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A note on a Szegb type properties of semi-spectral measures
by

W. MLAK (Krakéw)

The present paper deals with some properties of semi-spectral
measures of representations of subalgebras of ('(X), provided such meas-
ures exist. The properties in question were first proved for representa-
tions associated with completely non-unitary contractions in [7]. We
try in the present paper to bring to light some prediction-free essential
points of the reasonings involved in the proofs of similar properties within
the frames of the general theory of representations of function alge-
bras. We also present some examples of operator-theoretic interpretation
of some simple features concerning funetion algebras in connection with
the above-mentioned properties of semi-spectral measures.

Let H Dbe a complex Hilbert space. The inner product of f, geH is
denoted by (f, ¢). Ifll stands for the norm of f induced by this product.
We write L{H) for the algebra of all linear bounded operators in H. {|T]]
stands for the norm of 7'eL(H), T for the adjoint of 7. I is the identity
operator in H.

Suppose we are given a compact Hausdorff space X. C(X) (Cr(X))
is the Banach algebra of all complex (real) continuous functions on X
with the norm

(*) flull = supju (@)
X

We say that 4 < C(X) is the algebra (strictly: subalgebra of C(X))
if the following conditions are satisfied:

(1) 4 is a closed subspace of ¢(X) which is closed under multiplica-
tion, ie. u,ved implies uved.

(2) The funetion u,(z) =1 belongs to 4.

(3) The functions of 4 separate the points of X.
The mapping ¢ : 4 — L(H) is called the representation of A if the
following holds true:

(4) ¢ is a homomorphism of 4 into L(H) such that ¢(u,) = I.
(8) llp(w)l < lluj] for every ued (jjul| is defined by (*)).

Studia Mathematica XXXI,3 16
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In what follows the measures and functions are Baire ones. The
totality of all Baire subsets of X is denoted by B. The mapping ¥: B — L(H)
is called the semi-spectral measure if it satisfies the following conditions:

(6) F(X)=1.

(7) For every feH the function p(o) = (#(0)f, f) is a non-negative

measure on X. ) N

The semi-spectral measure F is called speciral if additionally
Floy n 0y) = F(0,)F(0,) for o,, o, B. Given the semi-spectral measure F
and bounded % we write

T = fmw
for TeL(H) it

(+%) (Tf, 9) = [wdp,

for all f,geH: py, (o) = (F(o)f, g) by definition. [udF is called the
semi-spectral integral of u (spectral if F is spectral). In any case the right-
hand side of (x+) determines a bounded bilinear form and there is exactly
one Tel(H) such that (x) holds true. It is not difficult to show that
u~> [udF is a linear map and

Il fudP| < |,

where [ju],, stands for the essential supremum of « with respect to F.
Tt is a classical result that for every ¢ which satisfies (4) for 4 = ¢(X)
and which is an involution-preserving mapping that is such that

(+) ?(@) = ()" for ue(X)

(% = complex conjugate of u) condition (5) holds true. The represen-
tation ¢ of general algebra A which satifies @(m) = p(u)* for u,Ted
is called a *-representation. It follows that any homomorphism ¢: ¢(X)
— L(H) (p(w,) = I) which satisfies (s%) is a *-representation. Moreover,
there exists for such ¢ a unique spectral meagure F: B — L(H) such that

o) = [udF

for every u(0(X). This is the result of Foiag (see for instance [1]) which
extends the above statement; namely, the following holds true:

() If @ is the representation p: A — L(H) and A is the Dirichlet alge-
bra (), then thereis a unique semi-spectral measure B': B — L(H) such that

G m(u)‘:fudli’ for ued

(1) A is the Dirichlet algebra if the seb Red — {v[v(%) = Rewu(z) for some ueAd}
is uniformly dense in OR(X); see [5].
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The above statement holds true if 4 is a log modular algebra (2)
provided ¢ satisfies some additional conditions —see [2]. The unigueness
of F satistying (3) for a given fixed ¢ is trivial if 4 is a Dirichlet algebra.
It is a result of [2] that the log modularity of 4 implies that there is at
most one F which satisties (£¥) for a given fixed ¢. In general, for any A
and any ¢ the uniqueness of F does not necessarily hold true. A trivial
example is at hand:

Consider the algebra A of functions which are analytic in D
= {2/l2l < 1} and continuous in the clogure D, and are such that u(0)
= u(1). The restrictions of « to the unit eircle I" — {#/lz] = 1} form the
subalgebra of O(I'). Let m stand for the normalized Lebesgne meagure
on I" and m, for the unit point mags at {1}. Simply take H as the one-
dimensional space and define the representation ¢: 4 — L(H) by

e(w)h =u(l)h, heH.
Now 7,, F, are defined by the formulas
Fy(o)h = m(o)h, Fylo)h = my(c)h.
They are different semi-spectral measures on I" and are such that
(fudFl)h =u(1)h = p(u)h = u(l)h = (fudzfg)h

for all uwed.

The interplay between theorem (i) and that which concerns *-repre-
sentations of O(X) may be expressed in terms of dilation theory. We in-
troduce the following definition:

The family {R,} < L(K) is the dilation of {T.} = L(H) if the fol-
lowing conditions are satisfied:

(8) H is a Hilbert subspace of K.

(9) I'f = PR.f for every a and every feH.

P stands here (and in all that follows) for the orthogonal projection
of K onto H. H is called the initial space, K the dilation space. {R,} is
called a minimal dilation if K = V B H. For referencesin dilation theory
see [9], [12].

Two dilations {R.} c L(K), {R.} = L(K') of {T.} = L(H) are called
equivalent if there is a unitary isomorphism ¥: K — K’ such that Vi=7f
for feH and R, = V-'R,V for each a. Now, ome of the basic theorems
of the dilation theory is the theorem of M. A. Naimark, which reads as
follows (see [15]):

() 4 is called log modular if the set logld~l| = fwjv = log|u—Y . for some
%, u—led} is uniformly dense in Ur(X); see [5] for the general theory. w:: .,
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(ii) Let F: B — L{H) be a semi-spectral measure. Then there is a spec-
tral measure B: B -+ L(K) such that {B(0)}.n 18 a dilation of {F(o)},.5.
The minimality condition K =\/E(c)H determines E up to equivalence.

We say that the representation ¢: A — L(H) 4is X-dilatable to the
w-representation ¢[-] of O(X) if {p[wl}ues is the dilation of {p(u)}y.a.
@[] is called the X-dilation of ¢(-).

It follows from (ii) that the representation ¢ is X-dilatable if and
only if there is a semi-spectral measure F such that for ued ¢(u) = f wdl.
Indeed, to any such F there is a spectral dilation B which induces the
x-representation of C'(X), which, when restricted to 4, gives the desired
dilation. Vice versa, if p[-] is the X-dilation of ¢(-) and E is the spectral
measure corresponding to ¢[-], then F =PEy (H —initial space) is the
suitable semi-speetral measure. If F is uniquely determined by the
formulas

pu) = [udF, ued,

then, since we deal with regular measures, we have

VE@H= V_ o¢[ulH,
aeB ueC(X)

which implies that in this case @[-] is determined uniquely up to equi-
valence by the minimality condition. This certainly happens if A4 is log
modular and @(-) is its X-dilatable representation, as follows from the
uniqueness results of [2].

The preliminary discussion being over, we are able to formulate
and prove some results announced at the beginning of the paper. Let
us consider the, algebra 4 < C(X) and let m be a probability measure
on X which is multiplicative on A. Write

Ap = {ufued and [udm = 0},

We are interested in the application of the Szegd-Krein-Kolmogorov
theorem (see [4] for its classical version) in its abstraet form, which reads
as follows:

(iii) Let u be a non-negative Baire measure on X. Then
ui;fnf 1—uldy = ‘eprlo.gpa’dm);

d,
u' stands here for the Radon-Nikodym derivative —di
: m
It follows from the results of [14] that the uniqueness of m implies
(iii) and viee versa. This is the case where A is log modular as shown in [5].
This applies in particular to the algebra H*® considered below. We shall
now prove the following theorem:
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TumormM. Suppose (iil) holds true. Lei ¢: A — L{H) be a represen-
tation of A which is X-dilatable to ¢[-]. Suppose E is the spectral measure
corresponding to ¢[-1. If feH, f £ 0 and Re(gc(u)f,f) < kil [ulf)ifi
for a certain ke[0,1) and all Uedy, then

logujeL'(m), where uj= —dlﬁf’%]i’ﬂ
m

Proof. We have to show that
= inf | |1—u|3d,
1) mmfl ultdp; >0

with u(e) = (E(a)f, f). Omne can assume without loss of generality that
Il = 1. Note now that |f—e[ulfi' = [{1—u{*dy, for all ueC(X). Con-
sequently,

JL—ul*dp; = 1—2Re(p[ulf, f) + g [uIf]F.

Since feH and p[u] is the dilation of p(u), we get {p(u)f,f) = (¢[ulf, f).
By our assumption Re(q:(u)f, f) < kliplulfl for ued,. It follows that

1—2kllp [wlf+ lelulfi’ < if—elulfl’
for uwed,,. But

1-F = ngin(l-—‘)kf-k &) < (1—2kllp [ulfll+ lp [wIf1%).
Since 0 < k< 1, we get

0<1—k <o=inf [[1—ufdy, qed
ey
COROLIARY. - Under the assumptions of the theorem, since

o = exp ([ logu; dm),
we have

log(1—#?) < [ logujdm.

This gives us the estimation of the interplay between the coniraction coef-
ficient k& and u;. )

‘We will now present some applications of the above theorem. Suppose
we are given a discrete subgroup G of reals naturally ordered by its sub-
semigroup &, of non-negative elements. The contraction-valued function
Te: G, — L(H) is called a semi-group of contractions if

Iy=1, Ti,=T.T for &, ne6,.
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It is proved in [10] that for every such semi-group 7', there is a unique
(up to equivalence minimal) unitary dilation U, (®). Write E for the spec-
tral measure of U, defined on X = G = the dual of @ and A(Gy) = t}le
uniform algebra on X spanned by characters £(#) such that & > 0 (xe@).
One extends uniquely the mapping

D at@ > Ty (&

£;=0 §=0

= 0)
to the representation ¢ of A(G,). The unique G-dilation of @ is the natural
representation of ¢ (@) induced by the unitary representation U,, which
is the unitary dilation of T;. This representation, we shall call it ¢[-],
is unique up to equivalence. For details, see [8]. Let us take as m the
Haar normalized meagure on fi‘ Then A, = the uniform span of poly-
nomials of the form 5%‘)(155 ().

Assume that for a certain feH, ||f| = 1, and a certain & = 0, &e@y,
we have
(10)

Write

IT% fl = Ifl  and SE?HTZJ‘H=7G< 1.

u{z) =Z“'i5i(m)’ where ;>0 (meé).

R

It follows from (10) that f = U, T7, f. Now, for our
(), f) = (Y 0 Veiae, T, 1 5).
i

Let us take such an 4 that & <# < &+& for i=1,...n and pub
¢i = (&+¢)—n. Then we have

pfs £l = (3 0 Unso, T5F, f) = (T, ) a4 £, 5)
= (Z a'iTaiTzofy T:f)'
Since |T,f], as a function of 7, decreases, we have by (10)

lo@)f, 7 <] 3 a7 1.
But

2 aiTg,-T;OVf =P2 a U, U_s, f -_—132 U, f=PU_, ¢u],
where ¢[-] is the previously mentioned G-dilation of @("). Tt follows that
B X R

(3) Por references -in unitary dilations, see [9] and [12]

icm°®
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which by the previous inequalities implies that
Re(p(u)f, f) < klp[ulf].

Since the polynomials u span A, the last inequality holds true for all

weAn. Applying the above arguments to AT@?) if necessary and using
the Theorem we infer that the following property holds true:

(iv) If there is a £ye@, such that i fl = ifl = 1 and
sup||Tofll = k<1 or 1Tl =fl =1 and sup|T,f] =k<1,
7> 1>E

then
10g d(Ed()faf)

1
m el (WZ) .

The above statement generalizes a series of results proved by the
author in [7], [9] and [11].

We will now illustrate the general considerations in the case of repre-
sentations of the H>-algebra induced by a completely non-unitary con-
traction. This is in fact the case where @ + 18 the semigroup of non-nega-
tive integers. Then the semi-group of contractions T reduces to the semi-
group of powers of a fixed contraction T. We then write gp for the repre-
sentation induced by the semi-group T as generally described before.
The algebra A(G,) becomes here the algebra of functions analytic in D
and continuous in D. Theorem (iv) reduces in this case to Theorem 8.5
of [9]. Assume now that T is completely non-unitary. Then the spectral
measure of the minimal unitary dilation U, say E, is concentrated on
the unit circle I' and is mutually absolutely continuous with the normal-
ized Lebesgue measure my on I' (see [12], Theorem 6.4, II). Consider
the algebra L®(mz) of my essentially bounded measurable funetions
on I" and the algebra H™ of bounded functions analytic (in D) with the
ess sup norm over I. The algebra L™{mz) is isometrically *-isomorphic
to its. Gelfand image. Let X be the space of maximal ideals of L®(my),
and identify L%(m;) with O(X) wia the Gelfand representation w — .
Under this representation, H™ is mapped onto a subalgebra H* of 0(X).
H* is log modular and its Shilov boundary is exactly X (see [4], [5]).
Now, since # and mz are mutually absolutely continuous, the formula

priu]l = [w(z)dB(z) o u < @
F
(uweL™(myz) establishes an isometric =-isomorphism between the algebra

formed by pr[u] (‘leLN(mL) and C(X)). It follows that there is a unique
spectral measure # on X such that )

orlu]l = gr[d] = [adB  for weI(my).
X
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Suppose now that ue H® and write u,(2) = u(rz) for re[0,1). It is known

(see [12], ITI) that the formula (@) = limgp(u,) (strong limit) defines
r—>l—

a representation of H>. Since ¢(u,)f = Per[u.lf for weH> and f from
the initial space and since @gp[u,] - @r[w] strongly, we have

sl —
y(@) = P [@dB,
pq

which implies thab

i (@) :f-ﬁdﬁ’ for  WeH™,

x
where F' = PHy is 2 semi-spectral measure on X. It is not difficult to
prove that ¥ and the representing measure iy, for the evaluation func-

tional at the origin are mutually absolutely continuous. Note that T is
completely non-unitary if and only if

(1) 'm;f(HT*"fH, 177} < 1 for each f, [Ifll =1.

It follows that for such f
Re(pr(u)f, f) < kyllpz (w1

with su}ta.ble k<1 and for ueA(D) for which #(0) = 0. Since pr4]
and p(u) for ufH“‘ are strong limits of ¢[u,.] and gr(w,) respectively,
u,s'A(D) and Hy = {u/ [udmy, = 0} consists exactly of
which #(0) = 0, the above inequality yields

Rely(#)f, f) < Fyller (411

those % for

for fteﬁzL. Tt follows from the Theorem that log ﬂE—'()j—’-fl is sum-
dm,

r s L
mable over X, because (iii) holds true in this case (see [4]).
The last statement, however, can be obtained without making use
of the Theorem. We proceed as follows:
Since(11) implies that (iv) holds true and A (D
) : Y =4 =
in this case,we obtain @) (Gl = mn

1—%f < |f—or[ulfl?
for ned,, (D). It follows by the limit passage gr[u.] = ¢r[4] that
‘ 1—&; < |f—prl@]fl?

for @ eHS,‘;'L. Now we use (iii) by the same argument as before.
Conmde‘r now the representation ¢: 4 — L(H). Call the subspace
t,H;:;; .of H which reduces ¢ an X-reducing subspace if there is a s-represen-
bion. y: 0(X) - L{H) such that @(u)f = p{u)f for ued and feH,.

- ©
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It is proved in [1] that every representation ¢ is a uniquely determined
orthogonal sum of an X-redueing representation ¢, and a representation ¢,
no part of which is a non-trivial X-reducing representation. ¢; is called
the X-pure part of ¢. In particular, if ¢ = @;, ¢ is called X-pure.

Given a non-zero positive measure x on X, we write H*(4, p) for
the L*(u)-span of A. If K < I’(u) and y, is the characteristic function
of the measurable set o, #,K stands for the set {f/f=y.g for a certain
geK}. We say that x is a Seegs measure [1] if the inclusion oo I ()
< H*A, p) implies u(s) = 0. It is proved in [1] that:

(v) If v is an arbilrary non-zero complex measure orthogonal to A, then
|v| 48 @ Szegd measure.

(vi) The elemeniary represeniation

gw)h =k, ued, heH(4,p),

is X-pure if and only if p is a Szegs measure.

The representation gr: 4(D) —~ L{H) induced by the contraction T
is Ipure if and only if T is completely non-unitary. It follows that in
this case the purity of the representation allows us to use the Theorem
or condition (iv). The suitable property concerning the summability of
logarithm of the Radon-Nikodym derivative of elementary measures
induced by semi-spectral measures for ¢y when extended for T ca.u.
to H™ is, as we have seen, a simple strong limit transter of the correspon-
ding property previously proved for the algebra A(D). This, however,
is a very special situation. In general, the purity of the representation
is in no general way related to the above-mentioned property of elemen-
tary measures created with the help of semi-spectral measures of repre-
sentations. We will consider some examples.

It is proved in [4] that ™ is not a Dirichlet algebra when consid-
ered as a subalgebra of }Jw(mL). Using the previous notation, we infer
therefore that there is a real non-zero measure u such that [ wdy =0
for #ed — H®. It follows from Theorem 1 of [137 (valid for log modular
algebras, as follows easily from [3]) that

= /"8+ Z,U‘iy
€

where u, is completely singular, ps | A and wil A p; are absolutely eon-
tinuous parts of p with respect to suitable multiplicative probability
meagures on A. Since u; are real, Theorem 6.7 of [5] implies that they
are zero measures. It follows that p is completely singular. Since u 1 A,
|#] is by (v) a Szegd measure and the elementary representation
pluyh =iih, ded =H", heH'(4,u)
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is by (vi) X-pure. Bub since || is completely singular, for every proba-
Dbility measure m multiplicative on A we have

inf||f—g[@]f|2 =0 for each feH*(4, |u]).
wed

@la] stands here for the minimal X-dilation of @(-) (necessarily unique
up to equivalence). )

The absolute continuity of the spectral measure of the dilation with
respect to a multiplicative measure does not help in any way. Consider
the additive group G of reals in the discrete topology. It is proved in [6]
that there is a non-negative function w which is summable with respect
to the Haar measure my Of ¢ and such that flogw dmyg = —oo, but
the stochastic process & — £(z) (£e6, weé) in L*(wdmy) has a trivial
remote past. It follows that the natural representation

plu)h = uh, ucA(G,), heH*{4(G,), wdmg) = H,
is é-pure. The semi-spectral measure of ¢, say F, is defined by the formula

(F(0)f, ) = [fgwdmz, §,9¢H, o a Baire subset of é.

Since logw is not my -summable, the same holds true for the Radon-
Nikodym derivative of the measure (F(o)f,f) with respect to mz for
every f. But F < mg.

Added in proof: The complete singularity of x4 follows immediately from
a corolla.rzr to Theorem 6.7 of [5]. Indeed, since u is real and u | Red, we have
# 1 A+A which implies that w is singular with respect to every probability mul-
tiplicative measure on A.
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