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VamoseHHasa B CTAThbe METORNMKA IIO3BONAET MCCICNOBATH BOIPOC
0 CYIIeCTBOBAHNM IPOU3BONHOIE IT0 TapaMeTpy ¢ A pemennit Gomee ofmux
TPaBNYHBIX 3a[aY, B KOTOPHIX KO3PUIUCHTE onepaTopa L W TPaHHYHEIX
0IIepaTopoB B; ABIAIOTCA {OCTATOYHO INIANKAME QYHKIMAME OT U &.

Jlns mac CyuleCTBEHHBIM ABIANOChL yCooBHe maxm; <2m—2. Haxn
HOKABHIBAIOT [POCTEHIINE IPUMEPE], TPH HAPYIUEHHH DTOI'C OTPAHHYEHNS
npomsBoxHas D;u, MOKeT CYIecTBOBATL JAIIb Kak ofobmenmas (yHK-
musa. HaMm KameTcs MHTEPECHHM MCCIETO0BAHHC 10 KOHIA BO3HUKAIOIIeiH
3IeCh CUTYaIUIL.

BamupiM GBII0 B TAKKE PACCMOTPEHME IIOBENEHNA PelleHIil DITIMITH-
YeCKHX 3a1aY B YCIOBHAX HX HOPMAIBHON DPA3PEINMMOCTH, & He eNHHCT-
BEHHOCTH.

ABTop BHIpamkaer mcrpenHion Gmaromapuocrn I'. M. Jlanrey, B Gece-
[ax ¢ KOTOPHM BOBHHUKIH [IOCTAHOBKHE H3YYeHHBIX B crarbe 3amad m . A,
PoitrGepry 3a moMomlp H KPUTHYECKUE 3aMEUaHHA.
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In a recent paper [1] B. E. Johnson proved the remarkable fact
that every strictly irreducible representation of a Banach algebra is
continuous. In the present note we use & similar argument to prove a eer-
tain modification of the classical uniform boundedness prineiple; this
simple result (theorem (2.2) of the present note) is interesting in its
own right and turns out to be the basis of theorems concerning the beha-
viour of algebraic homomorphisms of Banach spaces into spaces of linear
operators. Indeed, if A is a Banach space, ¥ and X two normed spaces
and T an algebraic homomorphism of 4 into L(Y, X), then the modifi-
cation of the uniform boundedness theorem mentioned above may be
used to show that T is continuous provided it satisfies some surprisingly
weak conditions (theorem (2.3) of the present note). These conditions
being automatically satisfied if A is a Banach algebra and T a strictly
irreducible representation thereof, this result constitutes a slight gener-
alization of Johnson’s theorem. At the same time it puts into evidence
the way in which use is made of the assumption that 4 is a Banach al-
gebra.

1. Preliminaries. In this section we intend to colleet some simple
propositions which will be needed in the sequel. We begin by listing
several simple facts concerning rare and meagre sets in topological
spaces.

(1.1) Let T be a topological space and H a subset of T. Then

1° if A = H and A is rare (meagre) in H, then A is rare (meagre)
in T as well;
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2° if H is open in T, then A < I is rare (meagre) in T if and only
if it is rare (meagre) in H.

Further, let us recall the definition of the operator D. Given a topo-
logical space T, we denote, for each 4 < 7, by D(4) the set of all points
zeT with the following property: for each neighbourhood U of # the
interseetion U ~ A is non-meagre in 7.

(1.2) Let T be a topological space. Then the following conditions are
equivalent:

1° we have G = D(G) for each non-void @ open in T';

2° every non-void G open in T is non-meagre in T

3° every non-void G open in T is non-meagre in itself

Proof. We observe, first that 2° and 3° are equivalent by (1.1).
Now suppose that 1° iy satisfied and let @ be an open set in 7, G non-
void. Sinee @ is non-void, there exists a point xeG. By 1° we have 2D (@)
$0 that every neighbourhood of # is non-meagre in 7. Hence G itself is
non-meagre in T which proves 2°. If 3° is satisfied and if G is non-void
and open in T, take an arbitrary « «G and an arbitrary open neighbourhood
U of ». Then H = U ~ @ is non-void and open in 7' hence non-meagre
in itself; it follows from (1.1) that H is non-meagre in T. Hence, z <D (G)
0 that ¢ = D(@). This proves 1° and completes the proof.

A space which satisfies one (and hence all) of the conditions of the
preceding lemama will be called a Baire space. In the case of a linear space
we have the following simple proposition:

(1.3) Let E be a topological vector space. If B is non-meagre in itself
then, I is a Baire space.

Proof. Take an arbitrary non-void open set @ and suppose that G
is meagre in 7. Chooge a ge6'; then G—g is again meagre in T and so is
n(@—g) for any natural number ». Since B = o n(G—yg), this is a con-
tradietion.

We shall also need the following simple lemma:

(1.4) Let E be a linear space and P, Q two subspaces of B such that
thair\Aset theoretical union P v Q = B. Then either P or Q equals H.

Proof. Suppose that P does not fill the whole of # and let us show
that P = . Take a fixed ¢, outside P. If peP, both P+q, and p—g,
are points outside P hence p-+gq,eQ and P—qoe@. It follows that
P = }{(P+ 20+ (p—q0)) €@ 50 that P < @, whence @ =P ~ Q = H.

If (P,p) and (Q,q) are two normed spaces, we denote by
L((P,p), (@, ¢)) the space of all continuous linear transformations of
(P, p) into (Q, ¢q). If we drop the requirement of continuity, we obtain
the. space of all algebraic homomorphisms of P into @ which we denote
by La((P, ), (@, ¢)) or, shortly, L(P,q).
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If # is a linear space and F' a set of homomorphisms of ¥ into & linear
space XX, we denote by N (F) the set of all we® such that flz) =0 for
all fEF-

2. A wmiform houndedness theorem. The classical uniform bounded-
ness principle may be formulated as folows:

(2.1) Let (B, p) be a normed Baire space and S a set of algebraic homo-
morphisms of B into a normed space (X , w). Assume further that

1° each ye8 is continuous;

2° the set 8 is pointwise bounded for each beB.

Then the set S is equicontinuous. .

The basie result of the present paper consists in showing that this
tesult remains almost true if we replace condition 1° by a weaker hypo-
rhesis. Instead of requiring y to he continuous we take the weaker postu-
late that the kernel N (y) be closed in (B, p).

(2.2) TueoreM. Let (B,p) be a Banach space, 8 a set of algebraic
homomorphisms of B into a normed space (X, w). Assume further that

1° for each yeS, the set N(y) is closed in (B, p);

2° the set S is pointwise bounded for emch beB.

Then there exists a finile set y,, ..., yneS such that the set S is equi-
continuous on N(yi, ..., yn) or, more precisely, there exists a o >0 such
that beN(Yy,y .., Yn) and ye8 imply w(by) < op(b).

Proof. For each aeB, write M (a) = sup w(ay); yeS. According
to condition 2°, the constant M (a) is finite for each aeB. Suppose that
the statement of the theorem is false.

It follows that, for each ¢ >0 and each finite set #,, ..., ¥, there
exists an aeN(y,, ..., ¥,) and a yeS such that p(a) <1 and w(ay) > 0.
We shall proceed by induction. There exists an @, and a y, <8 such that
p(ay) <1 and w(a,y,) > 2. Further, there exists an @, N (y,) and a yye8
such that p(a,) <1 and w(ayy,) = 22(2+§M(a1)). Similarly, there exists
an ageN (y,,y.) and a y;e8 such that p(ay) <1 and w(asys) 223(3—}—
+ 3 M(ay)-+(1/2)2M (a,)). Proceeding by induction we construet two
sequences a;eB, y;e8 such that

pla) <1, @GeN(Y1,..ryYia),
w(au ) = 2" (n.+ S (2 0 (a).
i<n—1

Consider now the point a = 2(1/2)7 a;; clearly p(a) <1. Given
iz .
a natural number n, we have

ayn=2(l/2)ia,-yﬂ—|—vyn, where v = Z (1/2)’@,.

i<n iznt1
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For j = n+1 we have a;eN(y,) so that, N (4») being closed, the
vector v belongs to N(y,) as well. It follows that

wiay,) = w (LD wy+ D 112 a0

J<n—1

= (12w (ay) — D (1/2Yw(ay)

TN 1
> (L2)"0(ayn) — D L2V M(4)=n,
F<<n—1

which contradiets condition 2°. The proof is complete.

It would be interesting to know whether the preceding result remains
true under the weaker hypothesis that (B, p) is a Baire space.

The result just obtained may be considerably improved if we add
another condition.

(2.3) Let (B, p) be a Banach space, (X, w) a normed space. Let 8 be
a subset of L,(B, X). Denote by Y the subspace of L,(B, X) generated by 8
and suppose that the following three conditions are satisfied:

1° for each y<¥, the set N(y) is closed in (B, p);

9° the set 8 is pointwise bounded for each beB;

3° given Yy, ..., Yne X and @, ..., @, X such that the y; are linearly
independent, there exists a beB such that by, = @; for + =1,2,...,, n.

Then either Y is finite-dimensional or 8 is equicontinuous on the
whole of B.

Proof. The proof will be divided into four steps.

I. According to (2.2) there exist #,,...,%.¢¥ and @ ¢ >0 such
that beN{yy, ..., %) and ye8 imply w(by) < op(d).

II. Let us prove now the following assertion: if y ¢ ¥ is linearly inde-
pendent of ¥y, ..., ¥, then y is continuous on (B, p). We begin by showing
that B = N(y1, ..., ¥a)+ N(y). Indeed, given beB there exists, by
assumption 3°, a c¢eB guch that cy; = 0 and ey = by. It follows that
ceN(@y ..., ¥n) and b—ceN(y). Since (B,p) is complete and the sub-
spaces N are closed therein there exists a § >0 such that every beB
may be written in the form b = w-v, weN(yy,..., %), veN(y) with
Pp(w)+p () < Bp (D). Since y may be written in the form y = 3' 455, 8;¢8,
we have, for heN(y, ..., ¥n), the estimate

wiy) =w( Y Ahs) < 3 1asdwhsy) < (X 14l) om () = wp (B),
where we set vy = o(Z|4]). If beB, we have thus
w(by) = w(uy-+vy) = w(uy) < yp(u) < yBp(b)

which completes the proof of our assertion.
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III. Denote by P the subspace of ¥ generated by #,,..., ¥, and
by @ the subspace of those y Y which are continuous on (B, p). According
to the preceding part of the proof P v @ = Y. It follows that either
P =Y so that Y is finite-dimensional or @ = Y.

IV. If ¥ is not finite-dimensional, we have ¢ = Y; in particular,
§ is a set of continnous linear transformations of (B, p) into (X, w) which
is pointwise bounded on (B, p), a complete space. It follows that S is
equicontinous. The proof is complete.

The preceding results may also be formulated in the form of propo-
sitions concerning mappings of a Banach space into spaces of linear
operators. Before considering the main theorem, let us state a simple
result about mappings of a Banach space into spaces of linear functionals
which helps to understand the general case.

(2.4) Let A and B be two normed spaces and let T be a continuous
linear mapping of A into (B', o(E , B)). Suppose that A is a Baire space.
Then T is continuous into (B, w), where w is the norm topology of E .

Proof. According to our assumption, for each zeE, the mapping
a — {T(a), ) iscontinuous on A4 hence (T{(:),z> is a certain element
T'geA’. Denote by B the set of all T"w, where z<¥ and [#| <1 and let
us show that B, a subset of A’, is bounded in the norm. Since A is a Baire
space it suffices to show that B is pointwise bounded on A. To see that,
take o fixed aed and an arbitrary element beB, b = T'z. Then

KKa, by| = [Ca, T'3)| = KT (a), 2)| < |T(@)lJo] < 1T (a5

this estimate being independent of beB, the proof is complete.

(2.5) TumorEM. Let (Y,q) and (X, w) be two normed spaces. Let
(4,p) be a Banach space and T an algebraic homomorphism of A into
L((Y, q), (X, ). Suppose that the following two conditions are satisfied:

1° for each y <Y the set N(y) = {aed; Ty =0} is closed in (4,p);

2° given Yiy .-y YneX and oy, ..., ZneX such that the y; are linearly
independent, then there evisis an aeA such that T.y = @;.

Then either Y is finite-dimensional or the mapping T is continuous.

Proof. Let us define, for each ye¥, an element h(y)eL,(A, X)
by the relation a-h(y) = Tay.

Take, in proposition (2.3), for (B,p), ¥, S, the following objects
respectively: (4, p), h(¥), h(U), where U is the unit ball of (Y, q).
Tet us prove that the assumptions of (2.3) are satistied. In order to see
that the set h(T) is bounded for each aecA take a fixed aeA and an arbit-
rary yeY, ¢(y) < 1. It follows that 'w(a'h(y)) = w(T.y) < |Talqy) < |Tdl
for all y<U. The other two conditions being immediate, it follows that
either ¥ is finite-dimensional or the seb 1(U) is equi-continuous. In the
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second case there exists a f > 0 such that |i(y)| < f for each y for which
g(y) < 1. Hence |h(y)] < fq(y) for all yeY so that

w(Tyy) = w(a-h(y)) < p@)|hy) < ppla)g(y).

3. Bilinear mappings. The preceding results admit interesting refor-
mulations in the form of statements about bilinear mappings. We begin
by stating a classical result about separately continuous bilinear map-
pings and then proceed to investigate what happens if we relax the re-
quirement of continuity for one of the two variables.

(3.1) Let (4,p), (X,q) and (X, w) be three normed spaces, (A, p)
o Baire space. Let T be a separately continuous bilinear mapping of Ax Y
into X. Then there exists a constant a >0 such that

w(F(x,y)) < aple)qy).

Proof. For each ye¥ denote by T, the transformation F (-, y)so
that T, is a continuous linear mapping of (4, p) into (X, w). Let
M < L{(4,p), (X,w)) be the set of all T, for ye¥, g(y) << 1. For each
fixed zed it follows from the continuity of F(z,-) that the set M ()
is bounded. Since (4,p) is Baire space and M is pointwise bounded,
it follows that there exists a constant o such that |7| < « for each T, M.
Hence |T,| < ag(y) so that w(F(z, 1)) = w(T,) < |T,|p(5) < ap(@)g(y),
which completes the proof. )

(3.2) Let (A,p), (Y,q) and (X, w) be three normed spaces and let f
be a bilinear mapping of A X ¥ into X. Suppose that (A, p) is complete and

1° for each fiwed aecA the value f(a,-) is Continuous;

2° for each fived yeY the set N(y) = {aed,f(a,y) = 0} is closed
in (4, p). ‘

Then there ewists a finite sequence Yiyooory Yne ¥ and an a >0 such
that aeN (y1, ..., Ys) and ye¥ imply

w(f(a,y)) < apla)g(y).

Proof. We are going to apply proposition (2.2). For each yeY the
value f(-,y) is an algebraic homomorphism h(y) of A into X. Denote
by 8 the set of all k(y) for ¢(y) < 1. It follows from condition 1° of the
present theorem that, given a fixed aed, fla,-) is continuous so that
w(f(a,¥)) < Pg(y) for a suitable § > 0. If sef, we have s = h(y) for
some ¢(y) <1, whenee w(as) = w(f(a, y)) < fg(y) < f.

Condition 2° of (2.2) is thus satisfied. The rest follows immediately.

(3.3) Let (4, p), (¥, q) and (X, w) be three normed spaces and let f be
a bilinear mapping of A XY into X. Suppose that (4, p) is complete and
“ 1‘)’ for each fized ye¥ the sot N(y) = {acd,fla,y) = 0} is closed in

) P); :
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2° for each fined aeA the value f(a,-) is continuous;

3° given ¥y, ..., Yne ¥ and Zyyony BpeX such that the y; are linearly
independent, there exists an acA such that f(a,y;) = ;.

Then either Y s finite-dimensional or there ewists « § >0 such that
w(fla, y)) < pp(a)q(y) for all acA and ye¥.

Proof. An immediate consequence of (2.3).

4. Representations of Banach algebras. Now we are ready to apply
the results about mappings into spaces of linear operators to represen-
tations of Banach algebras. This immediately yields Johnson’s theorem.

(4.1) TrmoreM. Let (4, p) be a Banach algebra and let T be a strictly
irreducible representation of A on the mormed space (X,w). Then T is
continuous.

Proof. The mapping T is an algebraic homomorphism of 4 into
L((X,w),(X, w)). We shall use theorem (2.3) where we put (¥, g)
= (X, w). First of all, it follows from the general theory of Banach al-
gebras (see theorem 2.4.6 of [3]) that condition 3° of theorem (2.5) is
satisfied. Further, for each y, the set N (y) is the set of all ae A for which
T,y = 0. It is a well known fact that this kernel is a maximal modular
left ideal in 4 and, accordingly, closed in (4, p). This gives condition 1°.
It follows that either X is finite-dimensional or T is continuous. If X
ig finite-dimensional, denote by H the intersection of all N(z), zeX,
and observe that H is a closed two sided ideal in (4, p). It follows that
A[H ig isomorphic to a subalgebra of the finite-dimensional algebra
L((X , w), (X, w)). Since all norms on a finite-dimensional vector space are
equivalent, we have |T,| < fp(a) for some 8 > 0. The proof is complete.

A preliminary report about these results is contained in [2].

The author is indebted to H. H. Corson and F. F. Bonsall for their
comments.
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