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Asymptotic behaviour of harmonic polynomials
bounded on a compact set

J. Siciak (Krakéw)

1. Introduection. Trying to solve the Dirichlet problem by inter-
polating harmonic polynomials one has to solve the problem of choosing
nodes suited to the interpolation. The problem was treated by
J. L. Walsh [14] and mainly by J. H. Curtiss [1]-[4]. The latter showed
that points of the Fekete type defined through an extremal property
give good results. He also investigated the role of Fejér’s points in the
harmonic interpolation [4].

On the basis of known results it is evident that, just as in the case
of approximation and interpolation by polynomials in z, clso in the theory
of interpolation and approximation by harmonic polynomials the Green
function G(z, E) of the unbounded component of the complement of
a compact set E plays a very important role (ef. [12]-[15]). Therefore
it seems natural that one should try to elucidate the mutual correlation
between the Green function and interpolating harmonic polynomials.
The problem has already been treated in [10].

This paper is intended as a supplement to paper [10]. When a review
of [10] appeared in Mathematical Reviews 31 (3) (1966) 3 2415 the author
found what follows: 1° In accordance with the suspicion of the reviewer
(J. H. Curtiss) theorems 5.1 and 5.3 in [10] cannot be proved by a straight-
forward application of the reasoning valid for polynomials in 2. Moreover,
it remains an unsolved problem whether these theorems are true or not;
2° Theorem 5.2 and the Corollary on p. 403 in [10] are false, as we shall
show in § 3 of the present paper; 3° Theorem 6.1 in [10] is fortunately
true and may be generalized to the case of a compact set E consisting
of a finite number of mutually exterior closed simply connected domains.
The generalization will be given by Theorem 1 in § 2.

In § 4 we discuss a sufficient condition on F under which Theorem 1
remains true. The condition concerns an asymptotic behaviour of harmonic
polynomials in the vicinity of £ and it is analogous to the “polynomial
condition” of F. Leja ([5], [6], [7]) concerning polynomials in z.
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268 J. Siciak

2. Harmonic polynomials bounded in modulus by 1 on
a compact set Z and the Green functlon G(z, E). Let 2™
= {#y, ..., 222} be an arbitrary system of 2n41 points of the complex
plane C and let A (™) denote the determinant whose jth row reads

(1,25 ey 275 21y ey 27) (§= 0, .., 20) .
Given any 2™ such that A4 (z™) £ 0, we put
(1) H(i)(zr z(n)) = A({20y «ey 2i-1) 2y Zjt1y ooy 22n)) A (z(n)) )

j=0,..,2n. Then H” is a real harmonic polynomial of degree I n
such that H”(z;, 2") = é;i. If U, is an arbitrary harmonic polynomial
(real or complex) of degree < n, then the following interpolation formula
holds [3]

2n
Y ] n
(2) Uuz) = D) Une) H(z,2™), zeC.
i—o
Let E be a compact set in C. Let ¢™ = {qq, ..., 2} De an n-th extremal
system of E with respect to the determinant A, i.e., the points of ¢™
belong to E and

(3) |A(g")| = |A (™) for every zWCE.

We say that E is unisolvent if for every n = 1, 2, ... there is a zW C E
such that A (2™) # 0. If E contains the boundary of a bounded domain,
then E is unisolvent. If E is unisolvent, then A (¢™) = 0, where ¢™ is
an arbitrary nth extremal system of £ with respect to A. In the sequel
we shall consider only unisolvent compact sets E.

Denote by H,(z) = Hu(2,E), HY(z)= HY (2, E), k=1,2,3,1,
n=1,2,... the functions defined for every z e C by

() H,(2) = sup | Un(2)| ,

the sup being taken over all harmonic polynomials U, (complex or real)
of degree << n such that ||U,lg = sup|U.(?)| < 1;
zeE

(3) Hi:)(z) = max lEi)(Z, q‘”’)l )
0
2n .
(a) HY(2) = D) 1H(z, 4™,
j=o
() HP(z) = inf [max|H"(z, 2")|],
ZMCE ()
" o= o, St 0.

Z(n) (af ) "=0
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TnuoreEM 1. If the compact set E consists of a finite number of mutually
erterior closed simply connected domains, then the sequences

VHE@), (VEP@), k=1,2,3,1

are convergent at every point z € C to the same limit F(z2) = F(z, E), where
F(z) = exp@(2) for 2z¢e C—E, F(2)=1 for ze E and G(2)= G(z, E)
denotes the Green function of C—E with the pole at infinity.

This theorem generalizes theorem 6.1 of [10], where E is assumed
to be a closed simply connected domain (or equivalently, in virtue of the
maximum principle, a boundary of a simply connected domain).

Proof. First we shall prove the inequalities

()  H,<@nu+1)HY < @n+1)H? < 2n+1)°HY < (2n+1)°HY
(

2n+1)'H,, ,

-
=
<

valid for every z¢ C and » = 1,2, ... They imply that a necessary and
sufficient condition that all the sequences of Theorem 1 be convergent
at a fixed point 2 is that at least one of the sequences be convergent at
the point z.

The first inequality of (x) follows from the interpolation formula

Uue) = > Unlg) Bz, ¢")
i=0

where U, is an arbitrary harmonic polynomial of degree - # such that
|Unllre < 1 and ¢™ denotes a fixed nth extremal system of E with respect
to 4. The second and the fourth inequalities are direct consequences of
the definitions (a,)-(a,). To prove the third inequality it is enough to
observe that by the interpolation formula

H("’(z, q(")) = YH”’(zk, q("))H(k)(z, z('”) , z2€eC, MCE , A(z(”)) # 0,
;0

P
k

whence '
|H (2, ¢")| < (2n4+1)HY(2, B)

because by the extremum property (3) of ¢™ we have
(1) I H(z, ™) <1 for zekE.

The last inequality in (x) follows from

2n
HP(z) < HO(2) = D) [H (2, ™) < (2n+1) Hul2) .
i=0

18*



270 J. Siciak

We shall need the following two theorems, already known. Given
a compact set E of positive transfinite diameter denote by F(z) = F(z, E)
the function defined for z ¢ C by F(2) = exp@G(z) for z in the unbounded
component D of C—FE and F(z)=1 for z in C—D. Let E,= {zeC:
F(z, E) = ¢}

THEOREM I ([12], [13]). Let E satisfy the assumptions of Theorem 1.
Let U be a function defined on E and let harmonic polynomials U, of re-
spective degrees < n satisfy

limsup(||U — U.jlg)'™ < 1/0 < 1;
then

1° the sequence {U,} converges uniformly on closed subsets of the in-
terior of E, (consequently the function U can be extended harmonically from E
to the inlerior of E,);

2° limsup (||U — Unllg,)"™ < ol (1 < 0 < o).

THEOREM II ([9]). If E is a compact set of positive transfinite
diameter, then

F(z,B)= sup VFnz, E) = lim}'Fyu(z, E),

where Fyu(z, E) = sup |pa(z) ,

the sup being taken over all polynomials pa(2) in 2z of degree << n such that
palle < 1.

We are now ready to prove Theorem 1. Let pn(2) be an arbitrary
polynomial in 2 of degree << n such that |p,/lr < 1. Since p, is also a har-
moni¢ polynomial of dergee < n, we have

pn(2)) < Hp(2, E), zeC,n=>=1,
whence by Theorem II
(5) F(z) = lim jy F,o(2) < liminf J H,(z), zeC.

To end the proof we have to show that limsup J/ Hn(z) < F(2), 2 € C. To
this aim let 1 < ¢ < g, o, p being arbitrary fixed numbers. Given z, ¢ E,
= {2: F(z2, E) = a}, let

Hy(2y, B) = max|H(z, ¢")| = [H"(z,, ¢")I .
(6))

Put
2 H(fn) z, q(ﬂ)) , U(z) v H(Jn)(z (ﬂ)) .
n=1 n=1 e"
Then by (4)
1 1 1
U~ Uklle < PP R
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Therefore in view of Theorem 1

limsup (| U — Ugllg,)*

-
~

olo .

,//‘
y

But
1 in} )
# |H 25y ¢™)| < |1Un— Un-illte < | Un— Ullge+1Un-1 — Ullg, -

Therefore, in virtue of (x),

limsup }/ Hnlzo, E) = limsup VH(z,, B)
< olimsup[|Un — Ullg, +1Un-1— Ullg,]"™ < 0 = F(2) ,

since for every ¢ > 0 we have

€‘o

U= Ul < {S2)) 0> e
So L
F(z)=lim| Hyz) for z2eC—E.

Since for z ¢ £ we have
Hu2)=1=F(), so F=IlmyH,

for every z ¢ C. The proof is completed.

Remark 1. Theorem I (and consequently Theorem 1) remains true
also under weaker assumptions on E (cf. [12], p. 344); e.g. the theorem
holds if £ is a compact set such that ¢ —F is connected, the interior E
of E consists of a finite number of components and of = 2(C—E).

Remark 2. (Cf. the remarks on p. 172 in [15]). Let p™ = {p,, ..., Pan}
be an arbitrary fixed system of 2n+1 points of Z chosen in such a way
that either

2n

maxZIH”’(z, p™)| = inf [maleH‘”(z z(”’)ll

z€E ;= ZMCE" 2¢E
or

max[max H(z, p™)|] = (mf {ma.x[max |1Hz, 2|1} .
(1) zeE -1 )

One may easily check that if in Theorem 1 the functions H(,}Laild HE
are defined by taking p™ instead of ¢™, then the sequences {f/ HY) and
{[VE®) are also convergent to F in C.

Similarly one may verify that in the theorems of Curtiss (e.g. Theo-
rems 3.4 and 3.5 in [3]) concerning the solution of the Dirichlet problem
by interpolating harmonic polynomials or the maximal convergence of

harmonic polynomials found by interpolation the points ¢™ may be
replaced by p™.
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3. An example. As a direct consequence of Theorem II we get
the following Bernstein-Walsh inequality

(6) |pa(2)| < “PMHEF'L(Za E), zeC,

valid for every polynomial in z of degree < n, n=1,2, ..

One may ask whether the same or an analogous inequality holds if
P is replaced by a harmonic polynomial and F is replaced by H(z, E)
= limsup y/Hu(z, E). G. Szego proved in [11] (see also [8]) that (6) holds
for harmonic polynomials if ¥ is a circle. We shall show that (6) does
not hold for harmonic polynomials if ¥ is an ellipse with foci 41 given by

E={e [z2+VZ—1] = (r+VP+1)} (r>0).
Indeed, in view of Theorem 1,
H(z) = F(2) = max(1, [z-+V2+1|/(r +V/ 72 +1)) .

For the harmonic polynomial Un(z) = Im(z/r) we have [Un(2)] <1 on E.
Given any fixed n=1,2,.., let 0 <r<l1/yn®—1. If z2=1iy, y >,
we have

Fiy) = (y 4V +D))(r+V 72 1) ,
Unliy) = yfr and | Un(y)| >Fn(iy) y

if r<y<r4de e>0 being sufficiently small.
In the next section we shall give a modification of (6) valid for har-
monic polynomials.

4. Asymptotic behaviour of harmonic polynomials near
a compact set. Given a compact set ¥ denote by (H) the following
condition

(H) For every e > 0 there exist two positive numbers 5 and M such
that if U, is an arbitrary harmonic polynomial of degree < n with |U,|lp < 1,
then [Un(2)] < Me™ for all z with dist(z, E) < 4.

Denote by (L) an analogous condition where U, is replaced by an
algebraic polynomial in z. F. Leja [6] proved that a compact set E
satisfies condition (L) if and only if the function F(z, E) is continuous
in C. His polynomial lemma saying that every continuum satisfies con-
dition (L) proved very useful in the complex analysis (cf. [5], [6], [7]).

It is obvious that every compact set E satisfying condition (H)
satisfies also condition (L). But the opposite is not true, as can be easily
shown for E being a line segment.

It seems to be an interesting problem to find what sets satisfy con-
dition (H). A partial answer to this problem is given by the following
theorems.
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TuroreM 2. If E is a compact set satisfying condition (H), then
limy Hy(z, E\=F(z,E), zeC.

Proof. Given ¢ >0 let o>0 be so small that p<e¢ and
E,= {z: F(z) < e} is contained in the set {z: dist(z, F) < 6}, where
& = d(¢) is chosen in accordance with (H). Moreover, we choose g in such
a way that E, consists of a finite number of mutually disjoint closed
Jordan domains. For every fixed n = 1, ... denote by ¢™ = {qq, ..., @2n}
an nth extremal system of E with respect to the determinant 4. For
every harmonic polynomial U, such that ||U.llg <1 we have, in view
of (H) and by the interpolation formula,

|Un(2)| < Me™HP(2,B,), zeC,
whence
H.(2, E) < Mé“HY(2, B,), zeC.

By Theorem 1 we get
limsup | H.(z, E) < e¢F (2, E,) = emax[1, e ¢F(z, B)], zeC.
Since £ > 0 and p > 0 may be chosen arbitrarily small, we have
limsup | Hu(2, E) < F(z,E), z¢C.

This and (5) give the required result.

THEOREM 3. If F is a compact set consisting of a finite number of
mutually disjoint closed simply connected domains, then E satisfies con-
dition (H).

Proof. It is enough to prove the theorem under the assumption
that E is a bounded closed simply connected domain. Let E,, n =1, ...
be a closed domain contained in the interior of ¥ and such that E,C E, .,

and | ) E, — B, E denoting the interior of E. By Lemma 1.2 of [13] for
n=1

every m = 1, ... there exists a positive constant K, such that for every
function U harmonic in E and in modulus not greater than 1 there exists

a conjugate function U in E such that
|U(2)| < Km for zeBm, m=1,..

Let ¢™ = {q, ..., g2} be an nth extremal system of E with respect

to A. Then by (4) and by the lemma there exists a polynomial H con-
jugate with H”(z, ™) such that

Bz, ™) < AP +ill"| <14 K for  zeBp.
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Since H” 4+ iH® is a polynomial in z, we may apply the Bernstein-Walsh
inequality and get
(1) |H2,¢") < 01+ Kn)FY2,Er), 2¢C, j=0,..,2n.

It is easy to see that F(z, E,) > F(2, Ems1) = F(z, E) in C. The
function fn.(2) = Log(F(z, En)/F(z, E)) is continuous in the Riemann
sphere 8 = C+ {oo}, harmonic in C—E,, fm+1 < fm Iin 8, fn(z) = 0 for
zeE, and fn(cc)—>0 ([9]). So by the Harnack principle fn.(2)—>0 in §

and by Dini’s theorem the convergence is uniform in S. Therefore, given
any ¢ > 0, we have

F(z,Ep)<el'F(z,E), ze8, m=my= me).
Therefore, in virtue of (7),
(8) HYz,BE) < 1+ K)"*'F"2,E), K= K,,.
Let 6 > 0 be so small that F(z, E) < e*4, if dist(z, E) < 6; then
(9) HP@,B) < (1+K)e™?, dist(z,E) < 4.

Given any harmonic polynomial U, of degree < »n such that ||[Unlg <1
we see by the interpolation formula that

|Ua(2)] < (2n+1)HR)(2, B), 2¢C),
whence by (9)
{Un(2)] < e, dist(z,E)<d, n>=N=N(e),

N being chosen in such a way that (2n+1)(1+ K) < e/ for n > N.
The application of the interpolation formula shows that there exists an
M > 0 such that |U,(2)] < M, if dist(z, F) < é and if U, is an arbitrary
harmonic polynomial of degree < n < N such that ||U,||g < 1. The proof
is completed.

THEOREM 4. If E is a continuum satisfying the condition (H) (e.g. if E
18 a bounded closed simply connscted domain), then for every & > 0 there
exists a positive number M = M (&) such that for every harmonic polynomial U,
of degree < n we have

(10) |Un#)] < |Unlle Me™“F™2, E), 2¢C, n=1,2,..

This theorem may be considered as a weaker version of the Corollary
on p. 403 in [10]. This weaker version, however, is sufficient for deriving
some results on the maximal convergence of sequences of harmonic poly-
nomials (e.g. Theorems 6.2 and 6.3 in [10]).

Proof. Given ¢>0 let p>0 be so small that g<e and
E,= {z: F(z, B) < ¢?} is contained in the set {z: dist(z, E) < 8}, where
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6 = 6(¢/2) is chosen in accordance with condition (H). For every ¢ > 0
F(z,E,))<F(2,F) in C and E, is a closure of a Jordan domain. By
Lemma 1.2 of [13] there exists a constant K, such that for every function U

harmonic in E, with |[U|lg, < 1 there exists a conjugate function U in E,

such that l[.f(z)| < K, in E. Application of this lemma, inequality (4)
and condition (H) give

|HD(z, ¢™)+ iHMz)| < 1+ MK, ™ for ze¢E,
whence by (6) we get
|H™(z, ¢™)| < B,e™*F"2,E), B,= (1+MK,).
Therefore, by the interpolafion formula,
|Un(2)| < ||UnllzBoe™"(2n+1)F" (2, B) ,

o > 0 being sufficiently small. Hence by a standard reasoning we get
Theorem 4.

THEOREM 5. If E i8 a continuum satisfying the condition (H), then the
sequences
n/ L7
(11) WE), WEP) *=1,2,3,4)
considered in Theorem 1 are convergent uniformly on compact subsets of the
complex plane C.

Proof. In virtue of the inequalities (*) it is enough to prove that for
every ¢ > 0 there exists an n, = n,(¢) such that

F(z,E)e* < j Ho(z) < F(2,E)e*, 2zeC, n3>=mn,.

Since F satisfies condition (H), it satisfies also condition (L) and therefore
the functions F,(2, E) and F(z, E) are continuous in C. Moreover, the
function fa(z) defined by fu(2) = F(z, B)|V/Fn(z, BE) for 2z ¢ C and fa(co)
= limF(z, E)/)/Falz, E) is continuous in €+ {oo}. Further, fu(2)>1

Z—00

and 1 = lim f,(2) for z in C+ {oo}. Therefore by the Dini theorem the
n—o0

convergence of {f,} is uniform in C+ oo, whence
F(z,E)e* < VFulz,E)<F(z,E)et, 2zeC, n>ngye).
This and (10) give the required result.

We shall need the following

PoLYNOMIAL LEMMA. Let F be a family of polynomials in k complex
variables 2 = (2,, ..., 2x) bounded at every point z of a Cartesian product
E=E X..xXEy, where E; (j=1,...,k) is a continuum nol reduced to
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a single point. The bound may depend on the point z. Then for every ¢ > 0
there ewist two positive numbers & and M such that

|Pa(2)| < Me,  dist(z, B) < 6,

where P, is an arbitrary polynomial of degree at most n belonging to the
family &.

Proof. For k = 1 the lemma is due to Leja [5]. If k¥ > 1 the lemma
follows by induction. Indeed, put 2’ = (2, ..., 2x—1). Then
[P(2)] = |P(2',26)| < M(2'y2x) for 2'eBE,X..XEy_.,2eE;,, PeF.
By the validity of the lemma for ¥ =1 we have

|Pa(z’y2x)| < M(2')e", 2 e BiX..XEy,, dist(z, Ex) <6y,

4, depending only on ¢ >0 and not on 2’ or P,. By the induction
assumption

| Pa(2’, 2x) |Jemr < Mem,  dist(2", Ey X ... X Ex_y) < 6y, dist(2x, Ex) < é,,
M = const > 0. So
[Pa(2)] < Me™, dist(z,E)<d, PpeT,

6 being sufficiently small depends only on e.
We are now able to give a generalization of Theorem 1.

THEOREM 6. Let F be a compact set satisfying the condition (H). Let U
be a function defined on E and let harmonic polynomials U, of respective
degrees at most n satisfy
(12) limsup (|U — Unlle) ™ < 1o < 1.

Then

1° the sequence {U,} converges uniformly on closed subsets of the in-
terior of E,;

2° limsup (||U — Unllg,)"™ <ofe (1 < 6 < o).

Proof. Let ¢, ¢ and o, be arbitrary positive numbers such that
1<o<o0,<p, 6#a,/0 < 1. By (12)

1Un— Un-1lle < |Un— Ulle+|Un-1— Ulle < My(€'[0)",
n>=1, M, = const.

By the interpolation formula and by (4) and (a,)

n

| Un(2) = Un—s(2)] < My(efe)" X 1HM(z, ¢™)| < My(e'10)"(2n+1) Ha(2)

i=0
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for n > 1 and z e C, whence
limsup (| Un(2) — Un_s(2) )" < €f0yJo <1, zek,, .

Thus the sequence {U,} converges for every ze E,,.
The sequence of polynomials of two variables z and y defined by

Po(@,y) = [Un(2) = Una(2))(€0r/0)", n=1,...

is bounded at every z = x| iy ¢ E. The set K, is a compact subset of
the interior of E,,. By the Heine-Borel theorem there is a finite number
of squares

Q= {z,y): lz—z)| <7y, ly—yl <15}, j=1,..,1
such that
1
E,CUUQ;CE,,.
i=1

By the polyriomial lemma applied to the sequence {Pn(z, ¥)} and to every @,
there exists a constant ) such that for every » > 1

(13) | Un(2) — Un-1(2)] < M(¥ay/0)",

z in a neighbourhood of E,. This implies that {U,} converges uniformly
in E,, whence in view of the arbitrariness of ¢, 0 and o, it converges
uniformly on compact subsets of E,.

By (13)
10— Tl = | X (U= Usc)||y, < M (afo) (1 = (*arfo))
k=n-1

limsup (|| U — Unll,)'” < ayf0 ,

whence by the arbitrariness of ¢, 0 and o, we get 2°. The proof is
completed.
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