

Boundary properties of sets relative to function algebras*

by

C. E. RICKART (New Haven)

Introduction. Let Ω be a compact Hausdorff space and $\mathfrak A$ a given algebra of complex-valued continuous functions on Ω . We always assume that $\mathfrak A$ separates the points of Ω and contains the constants. Note that $\mathfrak A$ is a normed algebra under the "sup norm" given by

$$|a|_{\Omega} = \sup\{|a(\omega)| : \omega \in \Omega\}.$$

Let $\varphi: a \to \varphi(a)$ be a homomorphism of $\mathfrak A$ onto the complex numbers C. Then φ will be continuous if and only if $|\varphi(a)| \leqslant |a|_{\Omega}$ for each $a \in \mathfrak A$. If every continuous homomorphism φ is of the form $\varphi(a) = a(\omega_{\varphi})$, for some point $\omega_{\varphi} \in \Omega$, then $\mathfrak A$ is said to be natural. If $\mathfrak A$ is a Banach algebra (under any norm), then the condition that it be natural means that Ω is the space of maximal ideals of $\mathfrak A$. It is well-known that, for arbitrary $\mathfrak A$, the Silov boundary $\partial_{\mathfrak A} \Omega$ of Ω relative to $\mathfrak A$ exists. Recall that $\partial_{\mathfrak A} \Omega$ is a uniquely determined closed set which is minimal among all closed sets $F \subseteq \Omega$ with the property that $|a|_F = |a|_{\Omega}$ for each $a \in \mathfrak A$.

Consider an arbitrary set $X\subseteq \Omega$ and let $\mathfrak B$ denote an algebra of bounded functions on X which contains the restriction of $\mathfrak A$ to the set X. In Section 1, we define a "Šilov type" boundary for X relative to $\mathfrak B$ which reduces to the ordinary Šilov boundary when X is closed and $\mathfrak B$ consists of continuous functions. The more general notion is useful in the study of $\mathfrak A$ -holomorphic functions (see Section 2) defined on an open set. This special situation is considered in Section 2, where the main result concerns the behavior of $\mathfrak A$ -holomorphic functions outside of an $\mathfrak A$ -analytic subvariety of Ω , generalizing a result due to Glicksberg [1], Theorem 4.8.

1. A "Silov boundary" for arbitrary sets. Let X be a given subset of Ω and let $\mathfrak B$ denote an arbitrary algebra of bounded functions defined on X and containing the restriction $\mathfrak A|X$ of the algebra $\mathfrak A$ to the set X. Elements of $\mathfrak B$ need not be continuous and X is not assumed to be compact, though its closure $\overline X\subseteq \Omega$ is, of course, compact. A set $B\subseteq \overline X$ is called

^{*} The research in this paper was partially supported by NSF Grant GP 5493.

a \mathfrak{B} -boundary for X if for every open set $H\supseteq B$ and every $b\in \mathfrak{B}$ it is true that $|b|_{H\cap X}=|b|_X.$

The proof of the following theorem parallels that for the existence of the Šilov boundary for compact sets ([3], 3.3.1):

1.1. Theorem. There exists a unique minimal closed $\mathfrak{B} ext{-boundary}$ for X.

Proof. Consider first a family $\mathscr E$ of closed $\mathfrak B$ -boundaries for X which is simply ordered by inclusion (i.e., if $B_1,\,B_2\,\epsilon\,\mathscr E$, then either $B_1\subseteq B_2$ or $B_2\subseteq B_1$). Then the intersection B_0 of all sets in $\mathscr E$ is also a $\mathfrak B$ -boundary. This is immediate since the compactness of Ω implies that every open set which contains B_0 must also contain an element of $\mathscr E$. Therefore, by application of Zorn's lemma, there exists a minimal closed $\mathfrak B$ -boundary for X which we denote by Γ . It remains to prove uniqueness.

Let δ be any point of Γ and consider an arbitrary neighborhood N of δ in Ω . Since $\mathfrak A$ separates the points of Ω and consists of continuous functions, we may choose a neighborhood of δ of the form

$$N(\varepsilon) = N_{\delta}(a_1, \ldots, a_n; \varepsilon) = \{\omega : |a_i(\omega) - a_i(\delta)| < \varepsilon \ (i = 1, \ldots, n)\},$$

where $a_1, \ldots, a_n \in \mathfrak{A}$ and $\varepsilon > 0$, such that $N(\varepsilon) \subseteq N$. Also choose ε' such that $0 < \varepsilon' < \varepsilon$ and set $N(\varepsilon') = N_\delta(a_1, \ldots, a_n; \varepsilon')$. Since $\Gamma - N(\varepsilon')$ is a proper closed subset of Γ , it cannot be a \mathfrak{B} -boundary for X. Hence there exists an open set $H \supseteq \Gamma - N(\varepsilon')$ and $b \in \mathfrak{B}$ such that

$$|b|_{H \cap X} < |b|_X$$
.

Let $\varrho = |b|_{H \cap X} |b|_X^{-1}$. Choose an integer k such that

$$\varrho^k < \left(1 + \sum_{i=1}^n |a_i|_{\Omega}\right)^{-1} \varepsilon' = \varepsilon''$$

and set $f = b^k$. Then

$$|f|_{H \cap X} < \varrho^k |f|_X < \varepsilon^{\prime\prime} |f|_X$$

Then, for each i,

$$|a_i f|_{H \cap X} < |a_i|_Q \varepsilon'' |f|_X < \varepsilon' |f|_Y$$

and also

$$|a_i f|_{N(\varepsilon') \cap X} \leqslant |a_i|_{N(\varepsilon')} |f|_X \leqslant \varepsilon' |f|_X,$$

so we have

$$|a_i f|_{(H \cup N(\varepsilon')) \cap X} \leqslant \varepsilon' |f|_X$$
.

Since $\Gamma \subseteq H \cup N(\varepsilon')$ and Γ is a ${\mathfrak B}$ -boundary, it follows that

$$|a_if|_{(H \cup N(\mathfrak{s}')) \cap X} = |a_if|_X.$$

Therefore

$$|a_i f|_X \leqslant \varepsilon' |f|_X$$

for each i. Next consider any $\omega \, \epsilon X - N$. Then $\omega \notin N(\epsilon)$, so $|a_i(\omega)| \geqslant \epsilon$ for some $i=i_0$, and hence

$$\varepsilon|f(\omega)| \leqslant |a_{i_0}(\omega)f(\omega)| \leqslant \varepsilon'|f|_X$$
.

therefore $\varepsilon |f|_{X-N} \leqslant \varepsilon' |f|_X$, and since $\varepsilon' < \varepsilon$, we conclude that

$$|f|_{X-N} < |f|_X.$$

Now let F be an arbitrary closed subset of \overline{X} with $\Gamma \not = F$. Then there exists $\delta \cdot \epsilon \Gamma - F$ and a neighborhood N of δ with $\overline{N} \cap F = \emptyset$. By the above result, there exists $f \cdot \mathfrak{B}$ such that $|f|_{X-N} < |f|_X$. Consider the open set $H = \Omega - \overline{N}$. Then $F \subset H$. However

$$|f|_{H \cap X} = |f|_{X - \overline{N}} < |f|_X,$$

so F cannot be a $\mathfrak B$ -boundary for X. In other words, every closed $\mathfrak B$ -boundary for X must contain Γ , thus proving the uniqueness.

When X is compact and $\mathfrak B$ consists of continuous functions, the minimal closed $\mathfrak B$ -boundary given by the above theorem obviously reduces to the ordinary Silov boundary. Therefore we denote it also by $\partial_{\mathfrak B} X$. As a consequence of the proof, we have the following characterization of points of $\partial_{\mathfrak B} X$:

1.2. COROLLARY. A point δ belongs to $\partial_{\mathfrak{B}}X$ if and only if, for every neighborhood N of δ , there exists $b \in \mathfrak{B}$ with $|b|_{X-N} < |b|_X$.

If $\mathfrak A$ is natural and $\mathfrak B$ consists of continuous functions, then $\partial_{\mathfrak B} X$ may be identified in another way which relates it to an ordinary Šilov boundary. Observe first that if $\overline{\mathfrak{B}}$ denotes the closure of \mathfrak{B} under uniform convergence on X, then $\partial_{\overline{B}}X = \partial_{\mathfrak{B}}X$. Therefore we may assume that \mathfrak{B} is already closed and is accordingly a Banach algebra with norm $|b|_{\mathcal{X}}$. Denote by $\Phi_{\mathfrak{B}}$ the space of maximal ideals of ${\mathfrak{B}}$ and by $b \to \hat{b}$ the Gelfand representation of $\mathfrak B$ as an algebra $\hat{\mathfrak B}$ of continuous functions on $\Phi_{\mathfrak B}$. Let $\iota:\xi\to\iota(\xi)$ be the natural embedding of X in $\Phi_{\mathfrak{B}}$, where $\hat{b}(\iota(\xi)) = b(\xi)$, $b \in \mathfrak{B}$. Then ι is a homeomorphism ([3], 3.2.1). Denote the image of X in $\Phi_{\mathfrak{R}}$ by Y and let \overline{Y} be the closure of Y in $\Phi_{\mathfrak{B}}$. Next, because $\mathfrak{A}|X\subseteq \mathfrak{B}$, every $\varphi \in \Phi_{\mathfrak{B}}$ defines a homomorphism $a \to a \mid X(\varphi)$ of $\mathfrak A$ onto C. Therefore, since $\mathfrak A$ is natural, we obtain a mapping $\pi: \Phi_{\mathfrak{B}} \to \Omega$ such that $a \mid X(\varphi) = a(\pi(\varphi))$, $a \in \mathfrak{A}$. The mapping π is obviously continuous and, on the set Y, is oneto-one and inverse to the natural embedding i. In order to simplify notation, we shall write $\hat{a} = a | X$ and denote the Silov boundary of \overline{Y} relative to $\hat{\mathfrak{B}}|\overline{Y}$ by $\partial_{\mathfrak{B}}\overline{Y}$.

1.3. Proposition. (i) $\pi(\overline{Y}) = \overline{X}$ and $\pi(\overline{Y} - Y) = \overline{X} - X$.

(ii)
$$\pi(\partial_{\mathfrak{B}}\overline{Y}) = \partial_{\mathfrak{B}}X$$
.

Proof. Consider a point $\psi \in \overline{Y}$ along with its image $\pi(\psi) \in \Omega$ and let $N = N_{\pi(\psi)}(a_1, \ldots, a_n; \varepsilon)$ be an arbitrary basic neighborhood of $\pi(\psi)$ in Ω . Denote by $U = N_{\psi}(\hat{a}_1, \ldots, \hat{a}_n; \varepsilon)$ the corresponding neighborhood of ψ in $\Phi_{\mathfrak{B}}$. Then $\pi(U \cap Y) = N \cap X$. It immediately follows that $\pi(\overline{Y}) \subseteq \overline{X}$. On the other hand, since \overline{Y} is compact and $\pi(\overline{Y}) \supseteq X$, the continuity of π implies $\pi(\overline{Y}) \supseteq \overline{X}$ so $\pi(\overline{Y}) = \overline{X}$.

Suppose now that $\pi(\psi) \in X$ and let $b \in \mathfrak{B}$. Since b is continuous, we may, for arbitrary $\varepsilon' > 0$, choose the neighborhood N such that $\xi \in N \cap X$ implies

$$|b(\xi)-b(\pi(\psi))|<\varepsilon'.$$

Again, since \hat{b} is continuous on $\Phi_{\mathfrak{B}}$ and $\psi \in \overline{Y}$, there exists $\xi_0 \in X$ with $\iota(\xi_0) \in U \cap Y$ such that

$$|\hat{b}(\psi) - \hat{b}(\iota(\xi_0))| < \varepsilon'$$
.

Note that $\xi_0 \in \mathcal{N} \cap X$ so $|b(\xi_0) - b(\pi(\psi))| < \varepsilon'$. Also $b(\xi_0) = \hat{b}(\iota(\xi_0))$ and $b(\pi(\psi)) = \hat{b}(\iota(\pi(\psi)))$, so it follows that

$$\left|\hat{b}\left(\psi\right)-\hat{b}\left(\iota\left(\pi(\psi)\right)\right)\right|<2arepsilon'$$
 .

Since e' is arbitrary, we have $\hat{b}(\psi) = \hat{b}(\iota(\pi(\psi)))$ for every $b \in \mathfrak{B}$. Therefore $\psi = \iota(\pi(\psi)) \in Y$. This proves that $\pi(\overline{Y} - Y) = \overline{X} - X$.

Finally, assume that $\psi \in \partial_{\mathfrak{B}} \overline{Y}$. Then there exists $b \in \mathfrak{B}$ such that

$$|b|_{X-N} = |\hat{b}|_{Y-N} < |\hat{b}|_{\overline{Y}} = |b|_{X}.$$

Therefore, by Corollary 1.2, $\pi(\psi) \in \partial_{\mathfrak{B}} X$, so we conclude that $\pi(\partial_{\mathfrak{B}} \overline{Y}) \subseteq \partial_{\mathfrak{B}} X$. On the other hand, if H is any open set that contains $\pi(\partial_{\mathfrak{B}} \overline{Y})$, then, by the continuity of π , there exists an open set G in $\Phi_{\mathfrak{B}}$ containing $\partial_{\mathfrak{B}} \overline{Y}$ such that $\pi(G) \subseteq H$ and hence $\pi(G \cap Y) \subseteq H \cap X$. For arbitrary $b \in \mathfrak{B}$, we have

$$|b|_{H_{\cap}X}\geqslant |\hat{b}|_{G_{\cap}Y}=|\hat{b}|_{G_{\cap}\overline{Y}}=|\hat{b}|_{\partial_{\mathfrak{R}}\overline{Y}}=|\hat{b}|_{\overline{Y}}=|b|_{X},$$

so $|b|_{H_{\cap}X} = |b|_X$ and it follows that $\pi(\partial_{\mathfrak{B}}\overline{Y})$ is a \mathfrak{B} -boundary for X. Since $\pi(\partial_{\mathfrak{B}}\overline{Y})$ is closed, it must therefore contain $\partial_{\mathfrak{B}}X$ which means that $\pi(\partial_{\mathfrak{B}}\overline{Y}) = \partial_{\mathfrak{B}}X$.

2. A-holomorphic functions on an open set. Let \mathscr{F} be an arbitrary family of complex-valued functions defined on subsets of Ω and let g be a given function defined on a set $D\subseteq\Omega$. Then g is said to be locally approximable by elements of \mathscr{F} if for each $\delta\in D$ there exists a neighborhood N of δ such that, on $N\cap D$, g is a uniform limit of elements of \mathscr{F} . If \mathscr{F}

contains every function which is locally approximable by its elements, then \mathscr{F} is said to be locally closed. We denote by $\mathfrak{H}_{\mathfrak{A}}$ the smallest locally closed family that contains the given algebra \mathfrak{A} . Elements of $\mathfrak{H}_{\mathfrak{A}}$ are called \mathfrak{A} -holomorphic functions ([2], Definition 2.2). It is not difficult to see that $\mathfrak{H}_{\mathfrak{A}}$ does exist and consists of continuous functions. Also, $\mathfrak{H}_{\mathfrak{A}}$ is closed under uniform convergence and under the algebraic operations whenever they are defined. If \mathfrak{A} is natural, then a deeper result is that elements of $\mathfrak{H}_{\mathfrak{A}}$ satisfy an extension of the Rossi local maximum modulus principle for Banach algebras [4]. This may be stated as follows: Let U be an open subset of $\Omega - \partial_{\mathfrak{A}} \Omega$ and let h be a function continuous on \overline{U} and \mathfrak{A} -holomorphic on U. Then $|h|_{\mathrm{bd}U} = |h|_{\overline{U}}$, where $\mathrm{bd}\,U$ is the topological boundary of U in the space Ω ([2], Lemma 2.5). One can easily verify that it is sufficient here to require that h be only almost \mathfrak{A} -holomorphic on U. This means that it is continuous on U and \mathfrak{A} -holomorphic on that portion of U where it is non-zero.

Consider an open set G in Ω and denote by \mathfrak{B}_G the algebra of all bounded continuous functions on G which are \mathfrak{A} -holomorphic on $G-\partial_{\mathfrak{A}}\Omega$. Note that $\mathfrak{A} \mid G \subseteq \mathfrak{B}_G$. In this case, we call any \mathfrak{B}_G -boundary for G an \mathfrak{A} -holomorphic boundary for G. Also, we shall denote by $\partial_{\mathfrak{A} \cdot \text{hol}}G$ the minimal closed \mathfrak{A} -holomorphic boundary for G given by Theorem 1.1. Define

$$\mathrm{bd}_{\partial}G=(\mathrm{bd}G)\cup(G\cap\partial_{\mathfrak{A}}\varOmega).$$

Then $\mathrm{bd}_{\partial}G$ is a closed subset of \overline{G} and it follows from the local maximum modulus principle and Corollary 1.2 that $\partial_{\mathfrak{A}\text{-}\mathrm{hol}}G\subseteq\mathrm{bd}_{\partial}G$. Observe also that the Šilov boundary of \overline{G} relative to functions continuous on \overline{G} and $\mathfrak{A}\text{-}\mathrm{holomorphic}$ on $G-\partial_{\mathfrak{A}}\Omega$ is contained in $\partial_{\mathfrak{A}\text{-}\mathrm{hol}}G$.

If $\Theta \subseteq \varDelta \subseteq \Omega$, then Θ is called an \mathfrak{A} -analytic subvariety of \varDelta if for each $\delta \in \mathcal{A}$ there exists a neighborhood N of δ such that $N \cap \Theta$ consists of the common zeros of functions that are almost \mathfrak{A} -holomorphic on $N \cap \varDelta$ ([2], Definition 2.10). Note that Θ is automatically a relatively closed subset of \varDelta . Also, one could clearly replace N by \overline{N} in the definition. The following theorem generalizes a result of Glicksberg ([1], Theorem 4.8) who considered, instead of a general \mathfrak{A} -analytic subvariety, the zero set of a single function belonging to \mathfrak{A} :

2.1. THEOREM. Let G be an open set in Ω and let Θ be an \mathfrak{A} -analytic subvariety of Ω . Then $\mathrm{bd}_{\theta}G-\Theta$ is an \mathfrak{A} -holomorphic boundary for $G-\Theta$.

Proof. Observe first that $G-\Theta$ is an open set in Ω and $\mathrm{bd}_{\vartheta}(G-\Theta)-\Theta=\mathrm{bd}_{\vartheta}G-\Theta$. Therefore we could replace G by $G-\Theta$. In other words, it may be assumed, without loss of generality, that $G\cap\Theta=\emptyset$. Next let $G_0=G-\partial_{\mathfrak{A}}\Omega$ and suppose that the theorem has been proved for the open set G_0 . Consider any open set $H\supseteq\mathrm{bd}_{\vartheta}G-\Theta$. Then

$$\mathrm{bd}_{\partial}G_0 - \Theta \subseteq \mathrm{bd}_{\partial}G - \Theta \subseteq H.$$

Moreover, if $h \in \mathfrak{B}_G$, then $h | G_0 \in \mathfrak{B}_{G_0}$ so, by hypothesis, $|h|_{H \cap G_0} = |h|_{G_0}$. Also, since $H \supseteq G \cap \partial_{\mathfrak{A}} \Omega$, we have

$$|h|_{H_{\cap}G} = \max(|h|_{H_{\cap}G_0}, |h|_{G_{\cap}\partial_{\mathcal{H}}\Omega}) = \max(|h|_{G_0}, |h|_{G_{\cap}\partial_{\mathcal{H}}\Omega}) = |h|_G.$$

Therefore, if the theorem is true for G_0 , then it is also true for G. Thus, we may also assume, without loss of generality, that $G \subseteq \Omega - \partial_{\mathfrak{A}} \Omega$. Note that in this case $\mathrm{bd}_{\theta}G = \mathrm{bd}\,G$.

Now suppose that the theorem were false for some open set $G\subseteq \Omega$ — $-\partial_{\mathfrak{A}}\Omega$ with $G\cap \Theta=\emptyset$. Then there exists $h\,\epsilon\mathfrak{B}_G$ and an open set $H\supseteq \mathrm{bd}G-\Theta$ such that $|h|_{H\cap G}<\frac{1}{3},\ |h|_G=1$.

 $_{
m Let}$

$$O_n = \left\{ \omega : \omega \, \epsilon G, \, |h(\omega)| > 1 - \frac{1}{n} \right\},$$

and set

$$F = \bigcap_{n=1}^{\infty} \bar{O}_n$$
.

Then F is a non-vacuous closed set and

$$F \cap (\mathrm{bd}G - \Theta) \subseteq F \cap H = \emptyset$$

so $F \cap \mathrm{bd}G \subseteq \Theta$.

Let δ be a strong boundary point of F with respect to $\overline{\mathfrak{A}|F}$ ([3], 3.3.9) and let N be a neighborhood of δ such that $\overline{N} \cap \Theta$ is the set of common zeros of functions almost \mathfrak{A} -holomorphic on \overline{N} . Since δ is a strong boundary point, there exists $a \in \mathfrak{A}$ such that

$$|a|_{F-N} < \frac{1}{3}, \quad |a(\delta)| = 1.$$

Define

$$W = \{\omega : \omega \in \Omega, |a(\omega)| < \frac{1}{3}\}.$$

Then $F \subset N \cup W$. Hence $O_n \subseteq N \cup W$ for large n. Therefore we may choose ϱ with $\frac{1}{3} < \varrho < 1$ such that

$$|h|_{G-(N\cup W)}\leqslant \varrho$$
.

Choose m such that

$$\left(\frac{1}{3}\right)^m |a|_{\Omega} < \varrho^m |a|_{\Omega} < \frac{1}{3}.$$

Then, for $\omega \in G - (N \cup W)$,

$$|(h^m a)(\omega)| \leqslant |h(\omega)|^m |a|_{\Omega} \leqslant \varrho^m |a|_{\Omega} < \frac{1}{3}.$$

Since $G-N\subseteq [G-(N\,\cup\,W)]\cup [G\,\cap\,W],$ it follows that

$$|h^m a|_{G-N} \leqslant \frac{1}{3}$$
.

Furthermore, since

$$|h|_{\overline{H}\cap G}^m = |h|_{H\cap G}^m \leqslant \left(\frac{1}{3}\right) < \varrho^m,$$

we also have

$$|h^m a|_{\overline{H} \cap G} \leqslant \frac{1}{3}.$$

Consider next the open set $U=(N-\overline{H})\cap G$, and determine its topological boundary. Since $U\cap H=\emptyset$, we have $\overline{U}\cap H=\emptyset$ so

$$\overline{U} \cap (\mathrm{bd}G - \Theta) = \emptyset$$
.

Since $\overline{U} \subseteq \overline{G}$, this implies that $\overline{U} - G \subseteq \Theta$ and hence

$$(\operatorname{bd} U) \cap (\operatorname{bd} G) \subseteq \Theta$$
.

Also

$$(\operatorname{bd} U) \cap G \subseteq (G - N) \cup (\overline{H} \cap G).$$

Therefore we may write

$$\mathrm{bd}\, U = B_{\Theta} \cup B_{G},$$

where $B_{\theta} \subseteq \Theta$ and $B_{G} \subseteq (G-N) \cup (\overline{H} \cap G)$. From the second inclusion and the preceding inequalities, we have

$$|h^m a|_{B_G} \leqslant \frac{1}{3}$$
.

Since $\delta \in F$ and $|a(\delta)| = 1$, there exists $\omega_0 \in N \cap G$ such that

$$|h(\omega_0)| > \left(\frac{2}{3}\right)^{1/2m}, \quad |a(\omega_0)| > \left(\frac{2}{3}\right)^{1/2}.$$

Then

$$|(h^m a)(\omega_0)| > \frac{2}{3}$$
.

Also

$$|h|_{H \cap G} \leqslant \frac{1}{3} < |h(\omega_0)|,$$

so $\omega_0 \notin \overline{H}$ and therefore $\omega_0 \in U$. Furthermore, since $\omega_0 \in \overline{N} - \Theta$, there exists g, almost \mathfrak{A} -holomorphic on \overline{N} , such that $g(\omega_0) \neq 0$ while $g(\omega) = 0$ for $\omega \in \overline{N} \cap \Theta$.

Finally choose k such that $(\frac{1}{2})^k |q|_{\overline{N}} < |q(\omega_0|)$ and define

$$f(\omega) = \begin{cases} ((h^m a)^k g)(\omega), & \omega \in \overline{U} \cap G, \\ 0, & \omega \in \overline{U} - G. \end{cases}$$

Since $\overline{U} - G \subseteq \Theta$ and h is bounded while g is continuous, it follows that f is almost $\mathfrak A$ -holomorphic on \overline{U} . Moreover

$$|f(\omega_0)|=|(h^ma)(\omega_0)|^k|g(\omega_0)|>\left(rac{2}{3}
ight)^k|g(\omega_0)|.$$

Since $f(\omega) = 0$ for $\omega \in B_{\theta}$, we have $|f|_{\text{bd}U} = |f|_{B_{\theta}}$. Also, since $|h^m a|_{B_{\theta}} \leqslant \frac{1}{3}$, we have

$$|f|_{B_G}\leqslant |h^ma|_{B_G}^k|g|_{B_G}\leqslant \left(\frac{1}{3}\right)^k|g|_{\overline{N}}=\left(\frac{2}{3}\right)^k\left(\frac{1}{2}\right)^k|g|_{\overline{N}}<\left(\frac{2}{3}\right)^k|g(\omega_0)|\,.$$

Therefore

$$|f|_{\mathrm{bd}U} < \left(\frac{2}{3}\right)^k |g(\omega_0)| < |f(\omega_0)|.$$

This contradicts the local maximum modulus principle for almost A-holomorphic functions and completes the proof.

The method of proof used in the above theorem enables us to obtain another related boundary property of G. First we define a point $\delta \in \operatorname{bd} G$ to be an \mathfrak{A} -analytic boundary point if there exists a neighborhood N of δ such that the set $N \cap \operatorname{bd} G$ consists of the common zeros of functions almost \mathfrak{A} -holomorphic on $N \cap \overline{G}$. Denote the set of all \mathfrak{A} -analytic boundary points of G by $(\operatorname{bd} G)_0$. It is obvious that $(\operatorname{bd} G)_0$ is an open set relative to $\operatorname{bd} G$. Also, if G is an open set in G such that G is an G-analytic subvariety of the set G.

2.2. Theorem. Let G be an open subset of $\Omega - \partial_{\mathfrak{A}} \Omega$. Then $\partial_{\mathfrak{A}-\mathrm{hol}} G \subseteq (\mathrm{bd} G) - (\mathrm{bd} G)_0$.

Proof. Since $G \subseteq \Omega - \partial_{\mathfrak{A}} \Omega$, it follows that $\partial_{\mathfrak{A} - \mathrm{hol}} G \subseteq \mathrm{bd} G$. Also, $(\mathrm{bd} G) - (\mathrm{bd} G)_0$ is a closed set. Therefore, if the theorem were false, there would exist a point $\delta \epsilon \partial_{\mathfrak{A} + \mathrm{hol}} G \cap (\mathrm{bd} G)_0$. Choose a neighborhood N of δ such that $N \cap \mathrm{bd} G$ is the set of common zeros of functions almost \mathfrak{A} -holomorphic on $N \cap \overline{G}$. Then choose a neighborhood V of δ such that $\overline{V} \subset N$. By Corollary 1.2, there exists $h \in \mathfrak{B}_G$ such that

$$|h|_{G-V} < \frac{1}{3}, \quad |h|_{G} = 1.$$

Set $U=V\cap G$ and choose $\omega_0\in U$ such that $|h(\omega_0)|>\frac{2}{3}$. Since $\omega_0\in (N\cap \overline{G})-(N\cap \operatorname{bd} G)$, there exists g, almost \mathfrak{A} -holomorphic on $N\cap \overline{G}$, such that $g(\omega_0)\neq 0$ while $g(\omega)=0$ for $\omega\in N\cap \operatorname{bd} G$. Next choose k such that

$$\left(\frac{1}{2}\right)^k |g|_{\overline{U}} < |g(\omega_0)|$$

and define

$$f(\omega) = egin{cases} (h^k g)(\omega), & \omega \, \epsilon \overline{U} \, \cap G, \ 0, & \omega \, \epsilon \overline{U} - G. \end{cases}$$

Note that $\overline{U} \subset N \cap \overline{G}$ and $\overline{U} - G \subseteq N \cap \mathrm{bd}G$ so it follows that f is almost \mathfrak{A} -holomorphic on \overline{U} and is zero on $(\mathrm{bd}\,U) \cap (\mathrm{bd}\,G)$. Moreover,

$$|f(\omega_0)| > \left(\frac{2}{3}\right)^k |g(\omega_0)|$$

and

$$|f|_{\mathrm{bd}U} = |f|_{(\mathrm{bd}U) \cap G} \leqslant |h|_{(\mathrm{bd}U) \cap G}^{k} |g|_{\overline{U}} \leqslant |h|_{G-V}^{k} |g|_{\overline{U}} < \left(\frac{1}{3}\right)^{k} |g|_{\overline{U}}$$
$$= \left(\frac{2}{3}\right)^{k} \left(\frac{1}{2}\right)^{k} |g|_{\overline{U}} < \left(\frac{2}{3}\right)^{k} |g(\omega_{0})|.$$

Thus $|f|_{\mathrm{bd}U} < |f(\omega_0)|$ and we have a contradiction of the local maximum modulus principle.

References

[1] I. Glicksberg, Maximal algebras and a theorem of Rado, Pac. J. Math. 14 (1964), p. 919-941.

[2] C. E. Rickart, Holomorphic convexity for general function algebras, Canadian J. Math. 20 (1968), p. 272-290.

[3] - General theory of Banach algebras, Princeton 1960.

[4] H. Rossi, The local maximum modulus principle, Annals of Math. 72 (1960), p. 1-11.

YALE UNIVERSITY NEW HAVEN, CONNECTICUT

Reçu par la Rédaction le 2. 3. 1968