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On convergence of sequences of periodic distributions
by
J. MIKUSINSKI (Warszawa)

1. In this paper we are coneerned with distributions in the g-dimen-
sional Euclidean space R?. The points of R? are denoted by o = (&, ..., £)-
If nothing else is said explicitely, the values of distributions are in a fixed
Banach space.

A distribution f in R? will be called periodic, iff (iff — if and only
if) f(z+p) = f(@) for every integral point peR? i.., for every point
P = (%, ..., my) whose the coordinates =; are integers. In the space of
periodic distributions, we consider six kinds of convergence:

I. Tempered strong convergence.
II. Strong convergence.

ITI. Weak convergence.

IV. Tempered weak convergence.

V. Weak convergence in Fourier coefficients.

VI. Strong convergence in Fourier coefficients.

We prove cyclically the implications

II - I1X
A N
I v
w V4
Vi<V

so that it is seen that all the kinds of convergence are equivalent. In fact,
the diagram of implications, given in section 10, is some more complicated,
because it is needed to consider every kind of convergence in two differ-
ent ways: as a convergence to a limit and as a convergence which says
nothing about the limit. So we have to consider, in the whole, 12 kinds
of convergence.

All proofs in this paper bave a classical character, i.e., do not use
any tools from topology or functional analysis.

We shall first establish, in section 2, the notation and recollect some
more or less known facts about_ .periodic distributions.
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2. It is known that if f and g ave distributions in RY, one of them
being of bounded carrier and one of them (the same or thfz other one)
real-valued, then the convolution fxg does exist (see, e.g., [1]). Using the
general notation y,(x) = y(2-41), we have for every AeRY,

(fx@)p = f*g = frgw for every AeR.
On the other hand, if f is any distribution and ¢ a smooth function,
we have for the ordinary product,
(9w = fa -
In the sequel, we shall use the following notation:
Frgh = fx(gh) fgxh = (fg)sh.

This means that if we have to perform the multiplication and the
convolution, we first perform the multiplication.
If v = (&, ..., &) eR? and AeR, then by

and

<, A<®, @< A<

we understand, respectively,

§7<27' l<§7‘: Ef‘gli li{:ff:

where j =1, ..., ¢. Thus, if weR% the interval 0 @ <1 denotes the
set of points o with 0 < &< 1, j=1,...,¢
Let n denote the characteristic function of the interval 0 < a < 1.
Then the convolution fxm exists for every distribution fin RY. In par-
ticular
1 = 1.

Let P denote the set of all integml points of R?. Then evidently

oY) Dum =1,
peP
where My, (z) = n(z+p).
Let t be a real-valued smooth function of bounded carrier such that
1%t =1 and let 71 = mxl. Then 1#a = 1xu*? = 1%¥ = 1, thus

Tas = 1.

By (1), it is eagy to verify that
(2) Dlagy =1.
P
A distribution. f is periodie, iff

foy=f for peP.
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For periodic distributions f we have

Fgy ¥ = (f_pp) gy % I = ()% I = fare1ry,.

Hence, by (2) and (1),
from = Z(f*’l(zz)*n) =f.ﬂ*2n(,,,) = fa*1,

neP DeP

thus
(3) Fxu = faxl.

Given any AeR? we have
(Jaxl)g = faxly = faxl.

Thus we see that the convolution fxm, where the distribution f is
periodic, is a constant function.

If B,(2) = ™" (peP), then the products fE, are also periodic distri-
butions for f periodic. The elements

ep=fH_,*xu

ave called Fourier coefficients of the periodic distribution f.
‘We shall prove generally that, if ¢ is any distribution and ¢ is a real-
valued smooth function of bourded carrier, then for every order %,

(4) gOgx1 = (—1)"gp1,

wheve (—1)F — (—1y2*+%, In fact, this formula holds, in particular,
if ¢ is a smooth funection. If ¢ is an arbitrary distribution and g, is a sequence
of smooth functions, convergent to g, then the sequence g{?p converges
to ¢™g and the sequence ¢,¢™ converges to gp™. Hence g1 con-
verges to g™ p* 1 and g,¢0™ x1 converges to gp™ 1 (see e.g., [2], Theorem B).
This implies (4).

Applying formula (4), we can easily estimate the coefficients c,.
In fact, we may write

ep = fE_paxl.

Let I be the carrier of 1. There is an order % and a econtinuous function
F such that #® = f in I. Thus

tp = FUE_paxl = (—1)*-F(H_pa)®s1 = (=1 [F(B_,0)®.
I
But

(B_pa)? =

. ("71/) (;ln”) .ﬂ( " ) .
o<m<k

It m = (pgy ..., fg) 30 P = (ay, ..., 0p), then genervally by o™ we
understand the product of!...ape. If in this product there occurs any-
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where 0°, we read it as 1. Using this general notation, we can easily
verify that ™) = (—2x~ip)"H_,. Hence we obtain

= k —\m — X
(3) ool < 3 (1) (2aB)" = ML 425",
osmk
where P = (|7, ..., |7]) for p = (7, ..., %) and 142a7% denotes the

point of R? whose jth coordinate is 1+ 2= |7, j = 1, ..., ¢; furthermore,
the constant M in (5) is equal to the product of the maximum of ||
on I, of the maximum of [«™] on I for all m (0 << m < k), and of the
volume of I.

Let ¢ be a real-valued smooth function of bounded carrier. If f ig
any distribution, then

(6) (p#f) By = @By fB,.

In fact, this equality holds for smooth functions f. If f is an arbi-
trary distribution, then there is a sequence of smooth functions f, con-
vergent to f. Since (pxf,) B, = ¢B,f, B, we obtain (6) on letting n - oo
(see [1], Theorem 5).

If f is a periodic distribution, then (pxf)ym = @#fy = @if, thus
g = @xf is a periodic smooth function. Applying (6), we can -calculate
the Fourier coefficients of g, namely:

9B_p+1t = (@ f)E_p4 0 = (pH_p#fH_p)k 1 = @B_pu(fH_p%m)
= @i_p%0p = fcpE_p-c,,.

Letting a, = [¢F_,, we see that the Fourier coefficients of p#f
are Gy, Cp. '

Hence it follows that if all Fourier coefficients ¢, of f vanish, then
so do the Fourier coefficients of pxf. This implies p+f = 0, because pxf
is a smooth function. If 4, is a delta sequence of smooth functions, then
On*f—f. Since dy+f= 0, this implies f= 0. Thus we have proved that if
all the Fourier coefficients of a periodic distribution vanish, then f == 0.

This implies that periodic distributions are defined uniquely by
their Fourier coefficients. In fact, if fH,+m = gH,»n for peP, then
}f— 9 Bpxn = 0. Thus the Fourier coefficients of f—g¢ vanish. Hence
—g = 0.

Let, as before, ¢, be Fourier coefficients of f and let

(7 g= ZcpEp;
P

this series converges distributionally, which is ensured by inequality (5).
Hence A

9E_g+m = Z("mEp~q* m)

DeP
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(see e.g., [1], Theorem 5). But By, g+ = 0 except for the case p = q,
in which we have Eyxm = 1%1 = 1. Thus g#_,+x = ¢,. This means that
the Fourier coefficients of g are c,. Hence f = g, and by (7),

(8) f= Z epBy.
b

Thus, we have proved that every periodic distribution equals its
Fourier expansion. This is the well known theorem of Schwartz.

‘We shall prove that every periodic distribution is a tempered dis-
tribution, i.e., is the derivative of some order of a continuous function
of polynomial growth.

‘We say that a periodic distribution f belongs to class (r), where »
is an order (i.e., an integer point satisfying » > 0), iff, for (8),

2 ol < oo
—\7
£d (14 2a7)

By (8), every periodic distribution belongs to some class (7). Evidently,
distributions of class (0) are continuous functions, thus they are tempered
distributions. Assume that all distributions of some class (r) are tempered
and let f be a distribution of class (r-+¢;), where j is fixed. Letting (8),

the distribution
9= D a8,
P

with
- Cp _ Cp
P (142aP)% 14 27|

belongs to (r) and therefore is tempered. We have

f= D (42 lm))dy By = g— i,
peP
where
h= ng'nn,-dpEp.
P
Evidently, he(r); thus k is tempered, and so is h%). Thus f is tem-
pered. Since j may be chosen arbitrarily from 1, ..., q, it follows by in-
duction that distributions of all clagses () are tempered. Thus, every
periodie distribution is tempered.

3. We say that a sequence of distributions f, in R? converges tempered
strongly to f, iff there are continuous functions F,, F and o, the last
being positive and of polynomial growth in R, such that F{ = f,, F® = f
for some order %, and the sequence F,/o converges to F/o uniformly
in R%
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We say that a sequence of distributions f, in RY converges stromgly
to f, iff, given any open bounded interval I < RY there i an order k
and there are continuous functions F,, F such that F$ = 1, and =y
in I, and F, converges to F uniformly in I. Such a convergence is called
just comvergence, in [3], or distributional convergence.

The following theorem is trivially true:

I TII. If a sequence of distributions converges tempered strongly to f,
then it converges strongly to f.

4. We say that a sequence of dlistributions f, in R converges weakly
to f, iff the sequence of integrals [f,g converges to [fp for every real-
valued smooth function of bounded carrier g. For such a funection g,
the integral [fp is a regular operation, it is therefore defined uniquely
for every distribution f as the limit of (f,, where f, is a fundamental
sequence for f (see [3]).

I - IIT. If a sequence of distributions converges strongly to f, then
it converges weakly to f.

Proof. If f, converges strongly to f and the carrier of ¢ is in a bounded
interval I, then there are an order % and continuous functions ¥,, £ such
that F® = f, and F® = f in I, and F, converges to ¥ uniformly in I.
We have therefore

[tap = [FOo = (—1)*[ Fog® — (—1)* [Fg® = [F0 = [fp,

where (—1)* = (—1y2"* with % = (%5,...,%,). This proves the
assertion. :

5. The class of all real-valued smooth functions of bounded carrier
is denoted by £. The class of all rapidly decreasing real-valued functions
is denoted by #.

In the sequel, we shall need the following

THEOREM 1. Given any function we?, there is a function peP such
that fxy = fxqg holds for every periodic distribution f.

Proof. Let 1¢9, %Jl@) = 1. We ghall ghow that the function

D

Q=4 P
2 ()
has the quuired properties. Liet

M= > |a™ and
<mk

= 3y

Oemh

Evidently, « is a continuous function of bounded carrier, and ¥ is
a continuous function whose product with any polynomial is bounded.

icm
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We have
k [ & K k %
J(/l(—n)'{’)( | < 2 (m) MF_V%HV)( " < ¥ 2 (m) = ¥ 2"
omk oscmsck

It is easily seen that the series 3 .4,_p, is bounded by a constant function
DeP

(for the carrier of s is bounded); thus

(9) D n)®| <2F M-
DeP

Now, let ¥ be a continuous funetion of polynomial growth such that
F® = f. Then

frp = fx 2/1(,, n¥ = Fx Z(-/l(-p)W)(k)v

where (and everywhere in the remaining part of this proof) the sum is
stretched on all peP. In the last convolution, inegquality (9) allows to
interchange the signs = and ' so that we obtain :

f*’(p = EF*(JI(VQ;)’QJ)(IQ = Zf*./l(_p)ip = Zf(__m*jl'q)(m — Ef*ﬂww).

But the carriers of .y, are included in the carrier of 4, thus we may
interchange again the signs }' and * in the last convolution, provided
the series 21/1(2,) is distributionally convergent (see [1], Theorem 5). But
this series converges even almost uniformly which follows from the
fach that yes. Similarly, the series 3 yff} converges uniformly for every
fixed order k, which implies that Z‘l’(m is a smooth function. Subse-
quently, ¢ = 2}y, €2 and

fry = f’,“ZJ“P(p) = fxg.

6. If f is any tempered distribution and we¥, then the convolution
¢ = f*y is a smooth function. In fact, there is a continunous function ¥
such that F® = f and |F ()| < M+ |z}* for some order k and positive
numbers M and u. Hence, for he RY, |h| < 1, we obtain

[ (2+h)| < M+ (14 |a])*
and subgequently
[P (w4 h)— F(2)] < 2M+ |2+ (14 |2)* = G(z),
where @ is, evidently, a continuous function of polynomial growth. Now,

lg(@+h)—g(@) < [|F(@+h—1t)—F@—1)|-[pt)d for (B <1.

If # is fixed and h -> 0, then the integrand converges to 0 at.every
point ¢ and is bounded by the product G (x— )]y ()] which is an integrable
function of ¢. Hence g(z+ h)— g (@) — 0, as h — 0. Since » may be chosen
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arbitrarily, ¢ is a continnous function. The same argument can be used
for the derivatives ¢® = fxyp®™ of any order %, thus the convolution
g =7F+*y, as we said, is & smooth function.

Similarly, the convolution fxwp, where p(») = 9{—a), is a smooth
function. If in particular, f is a continuous function of polynomial growth,
then

(10) [fv = (f+w)(0),

i.e., the integral ffy equals the value of the convolution f *y at the origin.
If f is any tempered distribution and we&”, then we shall use equality
(10) as the definition of the integral [fy. If, in particular, <2, then this
definition coincides with the definition in section 4.

From Theorem 1, it follows the

COROLLARY. Given any function yeS, there is a function o2 such
that [fy = [fo holds for every periodic distribution f.

We shall say that a sequence of tempered distributions f, is tempered
weakly comvergent to f, itf the sequence of integrals [f,y converges to [t
for every fixed pe &,

Comparing the definitions of the weak convergence and of the tem-
pered weak convergence, we immediately obtain, in view of the preced-
ing Corollary,

1T IV. If a sequence of periodic distributions converges wealkly
to f, then it comverges tempered weakly to f.

TaROREM 2. If f is a periodic distribution, ye and g = fxy, then
g s a periodic smooth fumction whose Fourier coefficients are by == ¢payp,
where ¢, are Fourier coefficients of f and ap, = [yH_p.

Proof. As we already proved, g is a smooth function. Since f is peri-
odic, we have gy = fy,*y = f*y = g, thus ¢ is periodic. By Theorem 1,
there is a function pe2 such that hxy = hxp for every periodic distri-
bution %. Thus we have

by = Wi [(fxy) B_p] = mx [(fxp) B_p] = nx(fH_pxpH_,).

In the last expression there are two functions, n and ¢¥_,, which
are of bounded carrier, thus the commutativity of the convolution holds
and we have

by = (uxfB_p)%gpB_p = opxpll_p = c,,fan_z,.

Since [pH_, is the value of ¢+ B, at the origin and, similarly, Jwl_y
is the value of y*H, at the origin, we obtain b, = c,a,.

7. Bo far we considered four kinds of convergence. We can denote
them by I, IT, IIT and IV, respectively. In each of those kinds, there
is indicated a limit to which the sequence converges. However, we can

icm
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formulate similar definitions of convergence, but without speaking explic-
itely of the limit of the sequence. The corresponding kinds of conver-
gence will be denoted by I°, II°, III° and IV°, namely:

I° A sequence f, converges tempered strongly, iff there are continuous
functions F, and o, o being of polynomial growth, such that F$ = f,
for some fixed order k, and F,jw converges uniformly in RY

II' A sequence f, converges strongly, iff, given any open bounded
interval I ¢ R, there is an order % and there are continuous functions 7,
such that F{ = £, in I, and 7, converges uniformly in 7.

TII° A sequence f, converges weakly, itf [fatp converges for every pe.

IV° A sequence f, converges tempered weakly, iff f faw converges for
every pes. ‘

The following implications are trivial: I —I°, IT — II°, IIT — ITI°
and IV — IV°. Tt is also evident that I°—T and II° — II, ie., if a se-
quence converges, then it converges to some limit. We can also state the
implication III° —IV° which immediately follows from Corollary in
section 6. So we have already proved the following implications:

I I I -Iv°
7 i T
I-> II—> Il IV

8. We shall say that a set (a,) of real numbers a, with peP is rapidly
decreasing, iff, for every positive number x4, we have |p|“|a,| — 0, as |p| — co.

Given any p > 0, we have |p|* < (14 2aP)", where the vector % has
all its coordinates equal to ¢%x. Similarly, given any order k, we have
(1+27P)° < |p|* with p = 2¢|k|, provided |p| is large emough (> 7).
From these inequalities it follows that (a,) is rapidly decreasing, iff, for
every order k, we have (1+2nﬁ)k[ap| —+0, a8 [p| — oo.

If a, is rapidly decreasing, then given any order %, we have,

(14 205" ap| < (1+225)°M

for some positive number M. This implies

(11) D) (Lo+27p) " ay| < co.

DeP

Conversely, from the last inequality it follows that
(14225 |ay) =0, a8 |p| = oo.

Thus, a set (a,) is rapidly decreasing, iff inequality (11) holds for every
order k. :
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1f ¢, are Fourier coefficients of a periodic function, then from ine-
quality (11) it follows that
(12) Dlapey| < oo
PP
If a set (¢p) of elements of 2 Banach space satisties, for .some order
%, the inequality |¢p| < (].—1—27117))’“, then we shall say that .(01,)'13 tempered.
'J?’hus7 the set of Fourier coetficients of a periodic distribution is tempered.
Inequality (12) holds for any rapidly decreasing set of real nunbers
(a,) and any tempered set (ep) of elements of the given Banach space.
We shall say that a sequence of periodic distributions
fn = 2 can;n
DeP
converges weakly in Fourier coefficients, iff the sequence
bn = Z U Ongy
DeP
is convergent for every rapidly decreasing set (ap). We shall say that fu
converges weakly in Fourier coefficients to the limit
= Z Cp By,
PeP
3 H - ]
if b, —b = D a,¢,. These kinds of convergence will be denoted by V
P

and V respeﬁtively. Evidently VeVe. We shall prove the following impli-
cation:

IV® > Vo. If a sequence of periodic disiributions converges tempered
weakly, then it converges weakly in Fowrier coefficients.

Proof. Let (a,) be any given rapidly decreasing set and let ¢ be
4 smooth funetion such that w(0) =1 and w(®) == 0 for every # not
belonging to the interval —1 < z< 1. Then

o= Z o ped and
DeP

Oy = G-

Let y be the Fourier transform of o, i.e.,

p(a) = [ o(t)e™at.
Then pe¥ and
alw) = [ p(t)e .
Hence
JvE_» = o(p) = .
Let
fn = ZcﬂﬂEﬂ

PeP
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be a sequence of periodic distributions which converges tempered weakly.
Then, by Theorem 2, we have

(Fu*9) (@) = D ayeny By(2)
PeP
and hence, letting z = 0,

ffnw = Z Ay Copy
DeP

where p(2) = yp(—x). But pe&, thus the sequence ffuw is convergent,
by assumption that f,, converges tempered weakly. Therefore, the sequence
Z}')a.,, Cnp 18 convergent for n— co. Since (a,) is an arbitrary rapidly decreas-
Pe.

ing set, this proves that f, converges weakly in Fourier coefficients.

9. We shall say that a sequence of periodic distributions

Ju = 2 Cnp By

DeP
converges strongly in Fourier coefficients, iff there is an integer ¢ > 0 such
that 7., (14 |p|)”~" converges uniformly in p ¢P, as n - co. We say that fn
converges strongly in Fourier coefficients to

f= Z ey,
DeP
iff 6 (1 |p|)“i converges to cp(l-l—]p[)‘i uniformly in peP, as n — oco.
These kinds of convergence will be denoted by VI° and VI, respectively.
The implication VI — VI° ig obvious. But also from VI° there follows VI,
provided we take
f= 20,,147,0 with ¢, = lime,,.
p‘P N—r00

‘We shall still prove the following implications:

Vo — VI°. If a sequence of periodic distributions converges weakly in
Fourier coefficients, then it converges strongly im Fourier coefficients.

VI -V and VI — 1. If a sequence of periodic distributions converges
strongly in Fourier coefficients to f, then it converges to f weakly in Fourier
coefficients and converges tempered strongly.

Proof of V°-VI°. We order all peP into a sequence p,, s, ... Let
ty=itlpl’ G,5=1,2,..).

The matrix T = (#;) has the following properties: (i) #; >4, (i)
for every 4, there is an 4, with t;;/t;;—~ co. We say that a sequence b,

7
of elements of a Banach space is T-tempered, iff there is an index ¢ such
that the sequence t7'b,, 15 by, ... is bounded.
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If ¢, ave Fourier. coefficients of a periodic distribution, then 'the
sequence b; = ¢, (j=1,2,...) is tempered, which follows from ine-
7
quality (5). o
Assume that a sequence of distributions

Jo = 2 Cnp Bl
DeP
converges weakly in Fourier coefficients. Let By, = (Cap,, Cupys - )« We
shall show that the sequence of scalar products

o0
BB, = ) 1i0m,

J=1

is convergent for every sequence of real numbers B = (r;, 7y, ...) such that

(13) D tylri] < oo
F=1
Let ap =1 (j=1,2,...). Then

RB, = 2 U Onp

PeP

and it suffices to show that the set (a,) is rapidly decreasing. In fact,
we have for every index i=1,2,...,

D 1ol lapl = D ipilfinl < D tyln] < oo,
DeP

j=1 =1

which implies that |p|*|a,| — 0, a8 |p| — co. Thus the set (a,) is rapidly
decreasing.

Now we apply a known theorem which says that, if for tempered
sequences By, = (bn, bng, ...) the sequence of scalar produets RB, con-
verges for every R =(r,,7,,...) satisfying (13), then there is an index <
such that the sequence A, = (#3'by, 4i3'by,...) converges uniformly,
ag % — oo, Thus, in our case, there is an index ¢ such that t{,’cm CONVerges
uniformly in j, as n — co. Le., if #;'c,, denotes the limit of %' ¢uy, there
i3 a sequence of positive numbers &,, tending to 0, such that

|Cnp;— Oyl

it

for j,n=1,2,..
Hence

lamw * 02)'

—_ <
it S

for peP, n=1,2,...,

icm
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and subsequently
[Cnp = Gp|
— < (11 £ =
FEA (t+1)e, or peP, n =1,2,...

This proves that ey, (14 |p|)~" converges uniformly in peP, as n — oo,

Proof of VI —V. Let f, = Y., H, be a sequence of periodic dis-
tributions which is VI-convergent to f = 2 ¢y Bp; the signs of sum D are
stretched, here and everywhere in the remaining part of this paper, over
all peP. Thus, there is an integer u > 0 such that enp(1+4p|)™* converges
60 a,(1+|p|)™* uniformly in peP, as n — oo. Let (a,) be any rapidly de-
creasing set of real numbers. Then

2 ow— sl 1ag] = 3" leny— eyl (1+ |p|) ™+ (14 [p])ay
<o ) (1+Ip)Vap,

where ¢, i a sequence of positive numbers tending to 0. This implies that
fn i8 V-convergent.

Proof of VI - 1. As in the preceding proof, there is a positive
integer u such that eu,(1+|p|)™* converges to c,(1-+|p[)~* uniformly
in peP, as n — oo, If r denotes the vector in R whose all the coordinates
are u--2, then the sequence

Cnp
o 2 T

converges uniformly in R? to a continuous periodic function, as n — co.
The scheme of the following proof is like by the end of section 2, where
we proved that every periodic distribution is tempered. We say that
a sequence of periodic distributions f, belongs to the class (r), iff the cor-
responding sequence (14) is uniformly convergent. If a sequence f,, belongs
to (0), then, evidently, it is I-convergent. Assume that all sequences of
periodic distributions which belong to some class (r) are I-convergent,
and let f, be a sequence which belongs to (r-+ ¢;), where j is fixed arbitrary.
It fo = D 'oupB,, then the sequence g, = 3 'dny B, with

a - O
" 14 2|y

belongs to (r) and, therefore, is I-convergent. We have
Fo= D) (142 |]) dup By = gn— ih,

where ¢ iy the imaginary unit and h, = D' sgnny- d., B, Evidently, the
sequence A, belongs to (r), thus is I-convergent and so iy its derivative


GUEST


14 J. Mikusingki

W&, Thus f, is I-convergent. Since j may be chosen arbitrary, it follows
by induction that all sequences belonging to some (r) are I-convergent.
Thus, every VI-convergent sequence is I-convergent.

10. The following diagram shows which implications between the
considered kinds of convergence have been stated, so far:

o .
11° I | Distributional
| convergence
I (eonvergence in D))

|
|
11w I
— ]

: Tempered
|

TV ==3p-IV© I convergence
|

\— (convergence in ')
|

VI I v, | Convergence
| \ I in Fourier

l coefficients
______________ B P

Strong } Weak i
l convergence I

From this diagram we can immediately read that all possible impli-
cations hold between the 12 kinds of convergence, i.e., that all the 12
kinds of convergence are, for sequences of periodic distributions, equivalent.
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On symplectic mappings of contraction operators”
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R. 8. PHILLIPS (Stanford)

Dedicated to
Stanistaw Mazur and Wiadyslaw Orlicz

One of the more familiar theorems in funetion theory states that
every conformal mapping of the unit disk onto itself is a fractional linear
transformation. In 1943, Siegel [3] proved that this result holds as well
for symmetric complex matrices. Our purpose is to generalize this theorem
still further and show that it holds both for contraction operators and
for symmetric (as distinguished from Hermitian symmetric) contraction
operators.

More precisely, let #; denote the set of all strictly contractive linear
operators on a Hilbert space H,

v=[J; ] < 1],

and let Z, denote the set of all strictly contractive symmetric linear
operators on H,

Z,=1[%;|Z4)<1 and Z = Z'],
where for a given conjugation %,
7 = ¥7*¢.
We shall consider the group ¢ [ %] of one-to-one bianalytic mappings
g of f#, [2,] onto itselt with the metric
lps— ol = sup gy (J) — @u(J)| over 7, [or £,].

Let @, [¢,] denote the principal component of ¢ [&]. It will turn out

that &, == &. The analogous assertion does not hold for ¢ even in the

case of matrices; for example @(J) ==J’ belongs to ¢ but not to %,.
The transformation

(1) J = (AT + B)(0J +D)™*
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