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Boundary properties of sets relative to function algebras™
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C. E. RICKART (New Haven)

Introduction. Let 2 be a compact Hausdorff space and U a given
algebra of complex-valued continuous functions on Q. We always assume
that U separates the points of 2 and contains the constants. Note that %A
is a mormed algebra under the “sup norm” given by

lalo = sup{la(w)| : 0}

Let ¢ : @ — ¢(a) be a homomorphism of %A onto the complex numbers C-
Then ¢ will be continuous if and only if |p(a)] < |a|, for each ae¥. If
every continuous homomorphism ¢ is of the form ¢(a) = a(w,), for some
point w, e, then U iy said to be natural. It A is a Banach algebra (under
any norm), then the condition that it be natural means that £ is the
space of maximal ideals of A. It is well-known that, for arbitrary o, the
Silov boundary 8y 2 of 2 relative to U exists. Recall that dy 2 is a uniquely
determined closed set which is minimal among all closed sets F < Q
with the property that |a|p = |a], for each ae.

Consider an arbitrary set X c  and let B denote an algebra of
bounded functions on X which contains the restriction of A to the set X.
In Section 1, we define a “Silov type” boundary for X relative to®B which
reduces to the ordinary Silov boundary when X is closed and B consists
of continuous functions. The more general notion is useful in the study
of 9-holomorphic functions (see Section 2) defined on an open sef. This
special situation is considered in Section 2, where the main result con-
cerns the behavior of A-holomorphic functions outside of an A-analytic
subvariety of Q, generalizing a result due to Glicksberg [1], Theorem 4.8.

1. A <Silov boundary* for arbitrary sets. Let X be a given subset
of O and let B denote an arbitrary algebra of bounded functions defined
on X and containing the restriction 9| X of the algebra U to the set X.
Elements of B need not be continuons and X is not assumed to be compact,
though its closure X < £ i, of course, compact. A set B X is called

* The research in this paper was partially supported by NSF Grant GP 5493.
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a B-boundary for X if for every open set H 2 B and every be® it is true
that [blg.x = [blx-

The proof of the following theorem parallels that for the existence
of the Bilov boundary for compact sets ([3], 3. 3.1):

1.1. TeEorEM. There exists a unique minimal closed B-boundary
for X.

Proof. Consider first a family & of closed B-boundaries for X which
is simply ordered by inclusion (i.e., if By, Bye &, then either B, =B,
or B, € By). Then the intersection B, of all sets in & is also aB-boundary.
This is immediate since the compactness of 2 implies that every open
set which contains B, must also contain an element of &. Therefore, by
application of Zorn’s lemma, there exists a minimal closed B-boundary
for X which we denote by I'. It remains to prove uniqueness.

Let 6 be any point of I" and consider an arbitrary neighborhood N
of 5 in Q. Since U separates the points of £ and consists of continuous
functions, we may choose a neighborhood of & of the form

N(e) = Ns(ayy +..y @p;6) = {wi |ay(w)—a;(d)| < & (i = 1,...,n)},

where a,,...,a,¢% and ¢ >0, such that N(¢) = N. Also choose &' such
that 0< ¢’ <& and set N(s) = Ny(ayy ..., ap; ¢'). Since I'— N (e') is
a proper closed subset of I, it cannot be aB-boundary for X, Hence there
exists an open set H 2 '—N(¢') and be®B such thab
Blaax < |blx.
Let ¢ = |b|m,.x|b|%". Choose an integer % such that
&< (14 Ylade) e = o7
¥} i=1
and set f =b". Then
‘ ‘L fla~x < o"Iflx< ¢ |flx.
Then, for each 1,
e [8flrax < |@ilae” |flx < &
and i as"|flx Iflx
) il ax < sl [ flx < & |flx;
80 we have i
’Ia’if,(HuN(e'))nX <é|flx.
Sinee I'< H < N{¢') and I' is a B-boundary, it follows that

|93l @omeyax = |afix.

=
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Therefore
laflx < e&'|flx

for each 4. Next consider any weX—XN. Then w ¢N (g), 80 |aj(w)] > &
for some 4 = ¢, and hence

e|f(o) < lag(o)f(o) < &|flx.
therefore ¢|f|x_n < &'[flx, and since ¢ < & we conclude thab

flx-y < Iflx.

Now let F' be an arbitrary closed subset of X with I" & ¥. Then there
exists de/'— F and a neighborhood ¥ of § with ¥ ~ F = @. By the above
result, there exists fe®B such that |f|x_y< |flx- Consider the open set
H = Q—-N. Then F c H. However

[fla~x = flz-% < |flx,

so I' cannot be a B-boundary for X. In other words, every closed B-boun-
dary for X must contain I', thus proving the uniqueness.

‘When X is compact and B consists of continuous functions, the min-
imal closed B-boundary given by the above theorem obviously reduces
to the ordinary Silov boundary. Therefore we demote it also by dgX.
As a consequence of the proof, we have the following characterization
of points of 0y X:

1.2. CorOLLARY. A point 6 belongs to 0x X if and only if, for every
neighborhood N of 6, there exists beB with |blx_n < |b|x.

If U is natural and B consists of continuous funetions, then dg X may
be identified in another way which relates it to an ordinary Silov boun-
dary. Observe first that if B denotes the closure of B under uniform con-
vergence on X, then 95X = 0y X. Therefore we may assume that B is
already closed and is accordingly a Banach algebra Wit}l norm |b|x. Denote
by Py the space of maximal ideals of B and by b — b the Gelfand repre-
sentation ofB as an algebra,i’% of continuous functions on Dy, Let ¢ : & - ¢(§)
be the natural embedding of X in @y, where @(L(E)) = b(&), beB. Then ¢
is a homeomorphism ([3], 3.2.1). Denote the image of X in @y by ¥ and
let ¥ be the closure of ¥ in Pg. Next, because A| X =B, every peDy

/\ .
defines a homomorphism @ — a|X(p) of A onto C. Therefore, since A

is natural, we obtain a mapping = : Oy — 2 such that a|X(¢) = a,.(yz(qa)) s
@ <9, The mapping « is obviously continuous &nd, on the set ¥, is one-
to-one and inverse to the natural embedding ¢ In order to simplify nota-
AN L _
tion, we shall write & = a|X and denote the Silov boundary of ¥ rela-

tive to B|¥ by 0yY.
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(&3
=4
(=2

1.3. ProrosttioN. (i) #(¥) =X end (Y —-¥) = X—X.

(i) {0y T) = Oy X.

Proof. Consider a point pe ¥ along with its image z(y)e2 and let
N = Nagy(@rs -0 s &) be an arbitrary basic neighborhood of z(y)
in Q. Denote by U = N, (@1, ..., du; ¢) the corresponding neighborhood
of y in @y. Then z(U ~ ¥) = N ~ X. It immediately follows that =(Y)

c X. On the other hand, since ¥ is compact and =(¥) 2 X, the conti-
nuity of = implies =(¥) 2 X so #(¥) = X.
Suppose now that z(yp)eX andlet beB. Since b is continuous, we may,
for arbitrary & >0, choose the neighborhood N such that £e¥ ~ X
implies
p(&)—bla(y)| < "

Again, since b is continuous on Oy and ye T, there exists & <X with
t(&)eU ~ Y such that
b (w)—bu(&)| < e

Note that &eN A X so [b(&)—bln(y)| < e. Also b(&) = b(e(&))
and b(z(y)) = b(u[z(p))), so it follows that

‘i)(y))— i)(b(:m(w)))]< 2¢.

Since &' is arbitrary, we have b (y) = 5(L(n(1p))) for every be®B. There-
fore y = i(n(y))eY. This proves that »(¥—¥) = X—X.
Finally, assume that pedy Y. Then there exists b<®B such that

blx.y = blr_p< b7 = blx.

Therefore, by Corollary 1.2, n(y)edyX, 5o we conclude that (g ¥)
S 0y X. On the other hand, if H is any open set that contains = (dy T),
then, by the continuity of =, there exists an open set @ in @y containing

0y Y such that =(&) < H and hence n(G ~ ¥) < H ~ X. For arbitrary
beB, we have

Blinx > 1blenr = [Blg, 7 = [bloz = 1bly = Iblx

80 |blg.x = [b|x and it follows that = (dy ¥) is a B-boundary for X. Since
7(0y Z) is closed, it must therefore contain 43X which means that
w(0g¥) = 0y X.

2. U-holomorphic functions on an open set. Let & be an arbitrary
family of complex-valued functions defined on subsets of £ and let g
be a given function defined on a set D < £. Then g i8 said to be locally
approximable by elements of & if for each 8 D there exists a neighborhood
N of 4 such that, on N ~ D, g is a uniform limit of elements of #. If #

* ©
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containg every function which is locally approximable by its elements,
then & is said to be locally closed. We denote by $Hy the smallest locally
closed family that contains the given algebra . Elements of $Hy are
called. W-holomorphic functions ([2], Definition 2.2). It is not difficult
to see that Hy does exist and consists of continuous functions. Also, $y
is closed under uniform convergence and under the algebraic operations
whenever they are defined. If 9 is natural, then a deeper result is that
elements of $y satisfy an extension.of the Rossi local maximum mod-
ulug prineiple for Banach algebras [4]. This may be stated as follows:
Let_U be an open subset of 2—0yQ and let & be a function continuous
on. U and W-holomorphic on U. Then |kl = |hlz, where bd U is the
topological boundary of U in the space Q ([2], Lemma 2.5). One can
eagily verify that it is sufficient here to require that h be only almost
U-holomorphie on U. This means that it is continuons on U and A-holo-
morphic on that portion of U where it is non-zero.

Consider an open set ¢ in Q and denote by Be the algebra of all
bounded continuous functions on ¢ which are UA-holomorphic on G— dy 2.
Note that |G = Bg. In this case, we call any Bge-boundary for @ an
U-holomorphie boundary for G. Also, we shall denote by dg.po@ the minimal
closed A-holomorphic boundary for @ given by Theorem 1.1. Define

bd, G = (bdG) v (G ~ 3y Q).

Then bd,@ is a closed subset of G and it follows from the local maxi-
mum modulus principle and Corollary 1.2 that dy.1.,4G < bd;&. Observe
also that the Silov boundary of @ relative to functions continuous on G
and A-holomorphic on G—dy Q is contained in Oy 0 G

If @ c 4 c @, then O is called an -analytic subvariety of 4 if for
each ded there exists a neighborhood N of § such that N ~ @ consists
of the common zeros of functions that are almost ¥-holomorphic on ¥ ~ 4
([2], Definition 2.10). Note that @ is automatically a relatively closed
subset of A. Also, one could clearly replace N by N in the definition.
The following theorem generalizes a result of Glicksberg ([1], Theorem 4.8)
who congidered, instead of a general A-analytic subvariety, the zero set
of a single function belonging to U:

2.1. TueorREM. Let G be an open set in Q2 and let © be an A-analytic
subvariety of Q. Then bd,G— 0O is an U-holomorphic boundary for G— 6.

Proof. Observe first that @— @ is an open set in 2 and bd,(¢— ) —
— O = bd,;G— 6. Therefore we could replace @ by G— 6. In other words,
it may be assumed, without loss of generality, that G ~ @ = . Next
let @, = G— 0y 2 and suppose that the theorem has been proved for the
open set &, Consider any open set H 2 bd;G— 6. Then

bd,G,— 6 < bd,G—0 = H.

Studia Mathematica XXXI,3
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Moreover, if heBg, then k|G <Bg, 80, by hypothesis, |hlg.q, = Ihl@o
Also, since H 2 G ~ 8y 2, we have

[hlgne = max (|[hlacyllanoya) = max ([klgy; [Mlanoye) = [hle.

Therefore, if the theorem is true for Gy, then it is also true for G.
Thus, we may also assume, without loss of generality, that G = Q— 0y 2
Note that in this case bd,@ = bd@.

Now suppose that the theorem were false for some open set Gc Q—
— 0y Q with G ~ @ = @. Then there exists heBe and an open seb
H = bd@G—06 such that |hlg.e< ) [hle=1.

Let
1
0, = {a) twe@, |h(w)) >1——Z}’
and sebt
F=0,.
N=1

Then F is a non-vacuous closed set and
FAbdG—-0)cs F~H =0,
50 F'~ bd@G c 6.

Let 6 be a strong boundary point of F with respect to A|F ([3],
3.3.9) and let N be a neighborhood of ¢ such that N ~ @ is the set of

common zeros of functions almost A-holomorphic on N. Since 4 is
a strong boundary point, there exists ae such that
lalpn<%, la(d) =1.
Define
= {0 0c®, |a(w) < 3.
Then # « N o W. Hence 0, c N v W for large n. Therefore we
may choose p with 3 << p<<1 such that

hlg_arom) < @-
Choose m such that

1y " 1
(E) lalo <o !a’lﬂ<§'

Then, for we@— (N v W),
(B™ a) ()] < [B(e)™ |ala < o™|alo < }.
Since G—N c [6—(N v W)] v [G ~ W], it follows that
W alg_n < §.

° ©
Im Boundary properties of sels 259

Furthermore, since

1
7. ¢ = bl < (5) <",
we also have
R alge < %

Consider next the open set U = (¥—H) ~ G, and determine its
topological boundary. Since U ~ H = @, we have U~ H = 0 so

T~ (bdlG—6) =
Since U < @, this implies that T—@ = @ and hence

(bd U) ~ (bd@) < 6.
Also

(bdT) A G < (G—XN) u (H ~ &).
Therefore we may write
bd U = By v Bg,

where By < @ and By = (G—N) w (H ~ G). From the second inclusion
and the preceding inequalities, we have

(A" alz, < 3.
Since deF and |a(8)| = 1, there exists woeN ~ @ such that

1/2m 2 12
(R ()] >( ) y la{w)l >(§) .

(B @) (wo)] > §.

Then

Also
[Mla~e <5< [h(w)l,
50 w, ¢ and therefore w,e U. Furthermore, since w,e N— 6, there exists g,

a,lmgsb M-holomorphic on N, such that g(w,) # 0 while g(w) = 0 for
weN ~ O,
Finally choose % such that (4)*|gl% << |g(w,l) and define
(A" aY*g)(0), weU @G,
flw) = =
0, weU—G.

Since U—@ < © and & is bounded while g is continuous, it follows
that f is almost A-holomorphic on U. Moreover

(o0 = (™ a) (wo)Flg (o)l >(2) lg(@)l.


GUEST


260 C. E. Rickart

Sinee f(w) = 0 for @ e Bo, we have | fluao = | fls,- Also, since [B™ a5, < 4,
we have

1 k 9 k 1 k 2 k
o < Wbl = (5 s = (5) (5) 1o < (5] 1ot
Therefore

.
haer< (3] latoul < Iften)

This contradicts the local maximum modulus principle for almost
9(-holomorphic functions and completes the proof.

The method of proof used in the above theorem enables us to obtain
another related boundary property of G. First we define a point de bdG
to be an N-analytic boundary point if there exists a neighborhood N of ¢
such that the set N ~ bd@ consists of the common zeros of functions
almost U-holomorphic on N ~ &. Denote the set of all A-analytic boun-
dary points of & by (bdG),. It is obvious that (bd&), is an open set rela-
tive to bd@. Also, if H is an open set in 2 such that H ~ (bd @) = (bd &),
then (bd@), is an Y-analytic subvarieby of the set H ~ G

2.2. TurorEM. Let G be an open subset of Q— 0y Q. Then Oy_,nG
< (bd@)— (bd@),.

Proof. Since G < Q—0y0, it follows that OypnG < bdG. Also,
(hd@)— (bdG), is a closed set. Therefore, if the theorem were false, there
would exist a point §edyyn@ ~ (bd@),. Choose a neighborhood N of ¢
such that N ~ bd@ is the set of common zeros of functions almost
9-holomorphic on ¥ ~ & Then choose a neighborhood ¥ of 4 such that
¥V <= N. By Corollary 1.2, there exists he By such that

1
[Ma_v < 3 |hlg = 1.

Set U=V ~G and choose wyelU such that [h(w) >$%. Since
wye(N ~ G)—(N ~ bd @), there exists g, almost Y-holomorphic on N ~ &,
such that g{wy) 5 0 while g(w) =0 for weN ~ bd@. Next choose k
such that

1\E
(5) 1915 < 1g(a)]
and define

(hkg)(a)), wel A G,

Floy = [ 0, weT—@.
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' Note that U c N ~ @ and U—@ = ¥ ~ bd@ so it follows that f
is almost A-holomorphic on T and is zero on (bd U) ~ (bd@). Moreover,

2 k
o) > (3—) 9(o0)

and

. 1\*
[flvarr = [flpavye < fhlﬁaamnalglﬁ < e rlgls < ('3') gl

2\F (1\" 2\*
=(~3-) (2—) rglﬁ<(-3—) g {(wo)] -
Thus {fl,av < |f(w,)| and we have a contradiction of the local maxi-
mum modulus principle.
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