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1. Introduction. Let u(n) be the Méobius function and let M ()
> u(n) be its summatory function (where z may assume non;

1<n<®

integral values). Then MacLeod [4] has shown that

(1) |3 ()] < /80 if o>1119
and hence that(!)

o+1 i,
(2) 1M ()] < o T it z>=0.

There is also the special result of Neubauer [6] that
(3) 1M (@) < e

Inasmuch as Walfisz [9], p. 191, has shown that there exists a con-
stant @ > 0 such that

(4) M (z) = O (wexp{—a(loga)** (loglogz)~*"})

as ¢ oo, it is clear that (1) is weak for large x. Moreover, (1) is not
even as strong as the prime number theorem which is equivalent to
M (%) = o(x) as & — co. In this paper, we prove the following stronger
results: .

it 201 <o <105

1.2z
(5) 1M ()] < Toga)™ z>1,
122
(6) M (z)| < Toga z>1,
262
(7) | M ()] <@w)1—0/9 x> 1.

() MacLeod states that |M ()] < /8045 for all =, but this is false if 199
< o < 201 where M (z) = — 8.
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These proofs depend on various inequalities given by Rosser and
Schoenfeld [7]. '

‘ In fact, it is possible to improve the coefficients in (5)-(7) by using
the recently announced results of Rosser, Schoenfeld and Yohe [8] that
500000 zeros of the Riemann zeta- function are all on the crit-

he first 3
fc:l line. The above inequalities can then be replaced by:
ATw =8
(5" | M ()] < (logw)z/a . 220,
2.9%
(6") M (z)| < Togw if o>1,
5.3 1
(7) | M(z)| < (100’56)10/9 z >
Consequently,
.bbx .
(5") M (2)] < W if x>1.

9. Several lemmas. We begin with the following result.
LemMA 1. If @ > 1, then

6

Proof. Let Q(v) and R(x) be defined by
D ), R@) = Q)

ln<<a

so that Q (@) is the number of square-free integers not exceeding z. Stan-
dard techniques, based on integration by parts, give

2\#( +fQ“

62 /n?

n<a
I ¢ >0 and o > C, then
lu(n lu(n Q 0 Q (%) Q(u)
Z 2 - + @ +f u?
T n<l C
_ oy _Q(O) 8 Rl 6 0 +df R(w)
n C T @ b3
ngl
=— k(@) JLR—(;Lﬂ dw
kL z w
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53
[N
95

where

Now Moser and MacLeod [5] have shown, among other things, that
(9) R(x)] < 2Ve+: it
Hence, if @ > ( > 0, then

|
ZEM — ﬁ loge—C, |
n 72 [

n<e

xz>0.

13 9 13/ 1 1 9(1 1 13 9
<K=+ + 7= ; <=+
]/C Va 91/0 20

18y 2z ' 9
On taking ¢ = 10, we see that the last expression is less than .91 and
that .95 < C; < .96. This implies (8) if # > 10; if 1 < = < 10, it is easily
seen that (8) still holds.

Clearly, the bounds 0 and 2 in (8) are not the best obtainable. (In
fact, if in place of (9) we had used |R(2)! < 3z which Moser and Mae-
Leod [5] state is valid for 2 > 8 and if we had defined ¢ = 13, then we
would have obtained the bounds .68 and 1.25, valid for z > 2.) However,
since the main expression in (8) has the limiting value

6 {'(2
{ y—-—Zéi—)—} — 1.0438045...
T {(2)

as # — oo, it is clear that our bounds can not be greatly improved; in
any case, they are sufficient for our application. This limiting value
is obtained as follows:

= Duth

Q I/z n)|
2= Y
n
Kz
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= (oga+7) 7 7

6 9 a 1} O(lgg‘m‘)
=—n—(log'v—|—y)—|— {ds ) Va

6 N 6 _ A@l (lowa)
:"w'élog"’""?c?{” o 17N

and the numerical value of the constant term is obtained by using the
value for /(2)/¢(2) given in Table IV of Rosser and Schoenfeld [7].

LemMA 2. If 2 > 1, then

1
(10) 2 — |A(n)—1] < 2logz—2loglogw.

<<

Proof. Let the above sum be L(z) and, in what follows, let p denote
a prime. Then for o > 2

L) =2 < logp 11+

pk<w ;"jk
1 1
= Z?ﬂog_’p—ﬂ—z ?’64 w
e Pl n<z
= 2—{110gp ~1]—1} —!—2 7 {logp—1{—1} I«E
P<T pk<m N
/»/2
lo —2
- JEmet. s
P=T T

Where

Glo) = 1-Tog2+ Y] — (logp—1i—1) s

p"sm
=2
2 logn— 2
<1t 10g2+2 BPE < a1 +2 £
& ‘p = n—1)
P>11

i=m®
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log .—1) < 1
< .31+ —~2 V( - _)
Z =t
log9+1

mlogru 2
<.31+f o g = A 2 <

On applying (3.23), (2.

11), (3.17) and (2.10) of Rosser and Schoenfeld [7],
we find that for 232

1 1
L I —1.8834+ ——| —2{logloga 4 .26 — —
(@ < (1oga—1 +Iogm) (togtoge-+ 26 2logzm)+m S o)

< loga —1—21/;2.— 2loglogz—1.38+1/logz+1/log?a.

NLET

Since the second term in the last expression does not exceed logz+-1,
we see that (10) holds if 2 > 32. The verification for 1 < z < 32 is easily
completed.

COROLLARY. If = > V;, then
1
(11) E —l4(m)—1] < 2loga.
g

Lemwma 3. If #> 1, then

. 652
12 &) —¢
(12) (o) —ol <o

< 10% then (4.5) of Rosser and Schoenfeld [7]

Proof. It 1 <2 <
gives
logzm @
Vo logzm
4\ 452
= —2.06 (?) Tog's >—-@.

Likewise, it follows from (4.12) and (4.5) of Rosser and Schoenfeld that
if 1 <2 <10° then

y(@)—2 > 0(x)—2 > —2.06Vz = —2.06

z < 0(x)—o+ 2+ 32" < 024 34

< 4\* 2 +332 2 <5.9m

e/ logix e ] logz ~ logiax’
Moreover, Theorem 11 of Rosser and Schoenfeld stafes that if z >2
then
(13) (@) —2] < w(logw)”zexp{——}/(logw)/R}.

Acta Arithmetica XV.3

y(x)—
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Hence, if # > expl0000, then

. , . 520xm f — V o
p(a)—a) < 1ngm(momn exp{—V10000/R} <

0gw
sinee B < 17.52. Therefore, if either 1 < < 10° or # > exp 10000, then

" p()—al < o
4 ) —a| < .
(14) ¥ log?x

. To handle the remaining range for «, we apply Table I of Rosser
and Schoenfeld. This table lists, for various values of b, appropriate
values of & such that for & = ¢

&r
) —x| < ex = elog’@ s
Ip(e) —z| < & elog Tog's
Hence,

(@) —a] < b —— it L p<
(@ B fogia <<

Taking b to be, in succession, 18.4, 175, 825, 1050, 1200, 1300, 1400,
1500, 1600, 1800, 2000, 2400, 3400, 5000 and letting b, he the next sue-
ceeding value of b with the last value of b, being 10000, this Table I
shows that eb? < 651.93. Together with (14) this yields

651.932

(15) [p(@)— 2| < ooty z>1.

: og*y
This completes the proof.
COROLLARY. Letting

{16) ol@) = y(x)—[2],

we have
662 2

(a7 lo@) < > if w1
log?x

Proof. This follows from (15) if # > 600 since
le(@)] < Ip(@)—w|+1.
And if 1 < @< 600, then (14) implies (17).

3: Proof of the main results, The estimation of M () is accomplished
by using results of the type (17). However, it is not easy to use such re-
sults because there does not seem to be any simple formula conneeting

i=m®
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the functions M (x) and g(x). Instead, there is a relation expressed in
terms of

(18) N(z) = E u(n)logn.

I<n<z
To derive this relation, we note that

HONFTNE l_ﬂi{ 11
s) ’(8)} RO A

3

f 2

We get, on expanding into Dirichlet series and equating coefficients,

D {A(k)—1}p(j) = — p(n)logn— 4,

ki=n

@y

where 4, =1 and 4, = 0 for all » > 1. If # > 1, then on summing for
1<n<x we find
D AR =1} p(f) = — N(x)—1.

kigx
'

If y >0 is arbitrary, then a standard rearrangement gives

—N@)—1= Y {Am—1} X i)+

k<y j<ark

+ D pli) Y (Am=1= 3 {Ad)~1} ' u(j).

j<zjy ke<xyi k<y i<ziy

Thus, if 2 >1 and ¥y >0

(19 —Fio-1= 3 am-nu(F)+ Y utie(3) —e(y)M(g)

k<y i<zjy ]

which iy the relation given in (44) and (45) on page 110 of Ayoub [1].

As we show below, (19) enables us to obtain an upper bound for
|N (2)| from bounds on |M (»)]. The reverse is also true sinee integration
by parts gives for z >1

1. N@ | [ ¥
(20) M(z)= 2 u(n)logn- Togn +1 = Toga —|—f ulogi du+1.

<N

Hence, if 2 > 0 > 1, we have
N & N@) fm N (u)

] 4 ulogu

@1) Miw) = M(C)— logC loga
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Let us now assume that

Ay ® By
i D tuz— e if >
(22) 1M (u)| < ) it u V'’ [o(v)] << o) if o>y

where 4, B are constants and g{u), h(v) are positive, monotone increasing

funetions. Then for # > 1 and y > 0, we obtain from (19)

1A (k) —1| Y () ABo
Nie cde V0T pe N 4
BT =42 2 gty T £ Tt it Tl
< AN g Be oy i ABa
< @ //)-’-/ AUUS a7 T gt

j< »T/.I

_ 2Ax(logy —loglogy) Bz (6 x ) ABx
h

— 100 - -9 i
g(x/y) h(y) \n? o8 Yy E L (y)g(2[y)

as a result of (10) and (8) provided z >y > 1. Hence,

Alog‘y_ 3Blog(xly)  Aloglogy
g(xly) nh(y) g(2fy)

23) | N(x) < 2.'70{

where

_ : .1 By (zly) B g(ﬂ?/?/)}
@4 fol@,9) =1 loglog:z/{ Ah(y) +L’h(y) 24w )’

ko, ?/)}

We begin by sketching the rest of the argument in the particularly
simple case that the functions arve givenm by

(25) g(w) = (logu)",  h(v) = (logv)’

where a and f are non-negative. In this case, the first two terms in the
braces of (23) are

Alogy BB log m/q/

{log(afy)}" " ~=*(logy)’
If logy is small compared to logx, then this sum is minimized by
speecifying that
(26) logy = D(logm)“+E+1)
where

BB\ M+
@7) D= (iﬁi@) ‘
A

i=m®
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Regardless of the choice of D, if we define y by (26) and if 2 >y >e,
then (23) and (24) yield

2 [ 4D

3B
28) ¥ (2)] - )
(28) V(@) < (log o) D070 (1 —gy* T 2pF ™4

Adloglogy .
—Ti—ll) (W (@, 9)

where .
(29) _ logy ~—{)—,~n_7,

1ogv (10gm)(ﬁ—nmﬁ. )

1 B

0 k _ N

o @y loglog y {ADf‘(Iogw)‘ﬂ““)/(ﬁw-i) :

N B < (logm)"l
" 2P (logx)PCFIEFD T T4

If & is sufficiently large and f > a, then %(zr,y) > 0 and

(31) N () = O(x(logz) ™)
where .
8
4 = i1 (a-1).
Consequently, (20) will yield
-

32 M(z) = O]
) = ()

Inasmuch as we assumed MM (x) = O(z(logz)~") in (22) and (25), the
result (32) is of exactly the same nature. Moreover, (32) will be an improved
estimate if § > « sinee this implies «; > «. In fact, this procedure can
e iterated to yield

N _ @
(33) Mz) = 0(—_(10;;50)"")
where '

ﬂ n
(34) oy = f—(f—a) (ﬂT) .

As a result, we can secure an exponent «, in (33) which will be as close
.to f as we wish; for our purposes, it will suffice to take n = 2.

The numerical details go as follows. By (17), we can take B = 652
and f = 2. Moreover, (1) shows that we can take 4 =1/80 and « =0
provided o > 1119y and y >e. We now specify y by (26) and (27).
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If © > ", then it is easy to verify that »>1119y, y >e and k(z,y) > 0.

As a result, (28) implies that for z > ¢

(85)

3w [ 4890
IV (@) <

13
50 g ) < 119z (logz)™.

We note that if z = ¢'° > 1 then

x w'){lo . @ ‘1/10

- f du = -
= IV
S (loo oy

n

{ du o1 f Tt 1
e du+ — sy e
g (Qogu)y™ ™~ (log ) (.91ogz)™? (.9loga)™

Taking € > ¢ and » > (', we obtain from (21), (1) and (35) that
¢ 1190 | [N(z) S
M(z)| < — + e ‘%—mgf
M@ 80 1 (1ogC)® " logw - (logu)*?
1 1.19 N 1.19.1;"/10 1.192
(36) <{~+ ,,) o4 JON L1000, Lo
80 ' (log O)Ff logz  (logQ)® (.91ogz)
Hence, (35) and the choice C = ¢ gives for » > ¢*°
@ (1ocrm)-/3 (logw)*® 1.42)
M(@)] < =y {0490 22 1190 V0BT 22 L
@)l (logwr’a{ PR 5200270 7 Toga S
If > ¢, then this implies (5). And if 1 <& < ¢, then (2) yields
. x 1 ) 441(10ga,)2/31 @
37 M(2)] < ———m {— (logz)*® .
BT M) < o |55 1082 + g, = (Togay® £@
Now

441 2 2 44
K (@) — { % 441

003 (loga) ™ (1323 13 "Iog‘”} = 80at(loga)® 7 @

Here J () is strictly decreasing for 0 < o < 1323 /2 and is strictly increas-
ing for x> 1323/2. Moreover, J(2) < 0 < J(6000). Hence, J(x) has
& unigue zero & on the half-line (2, co). Then K'(z) < 0 for 2 < o < &
and K'(x) >0 for # > £ Consequently,

(38) max K(z) = max {K(8)

8cwce?00

so that (5) holds for all = =

proof of (5) is complete.
Therefore, (22) and (25) hold with 4 = 1.2 2, a =23 and B = 6b2,

B =2. We let y be defined by (26) where D = 5.76. If & > 6" Lhen
TZYy>ek(ny) >0 and

(39) 0K

, K ()} < 1.7

8. As it clearly holds for L < % < 8, the

5.76/1000*" < .268.

i=m®
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Hence (28) gives for =
2 1.2 (o 76) 3(6562) 2582
40 | N (x 5+ 5 (1—u
(20) @< (loga)® L@ —wy® T 7:2(5.76)‘( )} “(logz)”®

inasmuch as the expression in braces is a concave up fonetion of » and
hence has a maximum either at 4 = 0 or at « = .268. We use this in
(36) to obtain, where C = ¢™*® and z = ",

Lo 10/9

1.42
(loga)*™f

&£ " (10g.1i‘ (]-OUI)
M 0490 25.8 y
[ (2)] < (10g$)1019{0 9 2 TE8 52001
25.84x 122

< (logz)™® ™ logw

Thus (7) and (6) hold for # = €. And if 1 < » < 6", then (5) gives

| T 122
1M ()] < 1.2(logz)* —=- < ———
logax

_ 2586w
(log 2)**?

logx

so that (6) and (7) hold in this range also. This completes the proof of
(5)-(7).

4. Concluding remarks. Inasmuch as we have taken B =2 as
a consequence of (17), it follows from earlier remarks that we could prove
a result of the kind (33) with «, replaced by 2— 5 for an arbitrary » > 0;
moreover, we could replace this O-estimate by an inequality with an
explicitly determined constant. As this exponent 2—# essentially results
from (12), we can raise the guestion as to what can be proved by our
methods if we were to use the stronger inequality (13). This means that
we will be using (22) with

hiv) = (10gzv)'llﬂex1)1/(1_og_v)/_R.
If we now let g(u) = (logu)*/(loglogw)’, then the optimal choice of y
is given by
l'/iiaéy)/R = (a-+1)loglogz— dlogloglogx
s0 that we will not be able to obtain a better bound from (23) than
loglogz)o*?
N(z) = 0[a L?E)%i’g__
(logz)
Then (20) yields
(loglog)® )
M(z) =0|o——F—
@ =0+ ey
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where 6, = 6+2 and ¢, = a+1. Tterating repeatedly, the exponents 4,
and «, can be replaced by d, = 6427 and @, = a+n. Thus, the use
of (13) will not yield anything better than

@
M = O( (1ogw>”‘)
with arbitrarily large F. In view of (4), this indicates that (19) is a
somewhat unsatisfactory result.

The constants in (5)-(7) result from the use of the constant 652 in
(12). This, in turn, depends on Table I of Rosser and Schoenfeld [7].
The construction of this table used Liehmer’s [3] result that the first
25000 non-trivial zeros of [(s) are all on the ecritical line. Recently,
Lehman [2] has shown that the first 250000 zeros of {(s) are on the
line.

Further, Rosser, Schoenfeld and Yohe [8] have announced a proof
that the first 3500000 zeros of [(s) are on the line. As a consequence,
one can construct a new Table I; this enables one to replace 652 in (12)
and (17) by 37.6. If we assume that @ >>¢*, then the previous method of
proof leads to the replacement of the constant 1.19 in (35) by .459 since
now B=37.6. If 0=¢" and x> ("° = ¢%, then (36) holds with 1.19
replaced by .459 throughout; hence

|N(m)f mf)/lﬂ D48z
(41) | M ()] < .045C + logs LT (log@)™”

If & > 6", then owr sharpened version of (35) yields
(42) | M ()] < 462z /(logz)*®.

Proceeding as before, we use (37) and, in place of (38), we have

max K(») = max{K(29), K(¢*")} < .456
20gwge?20

80 that (42) holds for all © > 29. Hence (42) also holds for # > 6 so that
(8') and (8") now follow. Continuing as previously, we can now take
A =462, o =2/3 and B =376, f =2. We define y by (26) with
D =3806. If &>¢", then #>6y>6¢ and (39) holds with .268
replaced by .267; also, k() > 0. Now (28) implies (40) with 25.8
replaced by 5.27 provided » > ¢*. Consequently, we obtain from (41)
that both (7') and (6") hold for these #. And if 6 <& < ¢, then (42)
implies that (6') and (7') hold. Since they also hold for 1 < z < 6, the
proof of these results is finished.
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