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Introduction. Let X and ¥ be topological spaces, & an open subset
of X whose closure in X is denoted by ¢l(§), boundary in X by bdry(&).
If f is a continuous mapping of ¢l(G) into ¥ and y is a point of ¥ —
f(bdry(G)), the degree of the mapping f on @ over y is, in principle when-
ever it is defined, an algebraic count of the number of times f assumes
the value y in G. For the case in which X and Y are oriented Euclidean
spaces of the same finite dimension, the coneept of the topological degree
was defined by Brouwer in 1912. In the classical paper of Leray-Schauder
[167] in 1934, the Brouwer degree was extended to the case when X = Y
and the mapping fis of the form f = I— C, where I is the identity mapping
of X and O is compact in the sense that C(el(@)) is a relatively compact
subset of X. )

It is the purpose of the present paper to present an extension of
the theory of the topological degree to a much wider class of mappings
defined in Banach spaces. This extended degree theory (as we show in

detail elsewhere, [81) can be applied to obtain a number of fixed point

and mapping theorems of interest which fall outside the framework of
the classical theory of compact non-linear mappings in a Banach space X.

To foeus on the properties of our generalized degree, we note the
following basic properties of the Leray-Schauder degree, written as
degrs(f, @, y) (proved in the most explicit form by Nagumo [17]):

(1) Let X be a Banach space, G an open subset of X, f a continuous
mapping of el(@) into X of the form f=I-0,0 compact. Let yeX—
—f(bdry(G)). Then degys(f, @, y) is defined, and if degrs(f, &, 9y) # 0,
then there emists a point ® in G such that flx) =9.

(2) The degree is additive in &, i.e. if G =G Gy with G, and G,
open sets such that ye<X—f(G), where G = (G4 ~ Go) w bdry ((4) v
v bdry (@), then

degrs(f, &, y) = degrs(f, 61, ¥)+degus(f, 64, 9)-
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(3) The degree is invariant dwring homotopies in which it remains
defined, i.e. of W is an open subset of X X [0,1], C a continuous map of
cl(W) into a relatively compact subset of X, and if for each tin [0, 17, we let

@ = {zleeX, (z,1)c W},

Cy: el(Gy) — X be given by Cy(z) = O (z, t), and if we set fi = I+ Cy: cl(Gy)
— X, then for any continuous curve P = {y(t): 0 <t <1} in X such
that y (1) e X—fy (bdry (@) for all ¢ in [0,1], then

degrs(fe, G+, y(1)

is well-defined and independent of t im [0, 1].
(4) If f is a homeomorphism of G into X of the form f = I+ C with ¢
compact and y lies in f(G)—f(bdry (&), then

degrs(f, G, 9) = 1.

(5) The degree degrs(f, @, y) depends only upon the behaviour of f
on bdry(@).

(Further properties of the Leray-Schauder degree are given at the
begining of Section 1, below).

The main objective of the extended theory of the topological degree
which we develop below is to extend the concept of degree to mappings f
of the form h-+C, with » a homeomorphism and C compact, or, more
generally, with the homeomorphism % and the map C intertwined in
2 sense made precise below. More generally still, we shall congider wuni-
form limits of sequences of mappings of these last forms, i.e. in principle
to pass to the case of degenerate homeomorphisms .

‘We must begin therefore with a precise statement of what we mean
by 2 homeomorphism:

Definition 1. Let X and ¥ be topological spaces, G an open
subset of X,k a continuous mapping of cl(@) into Y. Then % is said to
be a permissible homeomorphism of ¢1(@) into ¥ if h is a homeomorphism
of ¢ on an open subset %(@) of ¥ which maps ¢l(@) homeomorphically
onto el(h(&).

In the discussion which follows, all homeomorphisms % will be as-
sumed to be permissible in the given context and we shall not use the
explicit distinetion between permissible homeomorphisms and more
general homeomorphisms from cl(@) into Y.

We shall give several definitions of the degree for various classes
of mappings in various representations, and these definitions are logi-
cally independent though we shall establish relations between them. The
crucial point in every case is that we shall not define these degrees as
integer-valued functionals of mappings but of represeniations of map-
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pings. To pub the point in greater detail, we shall take the viewpoint
that the generalized degree should be taken in the most general circum-
stances as a quantity defined for a representation of a mapping f within
a given class of representations, and not initially as being defined in
terms of the mapping f itself. It is then the objective of the degree theory
to establish results in the form of theorems concerning the generalized
degree function that under certain general hypotheses, the degree and
its properties depend only upon the mapping f or its properties and not
upon the choice of representations.

One of our basic pieces of data in each definition is the following:

Definition 2. M will denote a set of (permissible) homeomor-
phisms from ¢l(¢) into ¥, where @ ranges over a family of open subsets
of the Banach space X. Let My denote the subset of maps kin M whose
domain ig ¢l (@) for a given open set G in X. Bach My is considered as a
metric space with the metrie

d(hy By) = sup [[b(2)—hy(2)]x
zecl(G)

and we assume that d(h, k) < oo for all h, h; in Mg.

M is said to be conver if Mg is a convex family of maps from ol(@)
to Y for each open set @, i.e. if hy and h, lies in Mg, and if 0 < 4 <1,
then the mapping h; given by

Ta(@) = (1— k(@) + (@), wecl(@),

should also lie in Mg.

First Definition of Degree. Let X and ¥ be Banach spaces, M
a set of permissible homeomorphisms as in Definition 2, G an open set
in X, f a continuous mapping of ¢1(@) into ¥ such that f = A+ C, where %
is a homeomorphism of ¢l(@) into Y lying in M and C maps cl(G) into
a relatively compaet subset of ¥. Let y be & point of ¥ — f{bdry(6)).
Then we set

deg: ([f, b1, &, y) = degus(fA~7, 1(&), v).

Note that this definition makes sense since fh™'=TI4Ch™! is
a mapping of cl(h,(G)) into Y of the form I+ C, with ¢, compact.

TEEOREM 1. Let M be a class of homeomorphisms, and consider the
first definition of degree. Then:

(a) deg,([f, ], &, v) is independent of the choice of representation of f
up to a change of sign.

(b) If M is convem, deg,([f, b, &, y) s independent of the representa-
tion.

(¢) In the gemeral case, deg, has the following properiies:
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1) If degy([f, k1, G, y) # O, there must ewist » tn G such that f(x) =y.
(2) The degree is additive on G.

(3) The degree is invariant under permissible homolopies of represen-
tations in the following sense: Let G be an open subset of X, f a continuous
mapping of cl(@)X[0,1] into Y, and set fi(w) = f(wz, 1) for @ in cl(&).
Suppose that there ewists a continuous mapping C of cl(@)x[0,1] into
a relatively compact subset of ¥ and a continuous function h from [0,1]
into the family of homeomorphisms M such that for each ¥ in [0, 1], fi(a)
= Ry(z)+C(z, 1) for @ in cl(G). Let P = {y(t): 0 <t < 1} be a continuous
curve in Y such that y(8) lies in ¥ — ft(bdry(G)). Then

dega([fe, hel, G, (1)

is independent of ¢ in [0, 1]
(4) If deg,([f,h], G, y) is well-defined and f is a homeomorphism
from @ to an open subset of ¥ such that y lies in f(G), then

deg, ([f, b1, &, y) = +1.

(5) The degree degi([f,h1, @, y) whenever it is defined depends only
upon the behaviour of f and h on the boundary of G-

(d) In the case when M ds convem, degy([f,h], &, y) can be written
as deg.(f, G, y) by part (b). This degree function has the following addi-
tional properties:

(3)" Let @ be an open subset of X, and for each t in [0, 17, let fi be
a mapping of cl(G) info Y representable in the form hy+-C;, with by a ho-
meomorphism in M, C; compact. Suppose that the map t —f; is a contin-
uous curve of maps and that for a continuous curvet —y(t)in ¥, y(t)e¥—
—fi(bdry (@) for each t in [0,1]. Then,

dégl(ft, @, y()

s independent of t in [0, 1]

(5)’ The degree function deg,(f,&,y) is dependent only upon the be-
haviour of f on bdry(@) and mnot in the rest of cl(G).

The proof of Theorem 1 is given in Section 1.

The second definition of degree which we introduce is defined for
the following more general type of representation of a mapping f from
cl(@) in X to X:

Definition 3. Let X and ¥ be Banach spaces, G an open subset
of X, f a continuous mapping of ¢l (@) into Y. Let M be a set of permigsible
homeomorphisms from open subsets of X to ¥. Then fis said to have
an intertwined represeniation with respect to M if the following is true:

* ©
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There exists a continuous mapping § of ¢l(@) xXel(G) into ¥ such
that f(u) = S(u, u) for all % in cl(@), and S satisties the two conditions:
(i) For each » in cl(G), the map 8, = S(-, v) of ¢l(@) into ¥ is a ho-
meomorphism belonging to M.

(ii) The mapping » - §, maps cl(§) into & relatively compact subset
of M.

8§ is said to be a representation of the given class for f. .

Example. Suppose that M is closed under adding constants, i.e.
if his a map in M, 80 i8 hy, Where hy,(z) = h(z)4w for each w in Y.
Suppose that f is a map of the form f = b+, with & in M and C com-
pact. Then f has a representation in intertwined form, namely

Fw) = 8(w,u),

For each fixed v, hoy(s) = h(z)-+0(v) yields an element howy of
M and the map v = hogy is obviously compact.

Second definition of degree. Let X and Y be Banach spaces,
M a set of permissible homeomorphisms, & an open subset of X, f a con-
tinuous mapping of cl(¢) into ¥ having an intertwined representation
8 in the sense of Definition 3 with respect to the class M. Then we define
the degree of f with respect to § on G over any point y of ¥—f(bdry (&)
as follows:

Let Gy = {v]ve@, yeS,(@)}, and for » in Gy, set Oy(v) = S (y).
We set

with 8(u, v) = h(u)+C(v).

degu([f, 81, @, y) = degrs(I—Cy, Gy, 0).

THEOREM 2. Let X and Y be Banach spaces, M a family of permissible
homeomorphisms from subsets of X to ¥, G an open subset of X, f a con-
tinuous mapping of el(G) into Y having an intertwined representation in
the sense of Definition 3. Let y be a point of Y—f(bdry(G)). Then:

(2) degu(Lf, 81, @, y) is well-defined by the above definition, and in
particular, G is an open subset of X, Oy can be extended to a continuous
mapping of cl(Gy) into X whose image is relatively compact in X, and C,
as thus extended has no fized points on bdry(G,).

(b) The second degree function has the following properties:

(1) If degwn([f, 81, @, y) ts well-defined and 5 0, there exists a point =
in G such that f(z) =vy.

(2) The degree function is additive in G.

(3) The degree function dega([f, 81, G,y) is imvariant under per-
missible homotopies of representations: v.e. let F' be a confinuous mapping
of el(G) X [0,1] into XY, fi(x) = F(x,t) for x in ol(G), and suppose that
there exists a mapping S of ¢l(G) X (@) X [0, 1] into ¥ where 8;: cl{G) X
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X ol(@) > X defined by S;(u,v) = S(u, v,t) is an intertwined represen-
tation for f;. Suppose that the map t — 8, is & continuous curve in the metric
space of maps of €l(@)xel(G) into ¥, and that for another continuous
curve P={y(t): 0<t <1} in ¥, y(@)eY —fi{bdry (G)) for each tin [0,1].
Then

degM([ft i S ]a Ga y(t))

is independent of ¢ in [0, 1] ‘

(4) If the representation S(w,v) is independent of v, so that f is a ho-
meomorphism in M, dega([f, 8], @, y) = +1 of y<f(@).

The proof of Theorem 2 is given in Section 2.

TEEoREM 3. Let X and Y be Banach spaces, M a convex family of
permissible homeomorphisms from subsets of X to Y,G an open subset
of X. Let f be a continuous mapping of el(&) into Y having an intertwined
representation with respect to M in the sense of Definition 3, y a point in
Y —f(bdry (&). Then:

(a) The second degree function, dega([f, 81, &,y), is independent of
the choice of the representation S of f with respect to M, and may be writien
as degu(f, &,9).

(b) The following stronger homotopy property holds for degu(f, &, y):
Let F be a continuous mapping of c1(W) into ¥, where W is an open subset
of Xx[0,1]. For each t in [0,1], let G4 = {s|weX, (z,1)e W}, and let
f; be the mapping of cL(Gy) inte X given by fi(x) = F(z, ). Suppose that
each f, has an intertwined representaiion with respect to M, and that we
are given a continuous curve {y(t): 0 <t <1} in Y such that the set W,
= {(&, t) | (=, t) ecl(W), F (5, &) = y(1)} is & compact subset of W. Suppose
further that for each open set G in X and interval [a, b] = [0, 1] such that
cl(@) x [a, b] = W, the map t—f; is continuous from [a, b] to the space
of mappings of ¢L(@) into X.

Then degu(fiy Gr, ¥(1) 15 independent of t in [0, 1].

(0) Suppose that X = Y, M is convew and includes the identity map
of cl(@) into X, and that f is of the form f=h+0C, with b in M and C
compact. Then

deg,({f, k], G, y) = degu(f, G, ¥).

We note that Theorem 3 states in general texms that if the set M
of permissible homeomorphisms is convex, the second degree function
ig independent of the choice of the representation § and wvaries with

homotopies of the mapping f, not of its representation §. In addition,

the two degrees coincide for maps of the form f = h+C when X = Y.
A still wider class of mappings for which a degree can be defined
is that treated in the following theorem:
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THEOREM 4. Let X and ¥ be Banach spaces, M a conves family of
homeomorphisms from subsets of X to ¥, & an open subset of X, f a map-
ping of el(G) into Y such that there ewists o sequence {fx} of mappings of
cl(@) into Y having intertwined representations in the sense of Definition 3,
with fu(x) converging to f(z) wniformly for & in cl(@). Then:

(a) For any y in Y —cl(f(bdry(®), degu(fe, @,y) is well defined
for & sufficiently large, and degy(fy, &, y) converges as k — co to a limit,
which we denote by degu(f, &, y). This limit is independent of the choice
of the sequence {fr}.

(b} The degree function thus defined has the following properties:

. (1) If degu(f, @, y) is well-defined and degu(f, @, y) # 0, there exists
a sequence of points {mi} in G such that f(z) - y. In particular, if flel(@))
is closed in X, there emists © in G such that f(z) = y.

(2) The degree is additive in G.

(3) If {f;, 0 <t <1}, is a continuous curve of mappings for which
degu(fy, @, y () is well-defined for a continuous curve {y(#),0 <t <1}
in ¥, then degu(fi, &,y (%)) is independent of ¢ in [0,1].

4) If f =liinhk, where each hy 8 a homeomorphism in M, then

degu(f, G,9) = +1 for any point y in £(@)— cl(f{bdry(@)).
The proofs of Theorems 3 and 4 are given in Section 3 below.
To note the simplest applications of Theorems 3 and 4, we con-
gider the following classes of permissible homeomorphisms:
M, = {h: G is an open set in X, h: el(G) - X7, with X* the conjugate
space of X, and h satisfies the firm monotonicity condition:
(h(w)—R(v), u—2) > e(llu—ol), u,veel(@),

for & continuous function ¢: R* — R* with ¢(0) =0, c(r) > 0 for r > 0.}
(Here, we use (w, %) to denote the value of the functional w at the
point %.) '
M, = {h: @ is an open subset in the complex Banach space X, h: el{GF)
- X*, and h satisfies the complez monotonicity condition

[(h{u)—h(v), u—v)| > e(lu—2l), %, vecl(d),
for a function ¢(r) as above}. )
M, = {h:@ is an open subset in X, b:el(@) — X, with b satisfying
the firm accretiveness condition
(W(u)—h(v), T (u—0)) = e(lu—2l),  w,vecl(@),
where J is a duality mapping of X into X" satisfying the conditions:
(T (@), @) = llwll | ()5 1 (@) = (i) Jor a comtinuous strictly increasing
funetion t(r) with ¢ mapping B* onto R*}.
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M, ={h:G is an open subse of X, h:cl(@) =X, with h =I-V
and V a sirict contraction, d.e. there exists k <1 such that for all w and v
of (@), IV (w)— V) < klu—ol}

TemorEM 5. Let X be o Bamach space, h @ continuous mapping of
el(@) in X into X or X lying in one of the fowr classes My, Mo, Mg, or M.
Suppose that X is reflexive for M, and M,, and that X* is uniformly convex
(or b uniformly continuous on bounded sets) for My. Then oll the mappings
% thus obtwined are permissible homeomorphisms in the sense of Defimi-
tion 1. :

The proof of Theorem 5 and its detailed application to a wide variety
of fixed point and mapping theorems for semi-monotone, semi-accretive
and semi-contractive mappings is given in paper [81.

1. We begin now with the detailed argument concerning our gen-
eralized degree functions. We note first an additional property of the
Leray-Schauder degree that is conspicuously not preserved in most of
the generalizations given in the present paper, namely the product for-
mula for the degree (Nagumo [17], Theorem 9):

(6) Let G be an open subset of the B-space X, f a continuous map
of el(@) into X of the form f=1I+0C, with C(el(@)) rel. compact in X.
Tet H be an open subset of X containing f(cl(G)), and consider the com-
ponents Hy of the set H—f(bdry (6)). Let g be a continous mpaping of cl(H)
into X of the form g = I+ Cq, with G’l(cl(H)) rel, compact in X, and suppose
that y is a point of X outside of g(bdry(H)) v gf (bdry (6)). Then:

degrs(dfs 6, ¥) = 3, degus(g, Hy, y)-degus(f, @ 2),
7

where for each j,z i am arbitrary point of Hy.

PROPOSITION 1. Let G be am open subset of the Banach space X, f
a continuous mapping of cL(G) into ¥ of the form f= h+C = hy+Cy,
awhere b and hy are permissible homeomorphisms of el(@) into ¥ and C(cl @)
and 0y(cl(@)) are relatively compact in Y. Then

|degrs (I+0W%, h(6), )| = |degus (T4 C:h*, ha (&), v)|

for any y in Y——f(bd:t‘y(G)). In particular, \deg([f, b1, G, y)| &8 independ-
ent of the representation of f in the form f = h-C. .

Proof. By hypothesis, h-+0 = h,+C,. Hence on h{el(@)), I+ Oh™*
= bk~ 0,h~% Tn particular, the homeomorphism of %{el(@)) into
h,(1(@)) given by A~ is a mapping of the form I+ ¢’ with O (cl (&)
relatively compact in Y, and by property (4) of the Leray-Schauder
degree, degrs (b b~ h(6),s) = &1 for any ¢ in k(). On the other
hand, we have

(T4 O = (I+C oY) (e h7h).
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.Smee degrs is additive in G, we may assume without loss of gen-
erality that ¢ is eonnected, and thereby %(G) and k(@) are conunected
as well. Both % and %, are permissible homeomorphisms and hence map
bdry(&) onto bdry (k()) and bdry (hy(&)), respectively. Thus h,h~" maps
bd'ry(h (G)) onto bdry(k,(6)), while %,(G) is connected and thereby con-
tained in one component of ¥— (ki) (bdry(h(&)) = I’—bdry(}zl(G)].
01? the other hand, (&) must exhaust this component sinee otherwise
this component would contain a point of bdry (k,(@)).

' We now apply the produet formula for the Leray-Schauder degree
with f = kb7, g = (I C,h7Y). We obtain

degus(T+ Ch™, h(@), y) = degys(T+ 0.k, hy(6), y)degus (hah ™, 1(A), 2)

for any point z in the single component of ¥ — (hlh‘l)(bdry (n (G))) which
contains points of (hh™")(A(G)) = k(). Finally
degrs (I+Oh‘1! 1), f‘l) = ide'gLS(I‘i' Glh’;l3 1 (&), ?/):

q.e.d.

PROPOSITION 2. The first degree function, deg,([f, 1], &, y), defined
Jor all maps of the form f = h+ 0O, with b a homeomorphism and ¢ compact,
and for yeY—f (bdry(G)), has the following properties:

(1) If degy([f, 1, G, y) # 0, there emists & in G such that f(x) = y.

(2) The degree is additive in G.

(3) The degree is invariant under permissible homotopies of represen-
tations.

(4) If f is o homeomorphism from G to an open subset of ¥, yef(Q),
then for awy representation of f,

deg,([f, ], G,y) = +1.

(8) The degree deg,([f, h],@,y) depends only upon the behaviour of f
and h on the boundary of G.

Proof. (1) It deg([t, h], @, y) # 0, we have degrs(fh™, h(6), y) # 0.
There must exist 2z in % (@) such that fh~'(z) = y. If & = b~ (), then x
lies in G and f(z) =y, q.e.d.

(2) Suppose that G =G, v G, with &, and G, disjoint and ye¥—
—f{bdry(Gy) © bdry (()). Then (@) = h(Gy) w k(@) with A(G,) and
h(@,) disjoint and erv«fif’(bdry(h(Gl)) v bdry (2(Gs) ) Hence

degrs(I+ChY, h(G), 1)

. = degrs (I+ 0h7%, R(GY), y)+ degrs (I4+0n71, (@), 9),
1.e.

degy([f, k], G, y) = degy([f, 2], G1, ¥) +degy([f, h], Gss ¥),
q.e.d.
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(3) Consider a family of mapping fi = 40y for ¢ in [0, 1] with &,
2 continuous curve of homeomorphisms of el(G) into ¥, Cy(w) = C(z, )
continuous from ¢l(@) x [0,1] to ¥ with a relatively compact image
in Y. Suppose that for all ¢ in [0,1], y e Y—fe(bdry (). Then

degy([fi, el, G, ) = degrs(I+ b, he(6), ).

Tt we apply property (3) of invariance of the Leray-Schauder degree
nnder permissible homotopies, it suffices to assume that G is connected
and to prove thatb

W = {(2,1)|(2,8) ¥ X [0, 1], 2ehy (&)}
is an open subset of ¥ x [0, 1], that its boundary is given by
W = {(z, D) (2, ) ¥ X [0, 1], zehy(bdry (&)},

that the map ¢: (2, ) = C;(k; ' (2)) is & continuous map of cl(W) into ¥
with relatively compact image, and that for (2, t)e W', Cy(hi*(2)) +# # 9.
The last property follows from the others since for (2, t)e W, zehy (bdry (G)),
o = hi'(2)ebdry (@), and #+Cy(h7'(2)) = Mu(w)+Ci(@) = fula) #y. The
relative compactness of the image of ¢ follows from that of the map-
ping €, and since ¢ = Oy, where v is the mapping of W v W' given by
v(2, 1) = (h* (2), 1), into X x [0,1], it suffices to prove that p is con-
tinuous in order to prove that ¢ is continuous. Thus the rest of the proof
follows from the following Lemma: )

Lemma 1. Let X and Y be Banach spaces, G a connected open subset
of X, K a topological space, b a continuous mapping of K inio the space
M of permissible homeomorphisms of cl(G) into Y. Then:

(a) The set W = {(y,%)|(y, k)X X K, yeh(@)} is open in ¥ XK.

(b) The boundary of W in ¥ x I is given by W' = {(y, k) |y ehz (bdry (")

(e) The mapping v of eL(W) into X XK given by p(y, k) = (b5 (y), k)
8 continuous.

Proof. Let keK. Since G is conneeted, (@) is connected and hence
a subset of a single component ¥, of ¥ —h(bdry(®). ¥, must equal
T (@), since otherwise ¥; would contain a point of bdry (h(6) = h(bdry (&)
Hence, h(G) contains any connected subset A of ¥—h(bdry (@) when-
ever it contains a gingle point of 4.

(a) Suppose (%, ky)e W. Then 2zyehy (@), and there exists a closed
ball B,(z) of radius r about 2, contained in hy (). Since h is econtinuous
from K to M, we may find a neighborhood N of k, in K such that for &
in ¥ and all # in cl(&),

()= B (0)] < £
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Let }Bl be 1.3119 1.)‘&11 of radius #/2 about z,. Then for kin N, by (@)
< Y-B, while 1 2, = g (z), hi(a) e B. Hence B' < hy(G) for all &
in W, and’(B XN) « W. Hence W is open in Y XK, ged.

('b).W < bdry (W). Hence, it suffices to show that if (20, %) does
11917 lie in W W, it has a neighborhood which does not intersect W.
Since 2o ¥ — Ty (e1()), there exists a ball B,(#) with r > 0 outside of
Tz (QI(G)). By the continuity of % from K to M , We may choose a neigh-
borhood N of %y in K such that for & in N and all z in cl(@),

(@) — Ty ()] < =

Let ?9' be the ball about % 0f radius /2. Then for % in N , h;,(bdry (G))
= Y—B'. We assert that B'XN does not meet W. Indeed, if it did
there. would exist k in ¥ and # in @ such that h;(#) e B'. Hence B < hk(G):
and if &' = hi'(s), hko(m’)sB'. It would follows that syehy (G) which is
a contradiction, g.e.d. ’
. () Suppose that (z), k) = (@, &), i.e. by (m) = 2,, where F, lies
in K, qucl(G). If hyu(#) = 2, with |k—z,| < r and if & is chosen in & suit-
able neighborhood X of %, [hie(@) — b (@)]] < » for all » in el(§). Hence
iy () — 2ol < 27, and [o—a) < B(2r) where B(r) is the modulus of
continuity of Az at z,, g.e.d.

Proof of Proposition 2 completed. The proof of (3) follows
from Lemma 1. Since

degy([f, 11, &, 9) = degrg (fh_ly &), y)
while fA~" is a homeomorphism if [ is, property (4) follows from property
(4) of the 'Lemy~SGha.uder degree. Since b maps bdry (@) on bdry (h(&),
the behaviour of fA™* on bdry(h(@)) follows from the behaviour of f
and h on bdry(@). Hence Property (5) follows from Property (5) of the
Leray-Schauder degree.

ProPOSITION 3. If the family of permissible homeomorphisms M is
conves, then deg,([f, hl, &, y) depends only upon f, and the homotopy in-
variance property (3)' holds in Theorem 1.

Proof. Let M be convex and let f =h+C = h,+C, be represen-
tations with respeet to M. If ye¥—f(bdry(6)), we set

hy(w) = A—t)h(z)+th(z), Ci(@) = (1—1)C(z)+1C ().

Then for all ¢ in [0, 1], b is an element of M, and f = h,+C; is
a permissible homotopy of representations. Hence by Proposition 2,
degy([f, i1, &, y) is independent of ¢ in [0,1]. Thus

degy ([f, 11, &, 9) = deg(Lf, b1, &, v) = degy(f, &, %)
depends only upon f.
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: i topy of mappings with re-
Suppose that {fi:te[0,1]} is a homo
presentations of the form f; = ly+C; for each 1, 7?:,;6 M. Suppose that
ye¥ —fi(bdry (@) for all ¢ in [0,1]. Then there exists do > 0 such that
for all £ in bdry (@) and all ¢ in [0, 1], |]ﬁ(a;)—y1| >d,. We may find an
inereasing finite sequence {f} in [0,1] with #, =0, & =1 such that
for éach j,
iy (@) —Fy (] < o
for all # in bdry(@). It suffices to show that
deg, (fy, &, ) = degi(fy,,» & 9)-
Let ftj = hj+0j7ftj+l = 717-+1+Gj+1. We set
N R
for A in [0,1], where g¢; =hy+Cs with hy=(1—2)h+ Mf+1', 0,
= (L—A) Cj+ AC;,; . This gives a permissible homotopy of representations

since each h; lies in M and |lg:(z)—yl| > 0 for webdry(G), g.e.d.

The conclusions of Theorem 1 follow from Propositions 1, 2, anq 3.

2. The proof of Theorem 2 is based upon the following two pro-
poritions: .

PROPOSITION 4. Let @ be an open set in X, 8 a comymous map of
el(G) x el (@) into ¥ where for each v in cl(GF), 8, = 8(-, v) is & permissible
homeomorphism in M from cl(G) to Y and the mop v — 8, from cl(G) to
M is continuous and maps cl(@) into a relatively compact subset of M. Then:

(a) For a given y in ¥,Gy = {0[veG, yeS,(G)} is open in X.

(b) If G5 = |wlveel(§), yeS,(cl(@)}, cl(Gy) = G5

(¢) The map C, of cl(Gy) into cl(@) given by Cy(v) = 85 (y), is con-
tinuous and maps cl(@y) into a relatively compact subset of cl(G).

(d) Cy mapsbdry (Gy) wnto bdry (G)-Cy(v) = v if and only if S(v, v) = y.

Proof. (a) Suppose vyely,. Then yeS, (¢) and if u, = S;D‘(y),' we
have 8(u,, v,) = y. Since S, (&) is open in ¥ and 8,, 18 a homeomorphism,
there exist balls B,(u,) and B,(y) such that B.(y) « Sy (B (1)) = Syy(@)-
It follows that

Suy (xy (Balws))) = T —B,(y).

‘We may find a neghborhood N of v, in & such that for v in N and
all » in cl(@),

18a(w) = Sy ()] < £

For such », we have S,,(bd.ry(Bs(uo))) c Y—B', where B’ is the
ball of radius r/2 about y while 8,(u,)eB’. Applying the principle de-
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veloped in the proof of Lemma, 1, B < S,,(Bs('uo)) for v in N, so that
N < @y. Hence G is open in @, q.e.d.

(b) Since G, = Gy, it suffices to show that bdry(Gy) = Gf. Let v,
be a point of bdry(@,). There exists a sequence {v;} in @, with v; - v,.
Then u; = 8! (y)«@. Since

”Svj ()~ S‘vo (u) =0,

it follows that y lies in S,,n(cl(G)) and hence o, lies in @, q.e.d.
(6) Let Y =0 in el(Gy), with u; = Oy(vy), u = Cy(v). Then

”S(u:;, 'D:i)'—‘s(ui; ‘D)” - 07 ie. S'u(ui) Y.

Since S;* is continuous, u; — Syl(y) = 4, and C, is continunous
on cl(@Gy).

Suppose that {v;} is a sequence in cl(Gy). We pass to a subsequence
and using the faet that the map of cl(@) into M given by v — S, has
a relatively compact image, we may assume that 8y~ k, where he M.
It u; = Oy (v;), it follows that h(u;) — y. Hence yeh(cl(@), and u; — b (y).
Thus €, maps cl(@,) into a relatively compact set in ¢l(@), g.e.d.

(d) Since 03 (@) = G, it follows that C, (bdry (&) < bdry (). On the
other hand, Oy(v) = » for v in ¢l(@,) if and only if S(v,v) =y.

Proposrrion 5. Let §: el(@) X e}(G) x [0,11> Y with G connected
be a permissible homotopy in the sense of Theorem 2, and for each % in [0, 1],
lot Gy Gif, and Oy, be defined as in Proposition 4 for the mapping 8 (u, v)
= 8(u, v,t). Then:

(a) The set W = {(v, )| (v, )X x [0, 1], ve@y,} 8 open in X x [0,1].

(b) The boundary of W is W’ = {(v, #} | v ebdry (Gy,)}.

(e) The map Cy: l(W) - X given by Oy(v, 1) = Oyy(v) is continuous
from ¢l(W) into X and has relatively compact image in X.

Proof. The proof of (a) duplicates the proof of Proposition 4 (a), and
that of (e), the proof of Proposition 4 (¢). Hence it suffices to prove (b).
Here, it suffices to show that if (vs, %) does not lie in W o W', there
exists a neighborhood of (v, %) which does not meet W. Since Yye¥—
— 80,4, (€1(@)}, there exists a ball B,(y) in Y — Sy, (61(E). Let B be
the ball about y of radius r/2, and choose a neighborhood N of (g, to)
in X x [0, 1] such that for (v,%)eN,

180 — Sty 1) < =

for all % in cl(@). Then S8,,(bdry(¢) = ¥—B’, and we assert that
N ~ W = 0. Indeed, otherwise if (v,%)eN ~ W, we have Y eSps(G) and
if w = Oyy(v), Sy, s, (w)eB’. Since G is connected, B < B, (6), which
is a contradiction, g.e.d.
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Proof of Theorem 2. Since (), is a compact continuous mapping
of cl(G,) into X and sinece by Proposition 4 (¢), Oy(v) #» on bdry(@,)
because f(v) % y on bdry(@), it follows that

degu([f, 81, @, y) = degrs(I— 0y, Gy, 0)

is well-defined. TIf degy([f, S1, @, ) # 0, there exists v in &, such that
Cy(v) = v, and for this »,f(v) =8, v)=9y. If @ =G, v G, with ¢,
and @, disjoint and f(v) # y on bdry(G,) v bdry (@), and if we form the
sets Gy, and G, analogous to G, for G, and @, respectively, then @,
=Gy v Gyy and Giy ~ Gyy = 0. Hence \

degrs(I—Cy, Gy, 0) = degrs(I—Cy, Gy, 0)+ degrs(I—Cy, Gry, 0),

and the additivity on G of degu([f, 81, &,y) follows.

By Proposition 5, if we have a permissible homotopy of represen-
tations, we obtain a permissible homotopy of Cp,; and Gy, in the sense
of the Leray-Schauder degree. Hence

degrs(I— Oy, Gy, 0) = degar([fz, 841, @, v)

is independent of ¢ in [0, 1]. Finally, if f(u) = S(u, v) for all » in cl(@)
then Oy (v) = f~'(y) is a constant map and degy ([f, 81, &, y) = +1, q.e.d.

3. Proof of Theorem 3 (a). Let S, and S, be two representations
for f with respect to the convex family M. For 1 in [0, 1], we set

8w, 0) = (1—2) 8, (u, v)+48,(u, »).

Then §; is a permissible homotopy of representations in the sense
of Theorem 2, and since S;(u, u) = f(u) % y for » on bdry(d), we see
that degwy([f, 8,1, &, y) is independent of 1 on [0, 1], g.e.d.

Proof of Theorem 3 (b). Since the set W, of solutions (z,r) of
the equation fy(#) =y is a compact subset of W, we may replace W
by a finite collection of sets of the form ¢l(@) X [¢;, b;] contained in W
and prove the invariance of degwm(fi, &,vy) with G4 replaced by one of
the @; and y (%) replaced by a fixed element of ¥. We may moreover break
up this homotopy into small steps and assume that

Ifo(w)—fa(u)ll < do,

where for all % in bdry(@), [Ifo(u)—yll > dy. We choose two representa-
tions Sy and 8y for f, and f, respectively. For A in [0, 1], we define map-
pings fi by fi = (L—A)fo+ 4f; and representations §; by 8; = (L1 —1)8,-+
-+28;. For « in bdry (@),

IF3.(0) =yl = [Ifo(w) — yll— [Ifa () — fo ()] > 0.
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Hence 8, is a permissible homotopy in the sense of Theorem 2, and
thereby

degM(fm G: ?/) = degﬂ!(fi) G: :7/),
g.e.d.
Proof of. Theorem 3 (¢). Let f = h+ ¢ with h in M and ¢ com-
pact. .For A1in [0,1], we let h; = (L—A)h+2I(I = identity map of
cl(@) into X). We consider the map

fo= (T4 ObY) e B (B (el (@) — X.

This is a permissible homotopy in the semse of (b) above, and
therefore

degar (f2, 17 (1(9)), ) = degu(I+Ch" h(@), 4) = degy ([f, ], &, ).

For A =0, we obtain degn(f, Gy y) = deg,([f, 21, &, ¥), q.e.d.

Proof of Theorem 4. Suppose that for « in bdry(G) we have
[If (%)—¥ll = dy. Then for & and j so large that

2
2 sl <2,

fe(w) —f ()] <
%t follows that the segment joining f; to f; in the space of maps of ¢l(@)
into ¥ consists of maps g such that g(u) ¥ on bdry(@). Hence

degur(fr, &, y) = degu(fy, &, y)

for such j and %, and degu(f, @, y) is welldefined. Two sequences of ap-
proximating maps can be interspersed, and hence the limit degu(f, G, v)
is independent of the approximating sequence. In particular, we may
take a fixed element  in 3, and define a canonical approximation f, = f--
++¢eh. For & >0 and sufficiently small, degm(f, G, 4) = degulf , G, y).
In particular, if dega(f, &, y) £ 0, for & — 0, there exist points @ in G
such that f, (#) =y, ie. f(m) —y. The degree is obviously additive
in @ since it is additive in @ for the map f,. If f; is a continuous curve
of maps for which degM(ft,G,y(t)) is welldefined, there exists d,> 0
such that [|f;(u)—y(#)]] > d, for all % in bdry(@). Hence for e fixed and
sufficiently small,

degx (fi, @, y (1)) = degu(fie, @, y(1)

is independent of ¢. Finally, if k; is a homeomorphism in M, degy ks,
G,y) = +1 for y in h(G). Hence degu(f,@,y) = +1 for any y such
that y lies in 7z(@) for %k sufficiently large. Property 4 then follows by
replacing ¢ by its component whose image under f contains Y, q.e.d.
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