from every con-
tinuous positive-definite function on G on a set of positive measure.

TFor all facts and terminology from harmonic analysis used here
without explanation or reference, see the monograph [2].

2. The general technique.

LevuA. Let G be a locally compact group and let p be a real number
> 1. Let ¢ be o function such that

(1) peLp(6); )

(ii) lim |lp—gullp = 0 for some sequence {pn} in B(GF) ~ Lo(F);

n—>o0

(iii) A=Y e, (@) (4 is the modular function for G).
Then (2) and (3) hold for all feLy (G) ~ & (G).

If ¢ only satisfies conditions (i) and (ii), then (2) and (3) hold for oll
Fe25(@) ~ 2p(G) ~ £(6).

Proof. We first prove the second assertion. Thus we consider ¢
a8 in (i) and (i) and f in 2,(6) ~ &, (GF) ~ 8,(@). It is known that the
funetion

Frol@) = [f@)py o)dy
]

exists and is finite for A-almost all x<G and is a funetion in 8,(@), for

which. [F+gls < [flllpll, (see [2], Corollary (20.14)). By Hglder's in-
equality, the integral

[ [1F@)l lply="a) | dy|f(2) | do
(ANl

is finite. Fubini’s theorem implies that the integral in (3) exists and is
finite for our current ¢ and f. Since

1F *on—F gy < 111l —ll

e ©
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we can use Holder’s inequality to write
@ | [rm@ro)io— [Tepiad
é

N *@n—F*@llplifller < il [fllp llpm— @l
Since

Gf Prow(@)f@)do = [ [ fy)puly~ )f(2) dyde,
G G

and since (3) holds for the functions g, (which are in P(G)), (4) proves (3)
for our current ¢ and f.

Now suppose that (iii) also holds, and consider Fe8,(G) A~ 8, (G).
Let {f} be a sequencq of functions in £,(@) ~ Ly (&) ~ &,(G) such that

Lim |f—fullp = Lm [|f —folly = 0.
Mo 00

(It is an elementary exercise to construct the f,.) By [2], Corollary
(20.14.iv), and Holder’s inequality, we have

) | [roifudi— [ (epifi
G ¢
< [ axgl- lfa—fldd+ [ Faxo—Fxol-1fida
G [}

< Wfallo 147 gl lfo =Sl 1 F—D %l 1l
< (Wl WAl +lfa~Flo 1 o) 114~ .

The limit of the last line of (5) is zero. Applying the preceding para-
graph to each f,, we infer that

[ Fxo)fdr > 0.
G

That is, (3) holds for our current ¢ and f’s, and the proof is complete.
Let @ be discrete. For all z¢@, we have

Jon(2)—p@)] < lpn— @llp-

Thus every ¢ as in the lemma is the pointwise limit of a sequence
in B(G) and 8o ¢ is in P(G). The lemma provides us with no new informa-
tion in this case.

The remaining sections are devoted to the proof of the theorem.

3. The compact case. Let G be a compact infinite group. There is
afunction ¢ in (M L,(G) satisfying all the properties listed in the lemma,
2<P< oo

<
and sueh that ¢ is not in L, (G).


GUEST


148 . Hewitt and K. A. Ross

We construct ¢ by looking at representations qf a. Leﬁ 2 be the
seb of all equivalence classes of continuous, irreducible, unitary rep_l“e—\
sentations of @. Since @ is infinite, so is X (see [37, Theorem'(2‘8.‘1‘)).. For
each ¢, let U be a fixed member of o. Let H, be the (flnltfa-dlmfyn-
sional!) Hilbert spacé on which  U® acts, and let d, be the dimension
of H,. Let B(H,) be the algebra of all linear operators on H,, and let
&(Z) be the produet algebra P B¢H,). For fe2; (), the Fourier transform

oex
f of fis the element of G(Z) such that
Flo)&, ny = [<TDE, (@) ds
Q

for all 0% and all &, neH,. _

We are concerned with cerfain subalgebras of €(Z). Following von
Neumann [7], we first introduce a family of norms for ope.rgtors A on
a finite-dimensional Hilbert space H. Let [4| be the positive-definite
gquare root of AA™~ (“~" denotes adjoint). Let a;, a5, ..., a, be the
eigenvalues of |4]|. For 1 <p < oo, let i

WAl =[ > a]",
F=1
and let [|4]lp,, = max{a;, @, ..., a,}. All functions 4 — |}f1i[(pp are norms
on B(H), and ||4[,, is the operator norm of A. Following Kunze [5],
we use the gp-norms to pick out some useful subspaces of E(Z). For
1<p< oo, leb E(Z) be the set of all B = (F,)<E(Z) such that

1Bly = [ Y d B, < oo,

oex
and let €, (Z) be the set of all (E,)eE(X) such that
1Bleo = s0D {|Ballyy, : 02} < 0.

We will need the following two facts.

L A function fe2, (&) is i-almost everywhere equal to a function
in P (@) if and only if each operator f (o) is positive-definite. In this case,
we have ferl(E). ‘

IL. Suppose that 1 <p <2 and that FeE,(X). There is a unique
funetion’ HeQ, (6) (1fp-+1/p’ =1) sueh that (H)» = E. The mapping
B E is linear, and the inequality |||, <||E|, obbains.

For continuous f, Theorem I is due to Krein [4], § 7. The extension
to 8 -functions is due to the writers and will appear in'the monograph
[3], §34. Theorem IT is due to Kunze [5], Corollary 8.1.

icm
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Recall that 3 is infinite. Choose any EeC(X) such that FeE,(Z)
for all pe]l, oo], all B, are positive-definite, and B¢, (Z). For example,
choose a sequence {oy} of distinet elements of %, and let B, = (kd3)'L,,,
where I.,k i the identity operator on H,,k. Let B, = 0 for all other values
of ¢. In any ease, given such an &, let us order the set {0eZ: B, 5= 0}
a8 an infinite sequence {o}}%.,. For every positive integer n, let E™ be
the element of G(X) such that BS) = B, for ke{1,2,...,n} and B — 0
for all other o’s. Also let @, be the trigonometric polynomial on G for
which p, = B™. Bach g, belongs to P(§) by L.

For each pe 1, 2], there is a unique p®eL,.() of the form H, as
in II. Since (¢®)* = X, the uniqueness theorem for Fourier transforms
shows that all the functions ¢® are almost everywhere the same; we
denote this function by ¢. For pe]l, 2], we have

™ vl <1BO—Dlp = [ 3 a1, 5"
=N+1

Since ¥ is in &,(5), the right side of (7) has limit 0 as n — oo, and
80 ¢, converges to ¢ in the &,-mefric for p’e[2, co[. This shows that @
has properties (i)-(iii) of the lemma.

Now assume that ¢ is in 8,,(@). Theorem T ghows that ¢ is in €, (%),
This contradicts our choice of B, and completes the proof of the theore

in the case that @ is compact.
4. The case of a compact open subgroup. Now let G be a non-discrete

locally compact group containing a compact open subgroup J. Accord-
ing to §3, there is a function v in () L,(J) enjoying properties

2<p<0
(i)- (ili) of the lemma and not in £, (J). Define ¢(z) = y(z) for z.ed and

¢(2) = 0 for we@ ~ J'. Plainly (i) and (iii) of the lemma hold for ¢ and
for pef2, co[. We have

im [ jy—y,[d2 = 0
>0 7

for some sequence {y,} in B(J) ~ &,(J). Define ou(@) = y.(z) for zed
and @ () = 0 for ze@ ~ J'. Clearly

Lim [lp—gafl, = 0
T>00

and each @, belongs to £,(@). It is a routine matter using (1) to eheck
that each @, belongs to B(@). Thus ¢ enjoys properties (i)-(iil) of the
lemma. -

Assume that ¢ belongs to 8, (G). Then yp would Dbelong to 8,(F),
contrary o our selection of . : Co
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5. Anzai’s example. The construction of this section was suggested
to the first-named suthor by the late Hirotada Anzail in a conversation
in 1983. It is a pleasure to record here our debt to him. Consider the
additive group R of real numbers, and as usual regard R as its own char-
acter group. Take Haar measure on R to be (2m)""" times Lebesgue
measure. On the character group R, define the function g by ¢(y)
= min{l, 1/ly[} and gn a8 g&. nm for ne{l,2,...} ({4 denotes the char-
acteristic function of the set A4). For every pel, col, g is in Ly(R),
and ¢ is not in £,(R). Define ¢, as ¢, and ¢ as §; the latter is the inverse
£, transform for any pe J1, 2]. Thus ¢ belongs to £, (R) for all p’e[2, oof.
Applying a classical Fourier inversion theorem to each g, and some ele-
mentary caleulus, we see that

2\¥2 F gin(u
®) timga(a) = (2)" [ S au
N>00 &

47

for # > 0 and that the ¢,’s are even functions. It is well known that
Lim g — ellyr = 0.
N—-00

A subsequence {gn}in; Of {g.}u: converges almost everywhere.
Thus ¢ is the even function that is equal to the integralin (8) for # > 0.
It is obvious that all of the functions ¢, are in P(R). It is elementary,
albeit a little tedious, to show that ¢ef,(R). Since

limg (@) = oo,
L0

it is impossible for ¢ to be in L, (R). Another citation of the lemma now
completes the proof of the theorem for the group R.

6. The Abelian case. Let G be an arbitrary non-discrete locally
compact Abelian group. A classical structure theorem ([2], (24. 30)) asserts
that G has the form G, X R" where @, is a locally compact Abelian gronp
containing a compact open subgroup and ¢ is a non-negative integer.
Sections 4 and 5 show that the theorem holds for @, and each factor R.
The theorem for all locally compact Abelian groups therefore follows
from the following assertion and a simple induetion.

Let @ and H be locally compact groups. If ¢ and v are functions on G
and H , respectively, as in the theorem and the lemma, then (z, y) = ¢(@)v(y)
defines a function on G X H with all the properties listed in the theorem and
the lemma.

Let O(z, y) = ¢(x)y(y) for (v, y) ¢G X H. Let {p,} and {y,} be sequences
for ¢ and v as in (ii) of the lemma, and let &, (2, ¥) = @, (), (y) for
(v, y)eG X H. Clearly the functions (#, y) — @, (2) and (o, y) — v, (y) are

e ©
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positive-definite and continuous on G xH. Since the pointwise product
of positive-definite functions is positive-definite ([81, p. 14), it follows
that each @, belongs to P(G xH). For functions on G X 5 having the
form f(@, y) - g(#)h(y), it is obvious that |, = gl ll,, since

[ f@, y)dady = [f@)dz [g()dy.
GxH G H

Hence (i) and (iii) of the lemma obviously hold (2 < P < o0). Also,
we have

1P—Pully < lpllo Il — Pullo+ o~ Pallp [nlln,

so that (ii) of the lemma holds for 2 < P < co. Finally, we show that &
is not in L,(¢ xH). Otherwise, we have le(@)p(y)| < M for almost all
(%,y) in @xH.

There is a set D = H of finite positive measure contained in {yeH:
v(y) # 0}. Then |p(z)y(y)| < M for almost all (z,y) in GxD. Hence
for some yeD, we have |p(z)p(y)] < M for almost all ze@. That is,
lp(@)l < M/lyp(y)| for almost all z<@. This contradiets the fact that
?¢8,(@).
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