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Inverse limits of compact spaces
and direct limits of spaces of continuous functions

by

Z. SEMADENI (Warszawa)

If X is a topological space, then % (X) denotes the space of bounded
scalar-valued continuous functions on X (the scalar field is either R or C);
if X is empty, then ¥(X) consists of the single element 0. We recall that
for any X there is exactly one function from @ into X, the empty function
(the empty subset of @ x X), which is continuous. If X s @, then there
is no map from X into @. If ¢: X — ¥ is a continuous map, then

Clg): €(Y) > €(X)

denotes the induced linear operator defined ag ¥ (¢)g = gog for g in #(Y).
Top denotes the category of topological spaces and continuous maps
and Comp denotes the full subeategory of compact (= compact Haus-
dorff) spaces (the empty space being included). Ban, denotes the category
of Banach spaces and linear contractions (i.e., linear operators of norm
< 1). It is clear that

(1) #: Comp — Ban,

is a contravariant functor. The purpose of this paper (*)is to prove that
the functor (1) and some related functors are inversely continuous, i.e.,
that they transform the inverse limits to direct limits.

Throughout this paper 7 denotes an upward filtering preordered
set (i.e., it is assumed that (i) ¢ < ¢, (i) ¢ < s and s <7 imply ¢ < 7, (iii)
Vs,tel @reT such that r >s and 7 > 1).

Let U be a category. We recall (see, e.g., [2], p. 215, and [3], p. 48)
that an inverse system (in ) is a family (4y).r of objeets together with
a family (af);cs of morphisms of : 4, — A, such that (i) df is the identity o,
and (ii) if { < s < r, then of = of ;. An inverse (or projective) limit of
this system (in %) is an object A, together with a family of morphisms
a: Ay — Ay (teT) satistying the following conditions: (i) djas = o for

(1) Theorem 1 and the Remarks were presented at the Symposium on Extension
of Topological Structures in Berlin, 14-19 August 1967 (cf. [6]). Unexplained termino-
logy concerning categories and functors can be found in [3] and [7].
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t<s, (i) for any object B and any family of morphisms £ : B— 4,
such that ajfs = B, for 1 < s, there exists a unique morphism §: B — 4,
such that ¢f = g, for ¢ in 7.

A direct (or inductive) limit of a direct family of : 4’ — A" (1 < s)
in ¥ is defined dually; it is an object A™ together with a family of mor-
phisms o : A’ — A (teT) satisfying the following conditions: (i) uzaf = g,
if ¢ < s, (ii) for any object B and any family of morphisms fi: Ay~ B
such that fyof = g, if ¢ < s, there exists a unique morphism g: A* - B
such that fa; = g; for ¢ in 7.

It is well known that if an inverse [direct] limit exists, it is unique
up to unique commuting isomorphism. If the morphisms o are taken
for granted, we shall also say that A, [4%] itself is an inverse [direet]
limit of the family. A, will also be denoted by lim*“A,.

In the categories Top and Comp, an inverse limit of an inverse
system  ((X,)er, (¢f)ics) may be constructed as follows. Let a thread

mean a family & = (#;)., in the Cartesian product X = P X; such that
teT

®; (@) = @, whenewer ¢ < s. Let X, be the set of all threads (with the
topology induced by X) and let @ (®) = @5 thus, ¢ is the restriction
(to X,) of the projection from X onto the #-th axis X,. It is clear that
(Xe (@i)ir) satisties the above conditions; this pair (or simply X_)
will be called the inverse limit of the system. We should point out that
the notion of a direct limit in Ban, does not coincide, in general, with
that of a direct limit (of the same system) in the category of all locally
convex topological vector spaces and continuous linear operators.

The inverse continuity of the functor (1) may be formulated as

TrROREM 1. Let X, be the inverse limit of an inverse family ¢ : Xy — X,
(t, 8T, t<8) of compact spaces and continuous maps. Then €(X,) is
a direct limit (in the category Ban,) of the direct system of linear operators
Cgl) : €(X) > G (X,).

In the special case where all maps ¢ are surjections, this theorem
was recently proved by Pelezynski [4], p. 14.

Now, let Comps — denote the category defined as follows: an object
is a pair (X, A) where X is compact and 4 is a closed subset of X; a mor-
phism from (X, 4) to (X', 4') is a contintous map ¢ : X ~» X’ such that
p(4) < 4’ (cf. [2], p. 3). If (X, 4) is an object of Comps -, let

Co(X[|4) = {feB(X) 1zed = flu) = 0}.

Any morphism ¢ : (X, Ay (X', 4") in Comps  determines a linear
contraction

Fo(p) : € (X' 4') > €,(X] 4)
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which is the restriction of %(¢): %(X') =% (X). Thusl, Golp)g = gc.> [
for g in (X' 4"); since ¢(4) = A’ and g vanishes on 4, the composite
go ¢ vanishes on A. It is clear that

%, : Compz - — Ban;
is a contravariant funetor. If

) 9l (X A > (X 4y (1< 9)

is an inverse system in Comps ., then

gi: Xo—~ X, and restygi:ds 4,

where rest 4 ¢ denotes the restriction of ¢ to the set 4, are inverse systqns
in Comp. The pair (X, 4.), where X is the set of all thread.s Wlth
2,e X, and A, is the set of all threads with ¢;¢4,, is an inverse limit in
Compg ~; we will refer to it as the inverse limit in Comps -

The category Comp may be regarded as a full subcategory of Comps,
(identify X with (X, @)); moreover, €,(X (@) = ¥(X). Thus, Theorem 1
is a special case of the following theorem:

TurOREM 2. If (2) is an inverse system in Comps -, then €(X,ll4s)
18 @ direct limit (in the category Ban,) of the direct system

(3) gu(‘}”i) T € (X }]At) - (ga(XsHAs)-

The proof is based on the following lemmas:

LevMA 1 (see [2], p. 217, and [7], 11.8.5). Let ¢} : X, > X, be an
inverse system in Comyp and let all X, be non-empty. Then X, is non-empity
and

(X)) = Q¢?(X8) for tin T.

LeyMMA 2 (see [8] and [7], 11.8.3). Suppose that for each ? int T we
are given a linear subset F* of a vector space F and a norm || .l]t on F* satis-
Sfying the following conditions: if t < s, then F' < F° amd ||fls = Iflls for f
in F'. Write
for f in @,

a¢=UF, [fil=1lmjfl

and N = {feG:|fj = 0}. Then G|N is a direct limit of the system (FYer
(with the embeddings & : F* — F°) in the category of normed vector spaces
and linear contractions. If oll (F*, ] k) are complete, then the completion
of GIN is a direct limit of this system in Ban,.

If Z is a locally compact space, .#(Z) will denote the set of all finite
Radon (= regular Borel scalar-valued) measures on Z.
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Lemya 3 (see [1] and [7], 18.8.1). Let A and B be closed subsels of
compact spaces X and Y, respectively. Then any bounded linear operator

I':%(Y|B) - #(X|4)
is of the form

Tg(@) = [ g(y)dpaly)
F\B

for ge¥(Y|B), weX,

where p: X — A (¥\B) is a *weakly continuous map, p, = 0 for x in 4,
and [[I7] = Sup [l -
Te.

Proof of Theorem 2. Let us write ¥, = ¢(X,,), B, = p(4,),

yi =resty gf, of =resty @i, ff =resty g (6 <s).

Since ¢ips = ¢y, the maps 9i: ¥y — ¥, and fi:Bs— B; are sur-
jections. The map ¢, : X, - X, is factored as ¢, = gm, where m;: X, —
— Y, is a surjection and ¢ : ¥; — X; is the embedding. The resulting
morphisms are shown in Fig. 1, where - stands for surjection and »—

stands for injection.

Xmrm———< 4,

N

Yt N s Y:
Yt
8

& A€ & T A
/- l/ 8

¢ > X,

Pt .

Fig. 1

The proof consists of two main steps.
(a) €(Xll4y) s a direct limit (in Ban,) of the system

(4) €o(yi) : €o(T| B) = %o (Tl B), ¢<s.
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(b) The systems (3) and (4) have the same direct limits (see Fig. 2).

EGolTe) %(Y(Xoo flde) Eolms)
ol X 11By) - —> Go( Y, [|B)
Colye)
Foley) Boley)
g()(Avl ”A{) > gU(AXs ”As)
%lq?)
Fig. 2

(a). It will be shown that (X, 4,) coincides with the inverse limit
(Yo, By) of the system uf:(Y,, Bs) — (¥4, By), t<s (in Compgs,).
If at least one space X, is empty, then each X (s> 1) is empty and so
is X,. Therefore we may assume that X; = @ for all t in 7. Let & = (@y)er
be a thread in X. If ¢ is fixed, then 2; = ¢f (@) eqi (X,) for s = t. Con-
sequently, by Lemma 1,

Iie Q #H(X) = (X)) = Yoo

Thus, zeY,. We have shown that X = Y ; similarly, any thread
in 4, belongs to B, ie., 4, = B,,. Moreover, yjm; = = for s> t.

Since =;: X, — Y; is a surjection, %,(w) is a linear isometrical
injection; let H; denote the range of %,(=;). Thus, H, may be described
as

{gom: ge%o(Tol| B} = {gom: ge@ (T} ~ €o( Xl Ao

in other words, H; consists of all functions in ¥ (X,) which vanish on 4,
and are constant on each inverse set =3 (y), y<X;. If s > 1, then the
partition of X, determined by =, is a refinement of that determined
by m; hence H; is a subspace of Hs. Write H = | H;. Each H; and H
are self-adjoint subalgebras of % (X, [4.). If xeX N4, then there
exists a ¢ in 7 such that x;¢4; (hence x;¢As for s >1). Consequently,
there exists a g in %,(X;||4;) such that g(w) # 0; letting f= % ()¢
we get feH and f(z) # 0. It is also clear that H separates the points of
X NA,. Consequently, by the Weierstrass-Stone theorem, H is dense
in €(Xoll4ds); by Lemma 2, €(X,,, 4,.) is a direct limit of the family
(He)ter (in Ban,). Since the square
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(vt
G TiB) s v, 1B

o) “alem)

S

H,
Fig. 3

(t < 8) is commutative, ¥(X || 4.) is a direct limit of the system (4)
as well.
(b). Let F be any Banach space and let

Iy 8o (Xl 4y - 7

be linear contractions such that Iz%,(¢i) = I for s >t. We have to
find a linear contraction I': %,(X,||dy) — F such that I'€y(p) = I}
for ¢ in 7. Without loss of generality we may assume that F ig
a subspace of a space ¥(Z), where Z is compact. Write U, = X\ 4,.
By Lemma 3, for each ¢ in T there is a *weakly continuous map u':Z —
—> J# (X,) such that |juf] < 1, 4’ is concentrated on U, (i.e., the variation
of 4} on 4, equals 0), and

Iif(2) = [faus for f in (X, 4,), 2 in Z.
Ug

Let ¢ and 2 be fixed. If s > ¢, then the condition I';%,(¢f) = I} may
be written in the form

[1ams = [flgh(w)dusw).
Uy Us

In particular, if fe%,(X,|4,) and f vanishes on ¢;(X;), then the
right-hand integral vanishes and so does the left-hand one. Since f is
arbitrary, ,ui( J\gi (X,)) vanishes as well. In other words, for each
s>1t, ulis concentrated on ¢%(X,). Let W be any open subset of X
containing ¥,. By Lemma 1, ¥, is the intersection of the downward
filtering family of compact sets g (X,), s> t. Hence, there exists an r
in T such that r > and ¢}(X,) = W. Since u! is regular, it must be
concentrated on Y;.

Now, if ge€,(Y,|B,) and z¢Z, define Ayg(2) = [gdus. It is obvious
that' A,: €,(Y,|B;) ~ #(Z) is a linear contraction and I} = 4,%, ().
By (a), there exists a linear contraction

I': €( Xyl ) —~ €(2)
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such that I'¢y(n;) = A; for each t in 7. Hence
TEo(q1) = I'Colem) = I'6y(m) €oler) = 4,€o(a) = T

Moreover, I' transforms each set H,, the range of €,(¢;), into F.
Since (JH; is dense in %y(X,/|4,), I" is the unique linear contraction
such that I'6,(¢,) = I', for ¢ in T and the range of I' is contained in F.
This concludes the proof of Theorem 2.

Let Compy denote the category of pointed compact spaces. In other
words, a Comp--object is a pair (X, 2%), where X is compact and z°
is any element of X, called the base point of the object; a morphism from
(X, 2%) to (¥, y®) is a continuous map ¢ : ¥ — ¥ such that ¢(z®) = y°.
The contravariant functor

(3) %y : Comp — Ban,
is defined in the obvious way: if #%¢X, then
Go(X, 2%) = {fe6(X): f(2%) = 0} = €,(X||27),

and if ¢ : (X, 2%) - (¥, °) is a morphism in Compy, then %,(¢) is the
restriction of % (¢) to the subspace %,(Y{y®). If one thinks of z° as the
one-point set {#®}, then the category Comp, becomes a full subeategory
of Compz . Moreover, if (X;, ) are objeets in Comp, and

(6) g X=Xy, (@) =2 (1<)

form an inverse system, then the compact set X, of all threads with
the base point #° = {a’}.r is an inverse limit of this system (in Compy).
Thus, the canonical functor Compy — Comps . preserves the inverse
limits and from Theorem 2 it follows that the functor (5) is inversely
continuous. More precisely:

THBOREM 3. Let (X, x°) be the inverse limit of the system (6) in
the category Compp. Then €y (X, ||2°) is a direct limit (in the category Ban,)
of the direct system

Eolgt) : ColX|af) - €o( X || 29).

Let us recall (see [5], p. 287, and [7], 18.3.2) that the Radon functor
(7) A : Comp — Ban,

assigns to each compact space X the space .#(X) of Radon measures
on X, and to each continuons map ¢ : X — Y the induced transformation
M(@): M(X) > #(Y) defined as A(p)p =v, where v(E) = u(p=(B))
for any Borel subset B of Y. It is a covariant functor. Since (7) is naturally
equivalent to the composition of (1) with the conjugate-space functor
J*:Ban, — Ban, (see [5], p. 292, and [7], 18.4.3) and J* transforms
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divect limits in Ban, onto inverse limits in Ban, (see [8]), we get the fol-
lowing corollary:

COROLIARY. If ¢f: Xy — X, (t < s) is an inverse sysiem in Comp,
then M (X) is an inverse limit (in the category Ban,) of the inverse system

M) M(X) — MKy, TS,

Similar statements ave valid for categories Comps and Comps .
The inverse limit in Ban, may be represented, e.g., as the set of all threads
u = (peher With pye/ (X;) and sup fluf < oo.

Remarks. The functor € : Top — Ban, is not inversely continuous.
Indeed, let X, < X, < ... be an inverse system of non-empty topological
spaces such that X, is empty (e.g., Xn = {weR : # > n} with the embed-
dings). Applying the Stone-Cech functor

g : Top — Comp

we get an inverse system BX; < BAX,<« ... with non-empty inverse
limit Y. Consequently, by Theorem 1, the space ¥(Y) is a direct limit
(in Ban,) of the direct system

FBX,) ~EPX,) —...
This system is equivalent to the system
(8) G(Xy) > C(Xy) = ...

Therefore #(Y) is also a direct limit of (8). Since ¥ # @, #(Y)
contains non-zero functions and is not isomorphie to #(X,) = {0}. It
is easy to modify this example (e.g., by adding an isolated point to each
space X,) as to show that #(X,) need not be a direct limit of (8) even
if X, # @ and that the analogous functors

%,: Topy —Ban, and %,:Tops —Ban,

are not inversely continuous either.

Both the functors # : Top — Ban, and ¢ : Comp -> Ban, transform
direct limits to inverse limits (indeed, they transform coproducts to prod-
ucts and coequalizers to equalizers; on the other hand, the [direct]
inverse limits can be conmstructed as certain coequalizers [equalizers]
of certain coproducts [products], see [3] and [7], 11.7.2 and 12.5.4 (A)).

The functor (1) does not transform products to coproducts neither
does it transform equalizers to coequalizers (e.g., ¥(X xY) is not iso-
morphic to the I,-product of ¢ (X) and #(Y), cf. also [7], 11.5.8 (C)).
Yet, this functor transforms inverse limits to direct limits,
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Now, let Tops denote the category defined similarly to Tops .
but without requiring that the distinguished subsets be closed. The
functor

9) Q : Tops - - Topg

assigns to each pair (X, A), with A @, the quotient space Xj4
obtained by pinching 4 to a base point, and to each pair (X, @) — the
space X +1 obtained by adding a new isolated base point (the morphism
transformation being obvious). It is clear that (9) is a left adjoint of the
forgetful functor from Topy to Topg, . Therefore the functor (9) preserves
the eoproducts, coequalizers, and direct limits.

Let us consider the diagram in Fig. 4, where y; is the unique map
such that y;m, = ma and B is the unique map such that g = y; for ¢
in 7. In this diagram, it is assumed for simplicity that X /@ = X 1.

Yo # X

-rml lﬂr
i

X Ay, ————————— — XA,

AN
\\
BN By
N
Lim*X, /4,

Fig. 4

It is clear that the canonical map § is a continuous bijection; we shall
show that it need not be a homeomorphism.

It A, + @ for s in 7T, then the space lim* X,/4, consists of all threads
2 = (g)ser With mgeX NA, for s sufficiently large and of one thread
& = (@s)ser, Where d, is the base point of X,/ Ag; the thread a is the base
point of lim* X,/4,. If some 4, is empty, then 4, = @ for s =r,and f
is o homeomorphism. It may happen, however, that 4; 5 @ for tin T
and 4, = @. B.g., let

Ay ={n,n+1,...}

and let X, be A, v {o} with the interval topology (w is the unique accu-
mulation point of X,). The spaces X,, X,,:.. and the embeddings form
an inverse system. Each space X,[d4, is a two-point topological space
with three open subsets whereas the constant thread {w} is the unique
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element of X, and Q(X,,, @) is a two-point discrete space. Thus, in this
cage the objects

im*=Q(X,, 4,) and Q(lim™(X,, 4,))

are not isomorphie.
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O pasnoxemw yHHTAPHOrO HPeCTABIEHNS KOMILICKCHOH IOJyNpOCTOil
rpynnsl JlH Ha ee HEHPRBOAWMEIE HpeACTABJICHHN

M. A. HAIMAPHK (Mockea)

1. Beepemme. IIycrs G — Tonmomormdeckas TPYINA co CHeTHOH 6a3ol
oxpecraocredl. Har mssecrno (cm. mHamp. [13], r. VIII) wammoe mempe-
PHIBHOE YHHUTApHOE IpeNCTaBIeHHe g — 17, TPYHNH B cenapabenbHOM
ruas0epToBoM TpocTpaHcTBe H pasnaraercs B NpAMOHl  MHTErpam  ee
HEeNPIBOJUMBIX npencrasiennil. C npyroit CTOPOHE, (aKTHYIECKOE Pasiio-
MHEHNEe Ha HelpPUBONUMEIE IDENCTABIEHNA 3aJaHHOT0 YHHTAPHOTO Ipef-
CTABNIEHUA MOMKET IIPe[CTaBUTh 3HAYUTENbHBIE TPyHHOCTH. 1A cBABHOMN
KOMILIEKCHO} moaynpocroit rpynnsl Jin @ Teanaunpg u 'paes [1] pas-
paGoramm BecsMa oOWuit Merog (AKTHYECKOro TONYYEHHA TNOXOBHOTO
PasiosKenus, KOTOPLI B PANe MHTEPECHHIX CIyYaeB (HAupUMep, B CIydyae
TEH30PHOT0 NPOHU3BEHEHMUA ABYX NIpeICTaBIeH NIt OCHOBHOI HEBEIPOKIEHHOM
cepud) TOBOIBHO HPOCTO NIpHBOAUT K Uemn. C Apyroi#l cTOpOHH, B pAKe
OPYTUX WMHTEPECHHX CIy4aeB (HANpHMMeD, B CIydae TEH30PHOTO IPOM3-
BeJleHUsI HENPHBOJAMMLIX MNpENCTaBIEHUil Apyrux cepwuit (1)) sToT MeTOR
HATAIIKABAETCA IOKA HA CYLIECTBEHHBIE TPYRHOCTH.

B nacroameit cratee MEI ImpenzaraeM Apyroii Meron (aKTHIECKOTO
PasiiOKeHHA Ha HeNpUBORUMEE IIPeJCTABIEHHA TaKKe JJIA - CIydas
CBA3HOM KoMIIexcHolf moxynpoctoit rpymnel Jim . B sToM Merome
HCIONb30BAHA KOHCTPYKIMSA, NPEIOKeHHAs paHee aBropoM [11] pmasa
OTMCAHAA HENPHUBONMMLIX YHHTADHBIX HpefcTaBleHHi rpynnel ¢ u pas-
BuTas panee HemoGenro u apropoM [9] (cm. Tarsxe rHemoGerrxo [6]-[81)
OIS TOTYyYeHHA ONHCAHHA BCEX BIOJNHE HENPHBONMMEX (YHHTAPHEIX
H HEYHHTAPHBIX) IIpefcTaBlenuil 5Toil rpymnsl. B cmemyromux coofime-
HUAX n3naraemelift 3meck Meron GymeT IepeHeceH HAa HEKOTOpPHE HEYHH-
TapHEE NpPEeRCTABIEHHA, a TaKxe OyMYT MAaHEI IPMIOMKEHAA 3TOT0 METOha
K KOHKDETHBIM HIPEICTABICHHAM.

2. Hexoropele BcmoMoraTeibHsle cBellemms. BCIONy B pambHedmeMm @
00603HAYAET CBASHYI0 KOMIUIEKCHYI0 IOIYyIpoCTyw rpymnny Jim, r—ee
pasr, U—ee MaKCHMAJNBHYI KOMIIAKTHYI0 MIOArpynmy, H —cemapa-

() Oam GL(2, C) sroT & Boobme Bce caydan pasofpaHs B ¢TaThAX aBropa [12].
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