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A generalization of the Mazur-Ulam theorem
by
S. ROLEWICZ (Warszawa)

Let two F-spaces X and Y be given. Since it does not lead to a misun-
derstanding, we shall denote the F-norms in both spaces by the same
symbol || ||.

An operator U (non-necessarily linear) transforming X into Y is
called an ‘sometry if

1T (@) — U@l = le—yl.
An isometry is called a rotation if
U(0) =0.

Mazur and Ulam [4] have proved that if X and Y are Banach spaces
over reals and the norms in both spaces are homogeneous, then each
rotation is a linear transformation.

The same question for general F-spaces over reals is still unsolved.
Charzynski [2] has proved that if X and Y are finite-dimensional real
F-spaces, then the Mazur-Ulam theorem is also valid.

In this note we generalize the Mazur-Ulam theorem to locally bounded
spaces. The norms in question ought to be so called concave norms (*).
Let us remark that the result of this paper contains the result of Charzyn-
ski only partially.

The method of the proof is similar to the proof of the Mazur and
Ulam theorem.

THEOREM 1. Let X and Y be locally bounded (*) spaces over reals.
Let the norms in X and Y be concave. Then each rotation is a linear
transformation.

The proof of theorem 1 is based on some conceptions and lemmas.

(*) We say that a norm || || is concave if the function [|(z]| is concave for all &
and positive ¢, i.e.
ll(at+Bt) il > alitz||+ BIlt" 2|,
a,f>0, at+f =1 (see [1]). :
(*) A linear metric space X is called locally bounded if there is in X a bounded
neighbourhood of zero (see [3] and [5]).
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Let
n(r) = sup [lz|.
li2z|i<r
Obviously, if the norm || || is concave, the function |[fz| is non-de-

creasing, whence n(r) <r.
LEMMA 1. If the space X is locally bounded and the norm || || i8 concave,
then there is an ry >0 such that for 0 <r < r, we have n(r)<r.
Proof. Let r, be a positive number such that the set

Ky, = {me X: |2l < 270}

is bounded. Such an 7, exists since the space X is locally bounded.
Obviously, for all », 0 < r <7,, the set

K, = {zeX: |l2]| < 27}
is also bounded.
Let us suppose that n(r) = r. Then there is a sequence of elements
@, eX such that |z,| = r and |x,/2| tends to r. This implies
V L —>» OO
= 2 —leal2l)

Since the norm is concave, we have on the other hand

a,—1 z, 3 a,—1 || z,
= = || —— i AL + S
r=lol = | gt > el 2 |
Then
1
fonzil < 2[(an—3) 1= 0= ||
=2a,,(r— 2 )—r+2 a;_z,, =7r—r+2 o < 2r.

This implies that a,,e¢K,,, which leads to a contradiction since
K,, is bounded and a;'a,x, = @, does not tend to 0, q. e. d.
Let us define 7, by induction: 7, = n(7,_,). From lemma 1 it follows
that ro >r, >7ry > ...
LEMMA 2. lim 7, = 0.
—>00

Proof. Let us suppose that lim 7, =’ # 0. Obviously, n(r') <7'.
N—>00

The function n(r) is trivially continuous; therefore there is an 7 > 7’
such that n(F) < r'. But from the definition of r, it trivially follows that
there is an n such that r, < 7. Therefore

Tapr = n(r,,) < 'n(';) <r

and we obtain a contradiction, q. e. d.
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Proof of theorem 1. Let #, and y, be two arbitrary elements of
X such that |w,— vyl < 70/2. Let
"o

Hy = foeX: le—all < (%) le—yall < n (?)}

Obviously, the diameter of the set H, is

r
3(Hy) = sup lo—y] < 2n(7°) <te.
s 0

We define H, by induction:
H, ={weH,_,: |t—y| < r, for all yeH,_,}.

This definition trivially implies that the diameter of the set H,,
6(H,), is not greater than r,. We shall show by induction that the point
(®o+¥o)/2 belongs to all the sets H, and, moreover, that the sets H,
are symmetric with respect to this point, i.e. if xeH,, then the point
T = xy+yo—o also belongs to H,.

For H, this is trivial. In fact, the definition of n(r) implies that
(%o+90)/2€H, and the second part of the statement follows from the
identities Z— &y = yo—a and Z—y, = x,—®.

Suppose that H,_, satisfies our induction assumptions. Then the
definition of 7, implies that (w,+y,)/2¢H,. Let z and # be arbitrary
elements of H,_ ;. Then Z—2z = Z— 2 and this implies that if xeH,, then
also ZeH,.

Since 7, tends to 0, the intersection of all sets H, contains only one
point (x,+79y,)/2. This is a metric characterization of the centre.

Using the same method, we can give a metric characterization of
a centre of two points » and w belonging to Y provided the distance
between them is small enough.

Therefore the distance between two points x, yeX is small enough,
the centre of images is equal to the image of the centre. In other words,
there is a positive number a such that if |x—y| < a, then

U(w+y) _ U(@)+U(y)

2 | 2 ’
This implies that if ||z| < /2, then

(i) 20U (k) = U((k+1)o)+ U((k—1)a)

for all positive integers k.
Basing ourselves on'formula (i) we shall show by induction that

(ii) U(nw) =nU(®) for n=1,2,...
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Putting ¥ = 1 in formula (i) we find that (ii) holds for n = 2. Let us
suppose that (ii) holds for » = m. Let us put ¥ =m in (i). Then the
induction hypothesis implies

U (2mz) = 2mU (&) = U((m+1)z)+U((m—1)z)
= U((m+1)2)+(m—1) T (@).
Hence U((m—l—l)w) = (m+1)U(x) and we have proved (ii). Hence
U(kz) = kU(x).

Let # and y be arbitrary elements of X. Obviously, there is a positive
integer n such that |z/n| < /2 and |ly/n|l < a/2. Therefore

Ulo-+y) = U(———zn‘;’:m)
z+y\ 2n z Y\ _ -
=2nU( - )——2—U(n)+U(n) U(@)+T )

Hence the operator U is additive. Thus the continuity of U implies
that U is continuous linear operator, q.e. d. . .

We do not know whether theorem 1 is true for arbitrary norms in
locally bounded spaces. We can only prove

THEOREM 2. Let X and Y be locally bounded spaces over reals with
arbitrary F-norms || |l. If a rotation U mapping X onto Y satisfies the
identity

6T (@)=t T (¥)ll = lite—tyl|

for all positive t, then U i3 a linear operator.
Proof. In the same way as in [1] we define new norms in X and Y:

lell” = sup (|l +lisll) .
0<t,8
+8<1
The norms || ||’ are equivalent to the given ones and concave. Moreover,
IUz—Uy|" = sup (lt(T2—Ty)l|+lis(Uz—Ty)l)
o<t
t4+8<1

= sup(lt(z—y)|+lis(@—y)l) = le—yl'.
0t8
t+8<l

This means that U is an isometry with respect to the norms || ||".
Therefore theorem. 1l implies that U is a linear operator, q.e.d.
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