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A discrete boundary value problem

by A. LasotA (Krakéow)

In the present note we are concerned with the question of the unique-
ness and the existence of solutions of two-pcint boundary value problem
for non-linear difference equations. In the proof of uniqueness we follow
the idea of M. P. Colautti [2] and Z. Opial [7] to use inequalities of the
Wirtinger’s type ([1], p. 140). The proof of existence is based on the
Brouwer theory of topological degree of continuous mappings in euclidean
space. Finally, we prove that, as the mesh is refined to zero, the solu-
tions of the finite difference problem converge to a solution of an ordinary
differential equation. Similar results for equation with right-hand sides
satisfying certain condition of monotonity were obtained be M. Lees [5].

Section 1 contains discrete analogs of Wirtinger’s and Opial’s inequal-
ities. In section 2 “a priori” estimates for the solutions of the boundary
value problem are given. The main result, uniqueness and existence
theorems, is formulated and proved in section 3. The approximation
theorem is given in section 4.

1. Consider the space R™' (R denotes the real line) of sequences
% = (Upy ..., Un) of real numbers, with the usual scalar product

n
(u,v) = Z Uy
i=0

and the norm |lu||= (,%)"®. The difference operators A: R"*'- R
and 6% R™'->R"" are defined by the formulae

Uipr1— Ug 1= 0, eeey n—1 »

Au;:{ 0, = n;

Uir1— 2Ug+ U=, t=1,..,n—1,
"2“‘_{ 0, i=0,i=n.
By |u] (u e R*") we denote the sequence (|ug|,y .., |%n])-
The following discrete analog of Wirtinger’s inequality is due to
Ky Fan, O. Taussky and J. Todd [3]:
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THEOREM 1.1. If w e R**' satisfies the homogeneous boundary value
condition

(1.1) =0, us=0,
then
(1.2) < Ay = s,

and the strong inequality holds unless

. T .
= Csm—ﬂ, 1=0,..,m.

For the convenience of the reader we shall give a proof of Theorem 1.1
based on the theory of finite Fourier series. It is well known (see e.g. [9],
p- 39) that the vectors u', ..., 4" ' such that

% 2 . T .
Uy = — sin — 1=0,..,nk=1,..,n—1
i n n) ’ y 70y ] ’ '

form an orthonormal base in the subspace of R"*' determined by (1.1).
A straightforward calculation gives also

(duk, Au?) = 46k,sin2%, k,i=1,..,n—1.
Setting

n—1

U = 2 agu"

k=1

we obtain, by the Parseval equality,

n—1
1

(L.3) i = D df.
k=1

On other hand, we have

(1.4) LA = (Au, Au) = (2 ag Auk, 2 a,Aul)

k=1
n—1
2 k‘.l'l:

- Zakag(duk Aut) = 42 disin® 2~

k=1

From (1.3) and (1.4) the conclusion of the theorem is immediate.
Combining Theorem 1.1 and the Cauchy inequality we obtain

(lul, |Au]) < Anll duji® .
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However, in this inequality the constant i, is not the best possible and
we shall prove the following discrete analog of an Opial’s inequality [8]
(see also [6]):

THEOREM 1.2. If u ¢ R*'! satisfies condition (1.1), then

(1.5) (ul, 140 < biault, =3[ .

For even n the constant un i8 the best possible.
Proof. In view of the boundary value condition (1.1) we may write

i—1 n—1
=2Auk, u¢=—2duk, i=1,...,n—1.

k=0 k=1
Hence
(ful, [Au)) = Zlmlldutl+ 2 fuel 1]
i= i=9+1
8 n—1
< D) 14w 2 |Au] + 2 dug| D) |Auy] .
i=1 k=0 i=g+1 k=1
n—+1
Using the inequality ab < }(a?+b%) and putting s = [T] we have
7n—-1 =n-1
(Iul, 14u)) <3 Z (duds+ [dusP)+ 3 D) D (14w + | dual)
l.=1 k=0 1=8+1 k=i
L 1 n—1
8 n
=3 Z |Augl2+ <§max(s, n—8) Zldudz
1=0 img+1 1=0

= pa)Auf .

To complete the proof it is sufficient to verify that (|v|, |4v|) = }nl|ido|i
for even n and v; = }n— |i—}nl.

2, Theorems 1.1 and 1.2 permit us to deduce ‘‘a priori” estimates
for the solutions of two-point boundary value problem.

THEOREM 2.1. Suppose that u ¢ R™*' satisfies condition (1.1) and the
tnequality

(2.1) |0%us) < A |ug| +BlAwy|+C, i1=1,..,n—1.
If the constanis A, B, C are non-negative and if

(2.2) n = lﬁA—l—[l:B <1,

(!) [#] denotes the whole part of z.
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then

— G 2 C
(2.3) lul < V-1, (4ul <Va—1y7—.

Proof. Multiplying (2.1) by |4s] and summing over ¢ we get
n—1

(lul, 162u]) < AfulP+ B(lul, |dul)+C Y lul .

dinad
=1

Hence using Theorems 1'.1, 1.2 and the Cauchy inequality we may write

(2.4) (luly [6%]) < enlldulP+ 22 CYn—1]jAu]l .
On other hand, from (1.1) it follows
(2.8) |Au|? = (du, Au) = — (u, &*u) < ([u], [6%u]) .

Compai‘ing (2.4) and (2.5) we obtain the second of inequalities (2.3).
The first one is the consequence of Theorem 1.1 and of the second one.

3. Now consider the difference equation
(3.1) ug = go(us, Aug), i=1,..,n—1,
and the boundary value condition
(3.2) Ug=a, Up=Ff.

Here a and g are given real numbers and g«(v,, v,) are given real-valued
functions defined for (v, v,) ¢ R2.

THEOREM 3.1. If the functions g¢i(v,,v,) are continuous and if they
satisfy the inequalities
(3.3) |g(ey 01)| < A vl + Bn|+C,

where the constanis A, B, C are-non-negative and such that (2.2) holds, then
there exist at least one solution of (3.1), (3.2).

Proof. By substitution
e = Ug— a—%(ﬂ—a)
we can reduce the difference problem (3.1), (3.2) to the same with homo-

geneous boundary wvalue conditions. Thus, in the sequel we consider
without loss of generality only the case a = 8= 0.

Write
ij L
r ;‘_J’ t=21,
G=) e
Q—z, 1 <]
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and define for each te (0,1) the mapping v = Fy(u) of R"*' into itself
by the formula

n—1

V= u—1 Zfiigfk%i;duf), 1=0,..,n.
i=1

It is easy to see that any vector u ¢ R*** satisfying the condition Fy(u) = 0
is a solution of the difference problem

OPuq = tgy(ue, dug), =0, up=20.
Write
— 4C }
S ={u: =Vn—1-"2" 41¢.
{ulmn e

From (3.3) and Theorem 2.1 it follows that Fy(u) = 0 for u ¢ 8. Hence
the degree of Fy(u) at the origin is independent of ¢ and, since Fy(u) = u,
it is equal to one. Thus there exist a solution of the equation F,(u)= 0
which is the desired solution of the difference problem.

From Theorems 2.1 and 3.1 immediately follows

THEOREM 3.2. If the functions g«v,,v,) salisfy the Lipschitz con-
ditions

(3.4) [ge(wo, We)— G1(Vg, 0,)| < A [wo— Vo + B |w,— vy

and (2.2) holds, then there exists exactly one solution of (3.1), (3.2).

In fact, the Lipschitz conditions (3.4) imply (3.3) and the existence
of a solution is given by Theorem 3.1. Now suppose that » and % are two
solutions of (3.1), (3.2). Then u = u—u satisfies the homogeneous con-
ditions (1.1) and inequality (2.1) with C = 0. Therefore, by Theorem 2.1,
||ul| = 0, which completes the proof.

4, The aim of this section is to obtain approximative solutions of
the second order differential equation

(4.1) ' =f(t,z,2'), a<t<hb,

satisfying the boundary value condition

(4.2) z(@)=a, a(b)=S8,

where the real-valued function f(f, vo, ;) is continuous in the region
D:a<ti<b, —co<py,< +00.

It is known [4] that if the funetion f(t, v,, v,) satisfies the Lipschitz
condition

(4.3) 1f(ty woy wy)—f(2, Vg, 11)| < K |wg— vo| + M |10,— v,
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and the constants K, M are such that

(4.4) +M——— <1,

gb—a)
n2 4

then there exists one and only one solution of (4.1), (4.2).
Side by side of the differential equation (4.1) consider the difference
equation

(4.5) éug—hif(f,m,l;:") i=1,..,n—1,
n

together with the boundary value condition
(4.6) Yg=a, un=24,.

The sequence (fy, ..., !s) and the mesh h, are defined by the formulae

—a, At,—h,.—%g, i=0,..,n—1.

THEOREM 4.1. If the function f(i, vy, v,) 48 continuous in D and if
it satisfies conditions (4.3), (4.4), then

1° for sufficiently great m there exists ewactly one solution u™ of the
difference problem (4.5), (4.6) and

2° lim juy—2(t3)| = 0 uniformly .in i, where x(t) denotes the solution
fn—>o

of the differential problem (4.1), (4.2).
Proof. From (4.3) if follows that the functions

g% (99, v;) = hn nf Yty Voy V1/Pn)

satisfy the Lipschitz conditions (3.4) with the constants A, = Kk and
Bn = Mhn. Set

on = A,.A,.—{-y,.B,. — K(b—a)* 2 +M(b— a)"".

By the definition of 1, and u, (see (1.2), (1.5)) we have

2
(4.7 im*_1  mt_1
Hence
—a)2 —
(4.8) limes = KO=% L yb=%_ o<1
proo i )

and obviously g, < 1 for sufficiently great ». Thus 1° immediately follows
from Theorem 3.2.
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Write 27 = z({7). There exist points 87, ¢ € ({7-1, {7+1) such that
82T = hax'’(87), Azt = hax'(c}), t=1,..,m—1.
In view of (4.1), (4.2) we find
(4.9) B=a, at=4

and
8’27 = hof(s?, z(s7), z'(87)), i=1,..,n—1.

This equation may be written in the form
(4.10) 8%t = hyf(t, a3, Axthe)+ 77, i=1,..,n—1
where A

rt = (f(s%, @(sD), 2'(8))—f(8F, 2(2D), 2'(cF))) -

From the continuity of the functions f(¢, v,, v,), (t), £'(?) it follows that

(4.11) lim -ﬁl;mg,xh’;l =0.

n—oo R,
Putting v; = u;— 7, subtracting (4.5), (4.10) and using (4.3) we obtain
|6%07] < A,.[v,|+B,.|Av,|+max1r,|, i=1,..,n—1.

Besides the boundary value conditions (4.6), (4.9) imply v = 0, v, = O.
Hence Theorem 2.1 yields

| dv)| < Yn—1

On other hand, we have

"”I_zIZ‘] A""

k=0

An n
max (7| .
l_en y l 1|

22 aot] < V2 20

max |r}| = (o—a) s max 77! 7]

— On i 1— On n i h:
Thus, to complete the proof it is sufficient to use (4.7), (4.8) and (4.11).

and consequently

2|v7] <
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