

ACTA ARITHMETICA XV (1969)

Sums of p-th powers in a P-adic ring

bу

M. BHASKARAN (East Lansing, Mich.)

Dedicated to Professor V.G. Iyer

THEOREM. Let A be a P-adic ring where P is a prime ideal lying above the rational prime p. Let J_p denote the ring generated by p-th powers of elements of A. Then every element in J_p is a sum or difference of five p-th powers of elements of A. If A is the rational p-adic ring, then every element in A is a sum of four p-th powers.

Proof. It is known that every element in J_2 is a sum or difference of three squares. (Stemmler, Acta Arithmetica 6(1961), p. 449). Also it is known that every element in a rational p-adic ring is a sum of four squares. So let us assume p to be $\geqslant 3$. Let a be a unit in J_p . Since every element in J_p is a pth power mod p,

$$a = x_1^p + \mu_1 p,$$

where x_1 and μ_1 are elements in A. If μ_1 is a non-unit, then $\alpha \equiv x_1^p \pmod{p^2}$. Let π be a generator of P and let

$$a = x_1^p + M_1 p \pi.$$

If λ_1 satisfies the congruence $M_1 - x_1^{p-1} \lambda_1 \equiv 0 \, ({\rm mod} \, P),$ we easily see that

$$\alpha = (x_1 + \lambda_1 \pi)^p + (-\lambda_1 \pi)^p + M_2 p \pi^2$$

 $(M_i \ (i=1,2,\ldots) \text{ are elements in } A).$

Again, if λ_2 satisfies the congruence $M_2-(x_1+\lambda_1\pi)\lambda_2^{p-1}\equiv 0 \pmod{P}$, we see that

$$\alpha = (x_1 + \lambda_1 \pi + \lambda_2 \pi^2)^p + (-\lambda_1 \pi)^p + (-\lambda_2 \pi^2)^p + M_3 p \pi^3$$

$$\equiv (x_1 + \lambda_1 \pi + \lambda_2 \pi^2)^p + (-\lambda_1 \pi - \lambda_2 \pi^2)^p \pmod{p P^3}.$$

This process can be repeated any number of times to see that α is a sum of two pth powers modulo any power of p. Hence, α is a sum of

Sums of the p-th powers in a P-adic ring

219

two pth powers. Suppose μ_1 is a unit. Now, we prove that there is a solution for the congruence

(2)
$$y_1^p + y_2^p + y_3^p \equiv 0 \pmod{p}$$

with

(3)
$$(y_1^p + y_2^p + y_3^p)/p$$
 a unit.

Let us take $y_1 = y_2 = 1$ and $y_3 = -2$. Then (2) is satisfied. If $2^n \equiv 2 \pmod{p^2}$, (3) is not satisfied. Then take $y_1 = 1$, $y_2 = 2$ and $y_3 = -3$. If $3^n \equiv 3 \pmod{p^2}$, (3) is not satisfied.

Continue this process. We see that we can continue only a finite number of times, since $(p-1)^p \not\equiv p-1 \pmod{p^2}$. So, after a certain stage, we have a solution for congruence (2) satisfying (3). Let μ_1 be written in the form

$$(4) x_2^p + \mu_2 \pi$$

where x_2 and μ_2 are some elements of A. Substituting (4) in (1), we have

(5)
$$a = x_1^p + px_2^p + \mu_2 p\pi.$$

Let

(6)
$$y_1^p + y_2^p + y_3^p = \mu_3 p,$$

where μ_3 is some unit in A. Now, the congruence

$$(7) x_2^p \equiv \mu_3 x^p (\operatorname{mod} P)$$

has a solution since every element in A is a pth power mod P. Applying (7) and (6) to (5), we get

(8)
$$a \equiv x_1^p + x^p (y_1^p + y_2^p + y_3^p) \pmod{pP}.$$

Hence, it easily follows that a is a sum of five pth powers. If a in a non-unit, then also a is a sum of five pth powers. The proof is similar to that of the case of non-units in a rational p-adic ring which is given below. (p-a in (9) is replaced by n-a and mod p and $mod p^2$ in (10) and (11) respectively are replaced by mod P and mod pP).

For the rational p-adic ring, the best possible bound can be obtained. In this case, we replace P by p in (8) and then it follows that every unit is a sum of four pth powers. Now, consider a non-unit. It is of the form βp where β is a unit and $t \ge 1$. If t > 1,

(9)
$$\beta p^t \equiv a^p + (p-a)^p \pmod{p^2}$$

where a is any unit. From (9), it follows easily that βp^t is a sum of two pth powers. If t=1, let us consider (6). μ_3 and β being units, there is a non-unit x such that

(10)
$$\mu_3 x^p \equiv \beta \pmod{p}.$$

From (6) and (10), we have

(11)
$$\beta p \equiv (y_1^p + y_2^p + y_3^p) x^p \pmod{p^2}.$$

From (11), it easily follows that βp is a sum of three pth powers. Hence, in a rational p-adic ring, every element is a sum of four pth powers. This bound is the best possible since 9 cannot be expressed as a sum of three 7th powers in the 7-adic ring.

MICHIGAN STATE UNIVERSITY East Lansing, Michigan

Reçu par la Rédaction le 22. 3. 1968