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AN
THEOREM. Lét fi(@4y « oy Tr)y oy ful@yy «o0y @) denote polynomials with
coefficients in I that satisfy (3). Then the f; are equivalent under the group T
to a set of polynomials in at most r—s indeterminates.
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The diophantine equation dy® = az*-+ba*+¢
by

L. J. MorpELL (Cambridge)

It is well known and easily proved that the equation
(1) dy? = az*+bat+¢,

where a >0, b, ¢, d > 0 are integers, b>— 4ac # 0, has only a finite num-
ber of integer solutions. Thus write (1) as

(2) Ay? = ar'+bawtet+e?, 2 =1.

Then the general solution of (2) is given by a finite number of expressions
of the form

(3) = ayp?--bypg+ o147
(4) 2 =1 = ayp®+bypq+caq?,

where p, g are integers.

The general solution of (3) is given by a finite number of expressions
of the form
(5) P = @72+ byrs 40382, g = a,r2--byrs4-es?,

where 7, 8 are integers.
Substituting in (4), we have a finite number of equations of the form

(6) Ar' - Brs O s* - Drs® L Bs* = 1.

By Thue’s theorem, such equations have only a finite number of
integer solutions. In general, it is very difficult to find these, and much
detail and advanced technique are often required. There are, however,
some classes of equations (1) all of whose integer solutions can be found
by elementary means. This idea had been previously (*) applied to
equations of the form

: ¥ = az’ + b’ +extd.

. (M L.J. Mordell, The diophantine equation y® = az’+ba?+cx+-d or fifty
years afler, Journ. Lond. Math. Soc. 38 (1963), pp. 454-458. The diophantine equation
y* = agd+ bw?+ cx+ d, Rend. Cive. Mat. Palermo (II) 13 (1964), pp. 1-8.
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Write the equation (1) as

2 .
dy* = 600" —bF + 0, 4= a8y, @ >0, a,>0,

(7)
where we may suppose z = 0,y = 0.
Suppose it can be written in the form

(8) -+ M = (4,07 D) (8,02 —q),
where k, I, p, ¢ are integers at present undefined.

Then
9 paytgqo, =D,
(10) pg = ¢+ ki3,
and so

(pay~— qa,)t = b*—da(e-ki?),

and, say -
(11) 4 akl2+m? = b2—4aqe,
where
(12) m = Pa,— qa,.

Hence (7) can be written in the form (8) if (11) has an integer solution
I, m for which both

(13) (b+m)/2ay, (b—m)[2a,

are integers.

The equation (8) imposes conditions on the quadratic character
of a,2*—p(moddk), and a contradiction may arise for appropriate &, I.
We take d =1, and consider the cases when & =1, 2.

Suppose first that & = 1, and that { has no prime factors = 3 (mod4).
We investigate conditions under which there are no solutions with a2 > p,
and a,2® > ¢. Then we can exclude # = 0(mod2) if either p = 1(mod4)
or ¢ =1(mod4). Also z = 1(mod2) can be excluded if ecither a—P
=3, 6, 7(mod8) or a,—q = 3, 6, T(mod8). The equations so found may
perhaps be easily proved impossible by direct congruence congiderations
applied to (7). This can be avoided by constructing equations which
actually have solutions with a, 22— p < 0. Thus, solutions (2, y) = (0, ),
(1, y,) exist if

Yot =pg, ¥+ = (p—a)(g—ay).

It is of course possible that other solutions exist with azi—p <0,
and these can be found by inspection.
A simple ingtance is

(14) Y = (pa?— p—1—dg) (ra®—yg),

i=m®
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where p >0, ¢ 20, s >7>0, and ! has no odd factors = (mod 4).
The first factor excludes # = 1(mod?2), and the second factor excludes
z = 0(mod2) if s = 1(mod4). This is obviously satistied by the existence
of a solution with « = 0. :

For solutions with @ = 0, 1, 2, we have

Yot B = s(p+1+4g),
YitT o= (s—r)(4g+1),
Yk T = (s—4r)(lg—3p+1).

Hence
) i o i+l
(15) § = pFl+4g’ 4g+1’
. dyi+4P By 3P
6 Yy Zz = (40— 3 1 - - "
(16) Ya+ (4q—3p+ )( 4g+1 p+14+4q

There is no difficnlty in finding integer values for p, ¢, 1, , s. Consider

the special case I =1, p =4, ¢ = 3. Then
§ = q/;;_—|-£ P = l‘z’jl_ _— f’ii—.l_
o 13

We can take y, =13, s = 10, ¥, = 5, r = 8. Then
y24-1 = (42—17) (822 —10)
has only the solutions # = 0, » = +1.

It is more difficult to find equations with a third solution. Now
(16) becomes

4yt 4
13

3y5-+ 3

Y3+l = 7

We require integer solutions with # > 0, that is

Yokl
17

yi+1
13

The solution y, = 4, y, = 2, ¥, = 5 does not satisfy this condition.
Dr. R. F. Churchhouse of the Atlas computer laboratory has kindly
given me o large number of solutions. It suffices to mention only

Yo = 132, y, = 112, y, = 28.
The corresponding equation is

Y21 = (422—17) (6002 —1025),
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and so this has only the non-negative integer solutions
2y =0, 2, =1, 3, = 2.

Tt might be of interest to find similar equations with four or more
solutions.
An instance when %k = 2 is given by

(17)  y*+202 = ((8p+2)a*—8¢—3)(ra*—s), P30, =0, r>0, §>0,

where we suppose ! has no prime factors =5, 7(mod8). The first factor
if positive excludes both # = 0(mod2) and « = 1(mod2).
It (@, 9) = (0,%), (1, y,) are solutions, then

V2P = (8¢43)s, 1i+2l = (8g—8p+1)(s—7).
Hence
_ yrer . yE 428

8¢+3° T 8g—8p+l’

Take ! =1,p =g = 0,9, = 8,8 = 22,7 = 20—¢:. Then
Y42 = (20" —3){(20—y}) a* — 22)

has only the solutions (w,y) = (0, 4-8), (+1, ;).

ST. JOHN’S COLLEGE
Cambridge, ¥ngland

Regu par la Rédaction le 4. 6. 1968

ACTA ARITHMETICA
XV (1969)

On ratio sets of sets of natural numbers
by
T. SavAT (Bratislava)

Let us denote by N (C and R™' respectively) the set of all natural
numbers (all integral numbers and all positive rational numbers respec-
tively). If A = N, 4 # @, then we put

D(4) ={z<0; q 2=c—d},

¢,ded

pert G}
By =|reBs Lo =gf
D(4A) is the set of differences of numbers of the set 4 and R(4) is the
ratio set of the set A.

In the paper [3] it is proved that D(4) = C if the upper asymptotic
density of the set A is greater than 1/2. It is even proved in that paper
that in this case (that is if the upper asymptotic density of 4 is greater
than 1/2) the following holds: for each @ <C there exists an infinite number
of pairs (¢, d) of numbers of the set A such that z = ¢—d.

Let us remark that the condition d,(4) >1/2 (6,(4) denotes the
upper asymptotic density of the set A4) it is only a sufficient condition
for the equality D(4) = C to be true. B.g. if 4 ={1,2,4;...,2n,...},
then we have obviously d,(4) = 1/2 (= 6(4), 6(4) denotes the asym-
photic density of the set 4) and simultaneously D(4) = C.

We shall prove in this paper a theorem on the ratio sets which is
analogous to the above mentioned theorem of Professor W. Sierpinski
(see Theorem. 1) and then we shall study some properties of 4 = N
which quarantee the density of R(4) in the interval <0, -+ oco).

TumorEM 1. Let d,(A) = 1. Then for each meR™ there exists an
infinite number of pairs (¢, d) of numbers of the set A such that & = ¢/d.

COROLLARY. If 8,(4) =1, then R(4) = R,

Proof of the theorem. Let J,(4) = 1. Let us suppose that the
assertion of the theorem is not true. Then there exists a positive rational

mumber 7 — £ # 1, (p, q) =1 such that » = —:Z— only for a finite number
q

of pairs (¢, d) of numbers of the set A.
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